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In this lecture we will review several topics that are extensively used in
the study of n-player stochastic games. These tools were used in the proof
of several results on non zero-sum stochastic games.

Most of the results that are presented here appeared in Vieille (1997a,b),
and some appeared in Solan (1998, 1999).

The first main issue is Markov chains where the transition rule is a
Puiseux probability distribution. We define the notion of communicating
sets and induce a hierarchy on the collection of these sets. We then relate
these concepts to stochastic games, and show several conditions that enable
the players to control exit distributions from communicating sets.

1 Markov Chains

A Markov chain is a pair (K, p) where K is a finite set of states, and p : K →
∆(K) is a transition rule. (As usual, ∆(K) stands for the set of probability
distributions over K.)

The transition rule p together with an initial state k define a process on
the states. Denote by kn the state of the process at stage n, n = 1, 2, . . ..
Let Pk1,p be the probability distribution induced by p and the initial state
k1 over the space of infinite histories.

A subset C ⊆ K is ergodic if for every k ∈ C
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1.
∑
k′∈C p(k, k

′) = 1.

2. For every k′ ∈ C, Pk1,p(kn = k′ for some n ≥ 1) = 1.

Let A = A(p) = {k ∈ K | p(k, k) = 1} be the set of absorbing states. In
this section we consider only transition rules that satisfy the following two
assumptions:

A.1 A 6= ∅.

A.2 Pk,p(∃n ≥ 1 s.t. kn ∈ A) = 1 for every initial state k ∈ K.

We define the arrival time by

rl = inf{n > 1 | kn = l}

where an infimum over an empty set is infinity. For a subset B ⊆ K \A and
a state k1 ∈ B we define the exit time from B by

eB = inf{n ≥ 1 | kn 6∈ B}.

By A.2, eB is finite a.s. Let Ql
p(B) = Pk1,p(keB = l) be the probability

that the first state outside B the process visits is l. Clearly this probabil-
ity depends on the initial state. We denote by Qp(B) = (Ql

p(B))l∈K the
exit distribution from B. Since eB is finite a.s., this is indeed a probability
distribution.

A B-graph is a set of pairs g = {[k → l] | k ∈ B, l ∈ K} such that

• For each k ∈ B there is a unique l ∈ B with [k → l] ∈ g.

• g has no cycle; that is, there are no positive integer J and k1, . . . , kJ ∈ B
with [kj → kj+1] ∈ g for every j = 1, . . . , J (addition modulo J).

It is clear that for every k ∈ B there exists a unique l 6∈ B such that
[k → k1], [k1 → k2], . . . , [kJ → l] ∈ g for some J and k1, . . . , kJ . In such a
case we say that k leads to l in g.

We denote by GB the set of all B-graphs, and by GB(k → l) all the
B-graphs in which k leads to l.

Example 1: K = {1, 2, a, b}, p(a, a) = p(b, b) = 1, p(1, 2) = p(1, a) = 1/2
and p(2, 1) = 1− p(2, b) = 3/4. Thus, A(p) = {a, b} and the process reaches
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an absorbing state in finite time p-a.s. Graphically, the Markov chain looks
as follows.

Figure 1

Take B = {1, 2}. Then there are three B-graphs: g1 = {[1, 2], [2, b]},
g2 = {[1, a], [2, 1]} and g3 = {[1, a], [2, b]}. GB(1 → a) = {g2, g3}, GB(1 →
b) = {g1}, GB(2→ b) = {g1, g3} and GB(2→ a) = {g2}.

The weight of g w.r.t. p is

p(g) =
∏

[k→l]∈g
p(k, l).

Lemma 1.1 (Freidlin and Wentzell (1984)) If k1 ∈ B and l 6∈ B,

Ql
p(B) =

∑
g∈GB(k1→l) p(g)∑

g∈GB p(g)
.

Assumptions A.1-A.2 imply that the denominator is positive.
Lemma 1.1 implies thatQl

p(B) is continuous as a function of the transition
rule p.

Example 1 (continued): It is easy to verify that p(g1) = p(g3) = 1/8 and
p(g2) = 3/8. One can now calculate, using Lemma 1.1, that if k1 = 1 then
Qa
p(B) = 4/5, while if k1 = 2 then Qa

p(B) = 3/5.

