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The basic question that this lecture is concerned about is:

Problem: Does every n-player stochastic game (with finite state and ac-
tion spaces) admit a uniform equilibrium payoff?

Until this day, no counter example was found. Furthermore, we have seen
that a positive answer was given for several special classes, including recur-
sive games (Everett, 1957), zero-sum games (Mertens and Neyman, 1981),
two-player absorbing games (Vrieze and Thuijsman, 1989) and two-player
non zero-sum games (Vieille, 1997b). For n-player games, existence of sta-
tionary equilibrium profiles was proven for irreducible games (Sobel, 1971,
Federgruen, 1978) and of ‘almost’ stationary equilibrium profiles for games
with additive rewards and additive transitions (Thuijsman and Raghavan,
1997).

In this lecture I will review recent results for games with more than 2
players.

1 An Example

Let us begin with an example, studied by Flesch et al. (1997).
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1, 3, 0 ∗
0, 0, 0

1, 0, 1 ∗
0, 1, 3 ∗

0, 1, 1 ∗
3, 0, 1 ∗

0, 0, 0 ∗
1, 1, 0 ∗

An asterisked entry means that the entry is absorbing with probability 1.
The non-asterisked entry is non-absorbing. The payoff in each entry is either
the non-absorbing payoff or the absorbing payoff, depending on whether the
entry is non-absorbing or absorbing.

Flesch et al. proved that the game admits no stationary equilibrium (or
stationary ε-equilibrium), and that the following cyclic strategy profile is an
equilibrium:

• At the first stage, the players play (1
2
T + 1

2
B,L,W ).

• At the second stage, the players play (T, 1
2
L+ 1

2
R,W ).

• At the third stage, the players play (T, L, 1
2
W + 1

2
E).

• Afterwards, the players play cyclically those three mixed-action com-
binations, until absorption occurs.

If the players follow this profile then their expected payoff g satisfies: g =
1
2
(1, 3, 0) + 1

4
(0, 1, 3) + 1

8
(3, 0, 1) + 1

8
g, hence g = (1, 2, 1).

Let us verify that this profile is an equilibrium. Since the game is cyclic,
the expected payoff for the players if the realized action of player 1 at the
first stage is T (the continuation payoff) is (1, 1, 2). Thus, at the first stage,
player 1 is indifferent between playing T and B, player 2 receives 1/2 if he
plays R and 2 if he plays L, and player 3 receives 1 if he plays E and 1 if he
plays W . Thus, if everyone follows this profile from the second stage on, no
one can profit by deviating at the first stage. Since both the profile and the
payoffs are cyclic, similar analysis holds for all stages. Therefore, no player
can profit by deviating in any finite number of stages. Since the profile is
absorbing given any unilateral deviation, it follows that no player can profit
by any type of deviation.

We shall now see a geometric presentation of this result (that was sug-
gested by Nicolas Vieille). We are looking for an equilibrium payoff in the
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convex hull of {(1, 3, 0), (0, 1, 3), (3, 0, 1)}. In particular, it means that at
most one player perturbs at every stage. The convex hull looks as follows:
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(1,3,0) (3,0,1)

(0,1,3)

Figure 1: The Payoff Space

Let us draw the indifference lines of the players; that is, line i includes all
payoffs where player i receives 1. Each indifference line divides the convex
hull into two halves: the payoffs that are “good” for the player, and the
payoffs that are “bad” for the player. The diagram looks as follows:
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Figure 2: The Payoff Space with Indifference Lines

Assume an equilibrium profile is given, and assume that player 1 should
perturb at the first stage. It means that both the equilibrium payoff and the
continuation payoff are on the indifference line of player 1. The probabil-
ity in which the first player plays B determines the distance between those
two points. Similarly, if player i perturbs at stage n, then both the payoff
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conditional on non-absorbing before stage n and the payoff conditional on
non-absorbing before stage n+ 1 are on the indifference line of player i.

Thus, the continuation payoff at stage n must be on the edges of the small
triangle of Figure 2, and any point on these three edges is an equilibrium
payoff (this was proven for this game by Flesch et al.). It turns out that the
three extreme points of the dashed triangle in Figure 2 are (1, 2, 1), (1, 1, 2)
and (2, 1, 1).

For general payoff structure (with the same absorbing structure), as long
as the intersection of the three “good” halves (the dashed triangle in Figure
2) is non-empty, there exists an equilibrium. Later we will see that if this
intersection is empty, there exists a stationary equilibrium.

One could wonder if this argument works for four players as well. Unfor-
tunately, the answer is negative. For four players we do not necessarily have
such a cycle, and an example was given in Solan and Vieille (1998b).

2 Three Player Absorbing Games

In the present section we discuss the following generalization of the result of
Flesch et al.

Theorem 2.1 (Solan, 1999) Every three-player absorbing game admits a
uniform equilibrium payoff.

Proof: The basic idea is to follow Vrieze and Thuijsman’s (1989) proof for
two-player absorbing game. Two difficulties that require special attention
will arise.

Recall that ri(a) is the non-absorbing (daily) payoff to player i if the
action profile a is played, ri?(a) is the absorbing payoff, and p(a) is the prob-
ability that the game is absorbed if the action profile a is played.

Let vi be the min-max value of player i. By Neyman (1988), vi exists and
is the limit of the λ-discounted min-max value of player i as λ goes to 0.
Step 1: Simple absorbing structure and low non-absorbing payoff.
We first deal with games that have the absorbing structure as in the above ex-
ample (that is, each player has 2 actions, and only one cell is non-absorbing).
Moreover, we assume that the non-absorbing payoffs are always below the
min-max value; that is, ri(a) ≤ vi for every action profile a.
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We assume that the action profile a = (1, 1, 1) corresponds to the non-
absorbing cell.

