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a b s t r a c t

We prove that the graph of the logit equilibrium correspondence is a smooth manifold, which is
homeomorphic to the space of payoff functions and uniformly approximates the graph of the Nash
equilibrium manifold.
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1. Introduction

Theorem 1 in [3] shows that the graph of the Nash equilibrium
correspondence is homeomorphic to the set of payoff functions.
Proposition 2 in [5] proves that the graph of the Nash equilibrium
correspondence can be uniformly approximated by a smooth
manifold. In this note we provide a specific smooth manifold that
is homeomorphic to the set of payoff functions and uniformly
approximates the graph of the Nash equilibrium correspondence,
namely, the graph of the logit equilibrium correspondence, a
solution concept that was defined in [4] and sheds light on certain
experimental results.

We now describe two applications of this result. [1,2] use the
structure theorem of [3] to construct a homotopy-based method
for computing equilibria in normal-form games and stationary
equilibria in discounted stochastic games, respectively. Since the
homotopy path is in general piecewise differentiable and not
everywhere differentiable, numerical path tracing is impaired.
The everywhere differentiable homotopy path, which is induced
by the graph of the logit equilibrium correspondence, allows stan-
dard numerical tracing methods based on numerical integration
to approximate, to any degree, Nash equilibria of normal-form
games and stationary equilibria in discounted stochastic games.

Another application of our result is to the study of uniform
equilibrium in general quitting games, see [6]. Under some con-
straints on the payoff function of the game, it can be shown that
a limit of fixed points of a certain function, whose domain is an
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approximation of the graph of the Nash equilibrium correspon-
dence, is a stationary equilibrium of the general quitting game.
Two properties that are required for this approach are that the
approximation is smooth (so that a topological fixed point theo-
rem can be applied) and that every point on the approximation
assigns positive probability to all actions of all players. Since [5]
does not guarantee the existence of a smooth approximation that
satisfies the latter property, the result of [5] is not sufficient for
this application.

2. The model and main result

A strategic game form is a pair (I, A) where I = {1, 2, . . . , d} is
a finite set of players and A = ×i∈IAi is the Cartesian product of
finite sets of pure strategies for the players. A payoff function for
player i for the strategic game form (I, A) is a function ui : A → R,
and a payoff function is a collection u = (ui)i∈I of payoff functions
for the players. Consequently, the set of all payoff functions is
equivalent to R|A|×|I|. A triplet (I, A, u) where u is a payoff function
for the strategic game form (I, A) is a game.

A mixed strategy for player i is a probability distribution xi ∈

∆(Ai), and a mixed strategy profile is a collection x = (xi)i∈I of
mixed strategies for the players. It follows that the set of all mixed
strategy profiles is X := ×i∈I∆(Ai) ⊂ R

∑
i∈I |Ai|. A payoff function ui

for player i is extended to a function from X to R in a multilinear
fashion.

A mixed strategy profile x ∈ X is a Nash equilibrium of the
game (I, A, u) if ui(x) ≥ ui(ai, x−i) for every player i ∈ I and every
pure strategy ai ∈ Ai. When the strategic game form is fixed, the
graph of the Nash equilibrium correspondence is the collection
of all pairs of a payoff function and Nash equilibrium in the game
induced by this payoff function.
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Fig. 1. One coordinate of the graphs of the Nash equilibrium correspondence
(solid line) and logit equilibrium correspondence (dotted line) when u1(a) = 0.

Definition 2.1. Let (I, A) be a strategic game form. The graph of
the Nash equilibrium correspondence of (I, A) is the set

M :=
{
(u, x) ∈ R|A|×|I|

× X: x is a Nash equilibrium of (I, A, u)
}

⊂ R|A|×|I|
× R

∑
i∈I |Ai|.

As mentioned above, [3] proved that the set M is homeomor-
phic to the set of games, namely, to R|A|×|I|. An important concept
that we will need is that of logit equilibrium, which we define
now.

Definition 2.2 ([4]).Let (I, A, u) be a game and let n > 0. The
mixed strategy profile x is a logit equilibrium with parameter n of
the game (I, A, u) if for every player i ∈ I and every pure strategy
ai ∈ Ai,

xi(ai) =
exp(nui(ai, x−i))∑

a′
i∈Ai

exp(nui(a′

i, x−i))
. (1)

Standard continuity arguments show that a limit of logit equi-
libria with parameter n as n goes to infinity is a Nash equilibrium,
see Theorem 2 in [4].