2 Puiseux Markov Chains

Puiseux series were introduced to the study of stochastic games by Bewley
and Kohlberg (1976). Since Puiseux series form a real closed field, they
proved to be a useful tool in analyzing asymptotic properties of discounted
stochastic games. The asymptotic properties where used by Mertens and
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Neyman (1981) to prove the existence of the undiscounted value in zero
sum games, and by Solan (1999) and Solan and Vieille (1998) for n-player
stochastic games. Puiseux series were used in other fields as well (see, e.g.,
Eaves and Rothblum (1989)).

All the definitions and results we have stated in section 1 do not use the
fact that the field over which the transition rule is defined is the field of real
numbers. Consider now the field F of Puiseux functions; that is, all function
f̂ : (0, 1)→ R that have an expansion

f̂ε =
∞∑
i=L

aiε
i/M

for some integer L and positive integer M in an open neighborhood of 0. As
a rule, Puiseux functions are denoted with a hat. The valuation of a Puiseux
function is defined by w(f̂) = min{i | ai 6= 0}/M .

For every Puiseux function f̂ with w(f̂) ≥ 0 define

f̂0 = lim
ε→0

f̂ε =

{
0 w(f̂) > 0

a0 w(f̂) = 0

It is easy to verify that

w(f̂ ĝ) = w(f̂) + w(ĝ), (1)

and that
lim
ε→0

(f̂ε/ĝε) = 0 whenever w(f̂) > w(ĝ). (2)

A Puiseux transition rule is a function p̂ : K ×K → F such that (i) for
every k, l ∈ K, p̂(k, l) is a non-negative Puiseux function and

∑
l∈K p̂(k, l) =

1, and (ii) for every ε ∈ (0, 1), p̂ε(·, ·) is a transition rule. A Puiseux Markov
chain is a pair (K, p̂) where K is a finite set, and p̂ : K×K → F is a Puiseux
transition rule. Note that the valuation of p̂(k, l) is non-negative for every
k, l ∈ K.

An important property of Puiseux functions is that if a Puiseux function
has infinitely many 0’s in any neighborhood of 0, then it is the zero function.
In particular, if a Puiseux function is not zero, then it is non-zero in a neigh-
borhood of 0. Therefore, in a neighborhood of 0, the ergodic structure of a
Puiseux Markov chain (and the collection of absorbing states) is independent
of ε.
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In the sequel we will consider Puiseux transition rules p̂ such that for
every ε sufficiently small, p̂ε satisfies assumptions A.1 and A.2.

The weight of a B-graph is a Puiseux function p̂(g) =
∏

[k→l]∈g p̂(k, l).
From (1) it follows that w(p̂(g)) =

∑
[k→l]∈g w(p̂(k, l)).

Since Puiseux functions form a field, it follows that for every Puiseux
transition rule p̂, Ql

p̂(B) is a Puiseux function. In particular, the limit
limε→0Qp̂ε(B) exists, and is a probability distribution.

Define Gmin
B (k → l) to be the collection of all B-graphs g ∈ GB(k → l)

that have the minimal valuation. By (2) it follows that if k1 ∈ B then

lim
ε→0

Ql
p̂ε(B) = lim

ε→0

∑
g∈Gmin

B (k1→l) p̂ε(g)∑
g∈Gmin

B
p̂ε(g)

. (3)

3 Communicating Sets

Bather (1973) introduced the notion of communicating sets to the theory of
Markov chains: a set B is communicating if for every k, l ∈ B, l is accessible
from k (that is, Pk,p(rl < +∞) > 0). A communicating set B is closed if
whenever k ∈ B and l is accessible from k, l ∈ B as well.

Ross and Varadarajan (1991) defined another notion of communication.
A set B in a Markov decision process is strongly communicating if it is re-
current under some transition rule.

Avs.ar and Baykal-Gürsoy (1999) generalized the definition of strongly
communicating sets to stochastic games. However, contrary to their claim
(compare their Lemma 1 and Example 2 below), under their definition, two
strongly communicating sets may have non-trivial intersection.

In the present section we generalize Bather’s definition of communicating
sets to Puiseux Markov chains. In the next section we provide another defi-
nition of communicating sets for stochastic games. When reduced to Markov
chains, this definition coincides with that given by Ross and Varadarajan.
We then study the relation between the two definitions.

Let (K, p̂) be a Puiseux Markov chain.

Definition 3.1 A set B ⊆ K \ A is communicating w.r.t. p̂ if for every
k, k′ ∈ B

lim
ε→0

Pk,p̂ε(eB < rk′) = 0.
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That is, the probability that the process leaves B before it reaches any state
in B goes to 0. Equivalently, as ε→ 0, the number of times the process visits
any state in B before leaving B increases to ∞.

We denote by C(p̂) the collection of all communicating sets w.r.t. p̂. Note
that if C ∈ C(p̂) is communicating, if B ⊂ C and if k1 ∈ C \B then

lim
ε→0

∑
l∈B

Ql
p̂ε(C \B) = 1. (4)

Define a hierarchy (or a partial order) on C(p̂) by set inclusion. Definition
3.1 implies that two communicating sets are either disjoint or one is a subset
of the other. Hence the directed graph of this partial order is a forest (a
collection of disjoint trees). A similar hierarchy was already studied by Ross
and Varadarajan (1991), and a different type of hierarchy is used in Avs.ar
and Baykal-Gürsoy (1999).

Let B and C be communicating sets w.r.t. p̂. B is a child of C if there
is no communicating set D that satisfies B ⊂ D ⊂ C. Equivalently, B is a
child of C if it is its child in the corresponding tree (when we represent the
partial order as a forest).

Definition 3.1 implies the following.

Lemma 3.2 If B is communicating w.r.t. p̂ then limε→0Qp̂ε(B) is indepen-
dent of k1, provided k1 ∈ B.

For every B ∈ C(p̂), the limit Q∗p̂(B) = limε→0Qp̂ε(B), which is indepen-
dent of k1 ∈ B, is the exit distribution from B (w.r.t. p̂).

Let C be a communicating set, and let D1, . . . , DL be the children of C.
Define a new Markov chain as follows:

• The state space is {d1, . . . , dL} ∪ (K \ ∪lDl).

• The transition q is given as follows:

– q(k, k′) = p̂0(k, k
′) for k, k′ 6∈ ∪lDl.

– q(k, dl) =
∑
k′∈Dl p̂0(k, k

′) for k 6∈ ∪lDl.

– q(dl, k
′) = Q∗,k

′

p̂ (Dl) for k′ 6∈ ∪lDl.

– q(dl, dl′) =
∑
k′∈Dl′ Q

∗,k′
p̂ (Dl).
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Thus, we replace each maximal communicating subset of C by a single
state. Transitions from those new states are given by the exit distribution,
whereas transitions from states that are not in any communicating set (tran-
sient states) are given by the limit probability distribution p̂0.

Eq. (4) implies the following.

Lemma 3.3 C is ergodic in (K, q).

4 Stochastic Games

From now on we concentrate on stochastic games, and we study when an exit
distribution from a communicating set can be controlled by the two players.

Let (S,A,B, r, p) be a two-player stochastic game.
We denote by Pz,σ,τ the probability distribution over the space of infinite

histories induced by the initial state z and the strategy pair (σ, τ), and by
Ez,σ,τ the corresponding expectation operator.

Definition 4.1 A Puiseux strategy for player 1 is a function α̂ : (0, 1) ×
S → ∆(A) such that for every z ∈ S, α̂ε(z) is a Puiseux probability distribu-
tion. Puiseux strategies for player 2 are defined analogously.

Note that for every ε ∈ (0, 1), α̂ε is a stationary strategy of player 1.
Any pair of Puiseux strategies (α̂, β̂) defines a Markov chain over S with

Puiseux transition rule q̂:

q̂(z, z′) =
∑
a,b

α̂a(z)β̂b(z)p(z′|z, a, b).

In particular, with every pair of Puiseux strategies (α̂, β̂) we can associate the
collection of communicating sets C(α̂, β̂) and the corresponding hierarchy.

For every C ∈ C(α̂, β̂) we denote by Q∗
α̂,β̂

(C) the exit distribution from

C in the corresponding Puiseux Markov chain.
A weaker definition of communication in stochastic games is the following.