Definition 2.3. Let (I, A) be a strategic game form. For every real
number n, the graph of the logit equilibrium correspondence of (I, A)
is the set

Mn := {(u, x): x is a logit equilibrium with parameter n of (I, A, u)}

⊂ R|A|×|I|
× R

∑
i∈I |Ai|.

Example 2.4. Suppose that there is one player who has two
actions: I = {1} and A1 = {a, b}. A payoff function for the player is
then given by two real numbers u1(a) and u1(b). A mixed strategy
x1 = (x1(a), x1(b)) is a Nash equilibrium if

x1(a) ∈

{
{1} x1(a) > x1(b),
{0} x1(a) < x1(b),
[0, 1] x1(a) = x1(b).

A mixed strategy x1 = (x1(a), x1(b)) is a logit equilibrium with pa-
rameter n if x1(a) = exp(nu1(a))/(exp(nu1(a))+ exp(nu1(b))). The
section of the graphs of the Nash equilibrium and logit equilib-
rium correspondences when u1(a) = 0 appear in Fig. 1. The larger
n is, the closer the graph of the logit equilibrium correspondence
gets to the graph of the Nash equilibrium correspondence.

Our first main result is that the graph of the logit correspon-
dence is a smooth manifold.

Theorem 2.5. The set Mn is a smooth manifold of dimension |A|×|I|.

Our second main result is that the graph of the logit correspon-
dence uniformly approximates the graph of the Nash equilibrium
correspondence.

Theorem 2.6. There are a homeomorphism ϕ : M → R|A|×|I| and
smooth homeomorphisms ϕn : Mn → R|A|×|I|, n > 0, that satisfy the
following property: For every ε > 0 there is N = N(ε) > 0 such
that for every n ≥ N we have

∥ϕ−1(w) − (ϕn)−1(w)∥2 ≤ ε, ∀w ∈ R|A|×|I|.

3. Proofs

To prove that Mn is a smooth manifold we need to study a cer-
tain function that will be used in the definition of the immersion
between Mn and R|A|×|I|. Recall that an immersion is a differen-
tiable function between differentiable manifolds whose deriva-
tive is everywhere injective (one-to-one). The keen reader will
identify the origin of this function and the proof of Theorem 2.5
in [3].

Lemma 3.1. For every n > 0 define the function g (n)
: Rd

→ Rd

by

g (n)
i (x) = xi +

exp(nxi)∑d
j=1 exp(nxj)

, ∀i ∈ {1, 2, . . . , d}.

The function g (n) is one-to-one, onto, and an immersion.

Proof. Step 1: The function g (n) is an immersion.
An n × n matrix A is a CL-matrix if (a) its diagonal entries

are positive, (b) its off-diagonal entries are negative, and (c) the
sum of elements in each column is positive. Thus, CL-matrices
are subclasses of both L-matrices and column strictly diagonally
dominant matrices. By the Levy–Desplanques Theorem, every
CL-matrix is invertible.

We first argue that the Jacobian matrix of g (n) is a CL-matrix
at all points. Indeed, simple algebraic calculations show that for
every i ∈ {1, 2, . . . , d},

∂g (n)
i

∂xi
(x) = 1 +

n exp(nxi)
(∑

k̸=i exp(nxk)
)

(∑d
k=1 exp(nxk)

)2 > 0,

∂g (n)
i

∂xj
(x) = −

n exp(n(xi + xj))(∑d
k=1 exp(nxk)

)2 < 0, ∀j ̸= i.

In particular, Conditions (a) and (b) hold for the Jacobian matrix
of g (n) at every point x. We also have
d∑

i=1

g (n)
i (x) = 1 +

d∑
i=1

xi,

and therefore
d∑

i=1

∂g (n)
i

∂xj
(x) = 1 > 0, ∀j ∈ {1, 2, . . . , d},

so that Condition (c) holds as well, and the Jacobian matrix is
a CL-matrix at all points. It follows that the Jacobian matrix is
invertible at all points, hence g (n) is an immersion.