Definition 4.2 Let (α, β) be a pair of stationary strategies, and C ⊂ S. C
is weakly communicating w.r.t. (α, β) if for every z ∈ C and every δ > 0
there exists a pair of stationary strategies (α′, β′) such that

1. ‖ (α′, β′)− (α, β) ‖< δ.
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2. C is stable under (α′, β′); that is, p(C | z′, α′, β′) = 1 for every z′ ∈ C.

3. Pz′,α′,β′(zn = z for some n ≥ 1) = 1 for every z′ ∈ C.

We denote by D(α, β) the set of weakly communicating sets w.r.t. (α, β).

Lemma 4.3 Let (α̂, β̂) be a pair of Puiseux strategies, and let (α̂0, β̂0) be the
limit stationary strategy profile. Then

C(α̂, β̂) ⊆ D(α̂0, β̂0).

Proof: Let C ∈ C(α̂, β̂). We will prove that C ∈ D(α̂0, β̂0).
Fix z ∈ C. Let g ∈ Gmin

C\{z}(z). For each [z′ → z′′] ∈ g choose an action
pair (az′ , bz′) that minimize w(p̂(z′, a, b)). Define a stationary profile in C by

α′(z′) =
1

2
α̂0(z

′) +
1

2
az′

β′(z′) =
1

2
β̂0(z

′) +
1

2
bz′ .

By (4) if C is stable under (α′, β′) and the players follow (α′, β′) then the
play reaches z in finite time a.s.

Recall that C is stable under (α̂0, β̂0). Assume to the contrary that C
is not stable under (α′, β′). Then there exists z′ such that either p(C |
z′, az′ , bz′) < 1, or p(C | z′, α̂0(z

′), bz′) < 1, or p(C | z′, az′ , β̂0(z
′)) < 1. Let

z? 6∈ C be a state that can be reached with positive probability under (α′, β′).
Define a B-graph g′ by replacing the unique edge that leaves z′ in g by

the edge [z′ → z?]. Then w(g′) ≤ w(g), which contradicts that fact that
Q∗,z(C \ {z}) = 1.

The following example shows that the two notions are not equivalent.
Example 2:
Consider a game with 4 states. States 2 and 3 are dummy states, where each
player has a single action, and the transition in each of these two states is:
with probability 1/2 remain at the same state and with probability 1/2 move
to state 1. State 4 is absorbing. In state 1 both players have 3 actions and
transitions are deterministic. Graphically, transitions are as follows:
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State 2
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2
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2
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State 3

4

State 4

Figure 2
Denote by D(T, L) the set of weak communicating sets w.r.t. the pure

strategy profile where the players play the Top-Left entry in state 1. One
can verify that D(T, L) = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}. However, it is easy
to see that {1, 2, 3} is not communicating w.r.t. any Puiseux strategy.

After we established the relation between communication (w.r.t. Puiseux
strategies) and weak communication (w.r.t. stationary strategies), we deal
only with the latter.

5 Controlling Exits from a Communicating

Set

In this section we will see how players can control the behavior of each other
in a weak communicating set, and how such control can be used to induce a
specific exit distribution from this set.

Let (α, β) be a stationary strategy pair and let C ∈ D(α, β) be a weak
communicating set. We define three types of elementary exit distributions:

QC1 (α, β) = {p(· | z, a, β(z)), where z ∈ C and p(C | z, a, β(z)) < 1},
QC2 (α, β) = {p(· | z, α(z), b), where z ∈ C and p(C | z, α(z), b) < 1},
QC3 (α, β) = {p(· | z, a, b), where z ∈ C, p(C | z, a, β(z)) = p(C | z, α(z), b) = 1

and p(C | z, a, b) < 1}.

The first set corresponds to unilateral exits of player 1, the second to unilat-
eral exits of player 2, and the third to joint exits. Note that an exit can give
positive probability to a state in C. Define

QC(α, β) = co{QC1 (α, β) ∪ QC2 (α, β) ∪QC3 (α, β)}.

QC(α, β) is the set of all exit probability distributions that can be generated
if the players play at every stage mainly (α, β), and perturb to other actions
with small probability.

9



Whenever Q ∈ QC(α, β), we can represent

Q =
∑
l∈L1

ηlPl +
∑
l∈L2

ηlPl +
∑
l∈L3

ηlPl

where Pl ∈ QjB(α, β) for l ∈ Lj. This representation is not necessarily unique,
but it will not cause difficulties.

Let C ∈ D(α, β) be a weak communicating set w.r.t. (α, β), Q =
(Q[z])z∈Z an exit distribution from C and γ ∈ (R2)S be a payoff vector.
γ should be thought of as a continuation payoff once the game leaves C, and
Q is the exit distribution we would like to ensure.

In the sequel, Qγ =
∑
z Q[z]γz and vi = (viz)z∈S is the min-max value of

player i (see chapter @ (Neyman)).

Definition 5.1 Q is a controllable exit distribution from C (w.r.t. γ) if
for every δ > 0 there exist a strategy pair (σδ, τδ) and bounded stopping times
P 1
δ , P

2
δ such that for every initial state z ∈ C

1. Pz,σδ,τδ(eC <∞) = 1 and Pz,σδ,τδ(zeC = z′) = Q[z′] for every z′ ∈ S.

2. Pz,σδ,τδ(min{P 1
δ , P

2
δ } ≤ eC) < δ.

3. For every σ, Ez,σ,τδ

(
γ1(zeC )1eC<P 1

δ
+ v1(zP 1

δ
)1eC≥P 1

δ

)
≤ Qγ1 + δ.

4. For every τ , Ez,σδ,τ

(
γ2(zeC )1eC<P 2

δ
+ v2(zP 2

δ
)1eC≥P 2

δ

)
≤ Qγ2 + δ.

In this definition, (σδ, τδ) should be thought of as strategies of the players
that support the exit distribution Q, and (P 1

δ , P
2
δ ) are two statistical tests

that check for deviations. Condition 1 says that if the players follow (σδ, τδ)
then the game will eventually leave C with the correct exit distribution.
Condition 2 says that the probability of false detection of deviation is small,
whereas conditions 3 and 4 ensure that no player will benefit more than δ by
a deviation that is followed by a min-max punishment once detected.

A simple control mechanism was used by Vrieze and Thuijsman (1989)
for two-player absorbing games (see chapter @ (Thuijsman)).

In the sequel we prove several conditions that imply that some exit distri-
bution is controllable. The exit distribution that is induced by the strategies
that we construct is only approximately Q, rather than equal to Q. By
slightly changing the construction (at the cost of simplicity) one can make

10



sure that the exit distribution is equal to Q. In any case, for our purposes,
it is sufficient to have the exit distribution arbitrarily close to Q.

In our construction, we omit the subscript δ from the strategies and
stopping rules, since we do not specify what is the exact δ that should be
taken.

Lemma 5.2 Let C be a weak communicating set w.r.t. (α, β), γ ∈ (R2)S a
payoff vector and Q =

∑
l∈L ηlPl an exit distribution. If

1. γ ≥ v and γz = Qγ for every z ∈ C.

2. Plγ
1 = Qγ1 for every l ∈ L1.

3. Plγ
2 = Qγ2 for every l ∈ L2.

4. For every z ∈ C and a ∈ A, p(· | z, a, βz)v1(·) ≤ Qγ1.

5. For every z ∈ C and b ∈ B, p(· | z, αz, b)v2(·) ≤ Qγ2.

then Q is a controllable exit distribution from C w.r.t. γ.

Sketch of Proof: Fix δ?, ε > 0 sufficiently small.
By the definition of weak communication, for every z ∈ C there exists

a stationary strategy pair (αz, βz) that satisfies (i) ‖ (αz, βz) − (α, β) ‖< δ,
and (ii) if the players follow (αz, βz), the game leaves C with probability 0,
and reaches the state z with probability 1 in finite time (provided the initial
state is in C).

The strategy pair (σ, τ) of the players is defined as follows. In a cyclic
manner do the following for each exit Pl.

1. Denote by z the state at which the exit Pl occurs. Play (αz, βz) until
the game reaches z.

2. Denote δ = δ?ηl.

(a) If l ∈ L1 (that is, Pl = (z, a, β(z))), play ((1− δ)α(z) + δa, β(z)).

(b) If l ∈ L2 (that is, Pl = (z, α(z), b)), play (α(z), (1− δ)β(z) + δb).