Step 2: The function g (n) is onto.
To prove that g (n) is onto we will show that its image is both

open and closed. Since the Jacobian matrix of g (n) at every point
x is invertible, by the Open Mapping Theorem the image of g (n)

is an open set. To show that the image of g (n) is closed, note that
∥x − g (n)(x)∥2 ≤ 1 for every x ∈ Rd, and consider a sequence
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(yk)k∈N of points in the image of g that converges to a point y. For
each k ∈ N let xk ∈ Rd satisfy yk = g (n)(xk). Since ∥xk − yk∥2 ≤ 1,
and since the sequence (yk)k∈N converges, it follows that there is a
subsequence (xkl )l∈N that converges to a limit x. Since the function
g (n) is continuous, g (n)(x) = y, so that y is in the image of g (n),
which implies that the image of g (n) is closed.

Step 3: The function g (n) is one-to-one.
We argue that any function whose Jacobian matrix is a CL-

matrix is one-to-one. Indeed, let f be such a function, assume
w.l.o.g. that f (0⃗) = 0⃗, and fix x ̸= 0⃗. We will show that f (x) ̸= 0⃗.
We have

f (x) = f (0) +

∫ 1

t=0
dftx · xdt =

(∫ 1

t=0
dftxdt

)
· x.

The matrix
∫ 1
t=0 dftxdt , as an integral of CL-matrices, is a CL-

matrix, hence invertible. In particular, f (x) =

(∫ 1
t=0 dftxdt

)
·x ̸= 0⃗,

as claimed. ■

We are now ready to prove Theorem 2.5.

Proof of Theorem 2.5. [3] provided an equivalent representation
for payoff functions. Let u : A → R|I| be a payoff function. For
every i ∈ I define two functions ũi : A → R and ui : Ai → R by

ui(ai) :=
1

|A−i|

∑
a−i∈A−i

ui(ai, a−i),

ũi(a) := ui(a) − ui(ai).

Denote ⟨̃u, u⟩ = (̃ui, ui)i∈I . Since ui(a) = ũi(a) + ui(ai), it follows
that the mapping u ↦→ ⟨̃u, u⟩ is one-to-one and onto.

Fix n > 0 and define a function zn : Mn → R
∑

i∈I |Ai| by

zn,i,ai (u, x) := ui(ai, x−i) +
exp(nui(ai, x−i))∑
j∈I exp(nuj(aj, x−j))

, ∀i ∈ I, ai ∈ Ai,

where the coordinates of every vector ζ ∈ R
∑

i∈I |Ai| are denoted
(ζi,ai )i∈I,ai∈Ai . Define now a function ϕn : Mn → R|A|×|I| by
ϕn(u, x) := ⟨̃u, zn(u, x)⟩. Lemma 3.1 implies that the function ϕn is
one-to-one, onto, and an immersion. The result follows. ■

We now prove that the inverse of g (n) converges uniformly
as n goes to infinity, and we provide an explicit form to the
limit function, which is nothing but the homeomorphism defined
by [3].

Lemma 3.2. For every n > 0 let h(n)
: Rd

→ Rd be the
inverse of g (n). Let h : Rd

→ Rd be the function defined by
hi(y) := min{yi, α∗

} for every i = 1, 2, . . . , d, where α∗
:=

max
{
α ∈ R:

∑d
i=1(yi − α)+ = 1

}
. Then the sequence of functions

(h(n))n>0 converges uniformly to the function h.

Proof. Fix ε > 0, and let n > 0 be sufficiently large so that
ε > 1/(1 + exp(εn)). Fix y ∈ Rd and define x := h(y) and
x(n) := h(n)(y). Assume w.l.o.g. that y1 ≤ y2 ≤ · · · ≤ yd. By the
definition of g (n) we have x(n)1 ≤ x(n)2 ≤ · · · ≤ x(n)d . By the definition
of h we have x1 ≤ x2 ≤ · · · ≤ xd. Since
d∑

i=1

(yi − α∗)+ = 1 =

d∑
i=1

(yi − x(n)i ) =

d∑
i=1

(yi − x(n)i )+,

and since x(n)1 ≤ x(n)2 ≤ · · · ≤ x(n)d , it follows that x(n)d ≥ α∗
= xd.