(c) If l ∈ L3 (that is, Pl = (z, a, b)), play ((1 −
√
δ)α(z) +

√
δa, (1 −√

δ)β(z) +
√
δb).

3. Continue cyclically to the next exit.
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Define the stopping times P 1 and P 2 as follows:

a) If player 1 (resp. player 2) plays an action which is not compatible with
σ (resp. τ), P 1 (resp. P 2) is stopped.

b) For every l ∈ L1, consider all stages where the game has been in step
(2) for that l, and check whether the distribution of the realized actions
of player 2 in those stages is approximately β(z) (where z is the state
at which Pl occurs). If the answer is negative (that is, the difference
between the distribution of the realized actions and β in the supremum
norm is larger than ε), P 2 is stopped.
This test is done only if the number of times the play was in step (2) for
that exit is sufficiently large, so that the probability of false detection
of deviation is small.

c) A similar test is done for player 1 for every l ∈ L2.

d) For every l ∈ L3, consider all stages where the play has been in step
(2) for that l, and check whether the opponent perturbed to a (or b)
approximately in the correct frequency. That is, whether the ratio
between

√
δ and the number of times the realized action of player 1

(resp. player 2) was a (resp. b) is in (1− ε, 1 + ε).
This test is done only if the number of times the play was in step (2) for
that exit is sufficiently large, so that the probability of false detection
of deviation is small.

We have already seen how to implement test (b) in the proof of Vrieze and
Thuijsman for two-player non-absorbing games (see chapter @ (Thuijsman)).

If δ? and ε are sufficiently small, the third test can be done effectively,
since exiting C occurs after O(1/δ?) stages, whereas each player perturbs in
frequency O(

√
δ?). Hence until exiting occurs, each player should perturb at

least O(1/
√
δ?) times, which is enough for an efficient statistical test.

One last possible deviation that we should take care of is, what happens if
all exits are unilateral exits of some player, and that player has an incentive
never to leave C. To deal with such a deviation, we choose t? sufficiently
large such that under (σ, τ) exiting from C occurs before stage t? with high
probability, and we add the following constraint to P 1 and P 2:

d) P 1 and P 2 are bounded by t?.
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Thus, there is no profitable deviation, and therefore Q is a controllable
exit distribution from C w.r.t. γ, and the lemma is proved.

This lemma holds also for general n-player games. It was used in Solan
(1999) for 3-player absorbing games.

The two players in the conditions of Lemma 5.2 are symmetric. We
will now see a more sophisticated mechanism to control exits from a weak
communicating set, where the players are not symmetric.

Lemma 5.3 Let C ∈ D(α, β) be a weak communicating set, γ ∈ (R2)S be a
payoff vector and Q be an exit distribution from C. If

1) γ ≥ v and γz = Qγ for every z ∈ C.

2) For every z ∈ C and a ∈ A, p(· | z, a, β(z))v1 ≤ Qγ1.

3) For every z ∈ C and b ∈ B, p(· | z, α(z), b)v2 ≤ Qγ2.

4) There exists a representation Q =
∑M
m=1 ηmQm such that for every

m = 1, . . . ,M :

(a) Qmγ
1 = Qγ1.

(b) There exists Fm ∈ D(α, β) such that Qm is a controllable exit
distribution from Fm w.r.t. γ.

(c) There exits a state zm ∈ Fm and an action am ∈ A of player 1
such that p(C | zm, am, β(zm)) = 1 and p(Fm | zm, am, β(zm)) < 1.

Then Q is a controllable exit distribution from C w.r.t. γ.

Proof: Note that player 1 is indifferent between using any Qm to exit C
(condition (4.a)). Thus, he can choose an m ∈ {1, . . . ,M}, according to
the probability distribution η = (ηm)Mm=1. Using the action am in state zm
(condition (4.c)) he can signal his choice to player 2. Once m is known to
both players, they can implement an exit from Fm according to Qm (condition
(4.b)). Conditions (1), (2) and (3) ensure that no deviation is profitable.

However, exiting Fm does not necessarily mean exiting C. If the game
remains in C, the players start from the beginning: player 1 chooses a new
m, signals it to player 2 and so on.