For every i ∈ {1, 2, . . . , d} denote αi := yi − xi ≥ 0, and
α
(n)
i := yi − x(n)i ≥ 0. We now claim that α

(n)
i < αi + ε. Indeed,

assume to the contrary that for some i ∈ {1, 2, . . . , d} we have

α
(n)
i ≥ αi + ε. Then in particular

x(n)i = yi − α
(n)
i ≤ yi − αi − ε = xi − ε ≤ xd − ε ≤ x(n)d − ε.

Therefore, by the definition of g (n),

ε ≤ α
(n)
i =

exp(nx(n)i )∑d
j=1 exp(nx

(n)
j )

≤
exp(nx(n)i )

exp(nx(n)i + nx(n)d )

=
1

1 + exp
(
n(x(n)d − x(n)i )

) ≤
1

1 + exp(εn)
,

a contradiction to the choice of n. Since
∑d

i=1 α
(n)
i = 1 =

∑d
i=1 αi,

we deduce that for every i ∈ {1, 2, . . . , d} we have αi − dε <

α
(n)
i < αi + ε, which implies that ∥h(n)(y) − h(y)∥∞ ≤ dε, and the

desired result follows. ■

Proof of Theorem 2.6. In the proof of Theorem 1 in [3] it
was shown that the following function ϕ : M → R|A|×|I| is a
homeomorphism:

ϕ(u, x) := ⟨̃u, z(u, x)⟩, ∀(u, x) ∈ M,

where notations follow the proof of Theorem 2.5 and

zi,ai (u, x) := ui(ai, x−i) + xi(ai), ∀i ∈ I, ai ∈ Ai.

Theorem 2.6 follows from Lemma 3.2. ■

Remark 3.3. A natural question is whether one can identify other
smooth manifolds that uniformly approximate the graph of the
Nash equilibrium correspondence. In this remark we address this
question. Let (I, A) be a strategic game form, let u be a payoff
function for the strategic form game (I, A), and let f : R|A|×|I|

×

X → X . A mixed strategy profile x is an f -equilibrium for the
game (I, A, u) if x = f (u, x). The graph of the f -equilibrium
correspondence is the set

Mf :=
{
(u, x) ∈ R|A|×|I|

× X: x is an f -equilibrium of (I, A, u)
}
.

The concept of logit equilibrium with parameter n coincides with
the concept of f -equilibrium, when fi,ai (u, x) is given by the right-
hand side of Eq. (1), for every i ∈ I , ai ∈ Ai, and (u, x) ∈

R|A|×|I|
× X .

Let now (f (n))n≥0 be a parameterized family of functions from
R|A|×|I|

× X to X . Following closely the proofs above reveals suffi-
cient conditions that ensure the validity of Theorems 2.5 and 2.6
w.r.t. the sets (Mf (n) )n≥0 instead of the sets (Mn)n≥0. Specifically,
these two theorems hold as soon as the following conditions hold
for every n ≥ 0.

• The function f (n) is smooth on the relative interior of R|A|×|I|
×

X .

• 1 +
∂ f (n)i,ai
∂xi(ai)

(u, x) > 0 and
∂ f (n)i,ai

∂xi′ (ai′ )
(u, x) < 0 for every (u, x) ∈

R|A|×|I|
× X , i, i′ ∈ I , ai ∈ Ai, and a′

i′ ∈ Ai′ , provided (i, ai) ̸=

(i′, a′

i′ ).
• ui(ai, x−i) ≥ ui(a′

i, x−i) if and only if f (n)i,ai
(u, x) ≥ f (n)i,a′

i
(u, x), for

every (u, x) ∈ R|A|×|I|
× X , i ∈ I , and ai, a′

i ∈ Ai.

Furthermore, for every ε > 0, (u, x) ∈ R|A|×|I|
× X , i ∈ I , and

ai, a′

i ∈ Ai the following holds:
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• If ui(ai, x−i) ≥ ui(a′

i, x−i) + ε, then limn→∞ f (n)i,a′
i
(u, x) = 0.

Moreover, the convergence is uniform over (u, x) ∈ R|A|×|I|

× X .
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