We shall now define the strategies (σ, τ) and stopping times P 1, P 2 more
formally. Let δ > 0 be sufficiently small.
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1) Player 1 chooses m? ∈ {1, . . . ,M}. Each m is chosen with probability
ηm, independent of the past play.

The players set m = 1, and do as follows.

2) (a) If m? = m, player 1 chooses whether to signal that m? = m during
the coming phase (with probability δ), or whether not to signal
(with probability 1− δ).

(b) The players play the stationary strategy (αzm , βzm) until the game
reaches zm.

(c) In zm, player 2 plays the mixed action β(zm). Player 1 plays
α(zm) if m? = m and he chose to signal that fact to player 2, and
(1− δ)α(zm) + δam otherwise.

The players repeat steps (2.b)-(2.c) 1/δ4 times, or until player 1 played
am in zm for the first time, whichever occurs first.

3) If player 1 played the action am in step (2.b), the players increase
cyclically m by 1, and go back to step (2).

4) Otherwise, the players continue with the strategy pair (σm, τm) that
supports Qm as a controllable exit distribution from Fm w.r.t. γ, until
the game leaves Fm.

5) If by leaving Fm the game also left C, we are done. Otherwise, the
players go back to step (1).

If the players follow (σ, τ), then

i) In each round of step 2, if m? = m then a signal is sent to player 2 with
probability (1− δ)1/δ4 < δ.

ii) In 1/δ2 repetitions of steps 1-3, the probability that in (2.a) player 1
ever chooses to signal to player 2 is 1 − (1 − δ)1/δ2 > 1 − δ, and the
probability that player 1 will not play the action am when m 6= m? is
1− (1− (1− δ)1/δ4)1/δ2 < δ.

It follows that the expected continuation payoff is approximately Qγ.
The stopping times are defined as in the proof of Lemma 5.2, with the

following addition.
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e) Whenever the play is in step (4), the players use the stopping times
that support Qm as a controllable exit distribution from Fm w.r.t. γ,
disregarding the history up to the stage where they started to follow
(σm, τm).

Let us verify that no player can profit too much by deviating.

• Since player 1 is indifferent between choosing any m (his expected con-
tinuation payoff is Qγ1), he cannot profit by deviating in the lottery
stage.

• Since player 1 reveals the signal to player 2 each time with probability
δ, the expected continuation payoff, conditioned that player 1 did not
play any action am in step (2.b) yet, is approximately Qγ2.

• Once player 2 is notified of m?, the game is in Fm? . Since Qm? is
controllable, there is no profitable deviation.

• Conditions (2) and (3) ensure that detectable deviations are not prof-
itable.

Remark 1: Note that if Qm =
∑L
l=1 νlPl is supported by unilateral exits

(Pl) of player 1, and Plγ
1 = Qγ1 for all of these exits, then condition (4.c)

for this m is not needed. Indeed, instead of signaling whether m? is equal to
m or not, the players will just try to use once each exit Pl with probability
δνl, as was done in the proof of Lemma 5.2. Thus, when the counter in step
(2) points to that set, we replace step (2) with the following:

2) Set l = 1 and do the following.

a) Denote Pl = (z, a, β(z)).

b) Play the stationary strategy (αz, βz) until the game reaches z.

c) Play ((1− δνl)α(z) + δνla, β(z)).

d) If a was played in (c), we are done. Otherwise, increase l by one,
and go back to (a). If l = L, continue to the next m.
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Since player 1 is indifferent between his unilateral exits, he cannot profit by
deviating. Since any exit is used with small probability, the overall expected
continuation payoff of player 2 is close to Qγ2, so he cannot profit by devi-
ating either.

Remark 2: More generally, if Qm satisfies the conditions of Lemma 5.2
w.r.t. C and γ, then condition (4.c) is not needed for this m. m? will be
chosen by player 1 from the set {1, . . . ,M}\{m}, with the normalized prob-
ability distribution. The players play as in the proof of Lemma 5.3, but when
the counter has the value m, they follow steps (1)-(3) in the proof of Lemma
5.2 once for each exit.

It can be verified that if the players follow this strategy profile then the
exit distribution is approximately Qγ. The statistical tests that we have
employed in the proof of Lemma 5.2 can be employed here to deter players
from deviating.

Remark 3: If (i) M = 2, (ii) F1 = F2 = C, (iii) Q1 is supported by
unilateral exits of player 1 and (iv) Qm satisfies the conditions of Lemma 5.2
w.r.t. C and Qmγ for m = 1, 2, then condition (4.c) is not needed altogether.

Instead of alternately signaling player 2 whether m? = 1 or m? = 2,
player 1 will first signal to player 2 whether m? = 1, and, if no signal was
sent, both players will continue as if m? = 2.

The way to signal whether m? = 1 is, as in Remark 1, for player 1 to use
one of the unilateral exits that support Q1.

We now state another condition for an exit distribution to be controllable,
that follows from Lemma 5.3 and the last three remarks. This condition is
used in Vieille’s (1997b) proof of existence of equilibrium in two-player non
zero-sum stochastic games.

Lemma 5.4 (Vieille, 1997b) Let C ∈ D(α, β) be a weak communicating
set, γ ∈ (R2)S a payoff vector and Q =

∑
l∈L νlPl an exit distribution. If

1) γ ≥ v and γs = Qγ for every z ∈ C.

2) Plγ
1 = Qγ1 for every l ∈ L1.

3) For every z ∈ C and every a ∈ A, p(· | z, a, β(z))v1 ≤ Qγ1.

4) For every z ∈ C and every b ∈ B, p(· | z, α(z), b)v2 ≤ Qγ2.
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5) There exists a partition (L0
2, . . . , L

M
2 ) of L2 and weak communicating

subsets F1, . . . , FM ∈ D(α, β) of C such that L0
2 = {l ∈ L2 | Plγ2 =

Qγ2} and, for every m ≥ 1

(a) Plγ
2 = Qmγ

2 for every l ∈ Lm2 , where Qm =
∑
l∈Lm2

νl∑
l∈Lm

2
νl
Pl.

(b) For every z ∈ Fm and b ∈ B,

• If p(Fm | z, α(z), b) < 1 then p(C | z, α(z), b) < 1.

• If p(C | z, α(z), b) < 1 then p(· | z, α(z), b)γ2 ≤ Qmγ
2.

(c) Qmγ
1 = Qγ1.

(d) Qmγ
2 ≥ maxz∈Fm v

2
z .

(e) For every l ∈ Lm2 , the state in which Pl occurs is in Fm.

then Q is a controllable exit distribution from C w.r.t. γ.

Sketch of Proof: First we note that the conditions imply that for every
m, Qm is a controllable exit distribution from Fm w.r.t. Qmγ. Indeed, by
(5.a) Qm is supported by unilateral exits of player 2, and player 2 receives
the same continuation payoff using any of them. By conditions (1) and (5.b)
player 2 does not have a profitable deviation, and by (2), (3) and (5.c) player
1 does not have profitable deviations.

Second, define

Q′ =

∑
l∈L1∪L3∪L0

2
νlPl∑

l∈L1∪L3∪L0
2
νl

.

Then Q is a convex combination of Q′ and (Qm)Mm=1. If for every m there
exists a state zm and an action am such that p(C | zm, am, β) = 1 while
p(Fm | zm, am, β) < 1, it follows by Lemma 4.3 and Remark 2 that Q is a
controllable exit distribution from C w.r.t. γ.

Otherwise, one can show that L3 = ∅ and player 2 is indifferent between
his exits (that is, either M = 0, or M = 1, L0

2 = ∅ and F1 = C). If M = 0
we are done, since then the conditions of Lemma 5.2 are satisfied.

If M = 1 and L0
2 = ∅, then Q′2 =

∑
l∈L1

νlPl∑
l∈L1

νl
is an exit distribution from

C that is supported by unilateral exits of player 1, Q′1 =

∑
l∈L2

νlPl∑
l∈L2

νl
is an

exit distribution from C that is supported by unilateral exits of player 2,
and player 2 is indifferent between his exits. Since L3 = ∅, Q is a convex
combination of Q′1 and Q′2.
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Since Q′1γ
1 = Qγ1, it follows that Q′2γ

1 = Qγ1, hence Q′2 is a controllable
exit distribution from C w.r.t. γ. By Remark 3 it follows that Q is a
controllable exit distribution from C w.r.t. γ.
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