Let xλ be a stationary λ-discounted equilibrium with a corresponding
payoff gλ = γλ(xλ). Using the algebraic approach, we assume that xλ and
gλ are Puiseux functions of λ. Let x0 and g0 be the corresponding limits as
λ→ 0.
Step 1a: x0 is absorbing
As in Vrieze and Thuijsman (1989), if x0 is absorbing, then it induces an
‘almost’ a stationary equilibrium, that yields a payoff g0.
Step 1b: x0 is non-absorbing
As for two players, for every λ we have

gλ = p(xλ)r?(xλ) + (1− p(xλ)) (λr(xλ) + (1− λ)gλ) .

Solving this equation, we get that the λ-discounted payoff is a convex com-
bination

gλ = αλr(xλ) + (1− αλ)r?(xλ)
where

αλ =
λ(1− p(xλ))

p(xλ) + λ(1− p(xλ))
. (1)

Taking the limit as λ→ 0 gives

g0 = α0r(x0) + (1− α0) lim r?(xλ). (2)

If α0 = 1, then g0 = r(x0). In this case, x0 induces an ‘almost’ stationary
equilibrium. Indeed, if player i can profit by deviating, then by continuity
arguments this deviation is profitable also against x−iλ in the λ-discounted
game, for λ sufficiently small. We assume now that α0 < 1.

Since ri(x0) ≤ vi = limλ→0 v
i
λ ≤ limλ→0 g

i
λ = gi0 and α0 < 1, we get that

r(x0) ≤ g0 ≤ lim
λ→0

r?(xλ).

Since x0 is non-absorbing, lim r?(xλ) is in the convex hull of the three en-
tries neighboring the non-absorbing entry. In particular, the intersection in
Figure 2 (the dashed triangle) is non-empty, and we can construct a cyclic
equilibrium.
Step 2: General non-absorbing payoffs (with the special absorbing structure)
Note that if the payoff in the non-absorbing entry is good; that is, if r1(1, 1, 1) ≥
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r1
?(0, 1, 1), r2(1, 1, 1) ≥ r2

?(1, 0, 1) and r3(1, 1, 1) ≥ r3
?(1, 1, 0) then r(1, 1, 1) is

an equilibrium payoff, that corresponds to the stationary strategy profile
(1, 1, 1).

Define an auxiliary game G̃ where the daily payoff for player i, if the
mixed action profile x is played, is r̃i(x) = min{ri(x), vi}. Formally, for
every stationary profile x, the λ-discounted payoff in G̃ is given by

γ̃iλ(x) = λEx

[ ∞∑
t=1

(1− λ)t−1
(
r̃i(x)1t<t? + ri?(x)1t≥t?

)]

where t? is the stage of absorption.
Since r̃i is continuous over the strategy space, the λ-discounted min-max

value of player i in G̃, denoted by ṽiλ, exists. One can prove that the sequence
(ṽiλ)λ converges to vi, the min-max value of player i in the original game.

The function r̃i is quasi-concave and continuous, hence G̃ has a λ-discounted
stationary equilibrium. The function r̃ is semi-algebraic, hence one can
choose for every λ a λ-discounted stationary equilibria xλ in G̃ such that
the mapping λ 7→ xλ is a Puiseux function.

We now repeat the same analysis as in Step 1b. Denote gλ = γ̃iλ(xλ), and
let x0 = limxλ and g0 = lim gλ.

If x0 is absorbing then, as before, it induces an ‘almost’ stationary equi-
librium. Thus, we assume that x0 is non-absorbing. Then

g0 = α0r̃(x0) + (1− α0) lim r?(xλ). (3)

where α0 = limαλ and αλ is given in (1). If α0 = 1 then g0 = r̃(x0) ≤ r(x0),
and as before supplementing x0 with threat strategies yields that r(x0) is a
uniform equilibrium payoff. Otherwise, r̃(x0) ≤ v = limλ→0 vλ ≤ limλ→0 gλ =
g0 and therefore g0 ≤ lim r?(xλ). Thus, the intersection in Figure 2 is non-
empty, and there exists a cyclic equilibrium.
Step 3: General 3-player absorbing game
It is convinient here to view the absorbing game as a stochastic game with
initial state z0, such that all other states are absorbing.

We define the auxiliary game as in Step 2, and choose a Puiseux function
λ 7→ xλ, where xλ is a stationary equilibrium in the game G̃. We define
x0 = limλ xλ and g0 = lim γλ(xλ). Equality (3) holds in this more general
setup.

6



As before, if x0 is absorbing then it induces an ‘almost’ stationary equi-
librium that yields the players an expected payoff g0. Assume now that x0

is non-absorbing. If α0 = 1 then as before r(x0) is an equilibrium payoff.
Since x0 is non-absorbing, the non-absorbing state forms a weak com-

municating set under x0. In the talk “General Tools - Perturbations and
Markov Chains” we have defined exit distributions from communicating sets.
Let Q(x0) be the set of exit distributions. We denote by Qi(x0) the set of
unilateral exits of player i (previously we had only two players) and Q0(x0)
the set of joint exits (exits that require perturbations of at least two play-
ers). Any exit Q =

∑
l∈L ηlPl ∈ Q(x0) can be decomposed (not necessarily

uniquely) to a sum Q =
∑
i

∑
l∈Li

ηlPl +
∑
l∈L0

ηlPl, where Pl ∈ Qi(x0) for
l ∈ Li, i = 0, 1, 2, 3.

Since the setup is of absorbing games, an exit yields a terminal payoff.
Define the set of terminal payoffs w.r.t. x0 by:

E(x0) = {Pr? | P ∈ Q(x0)}.

It is easy to see that
lim r?(xλ) ∈ E(x0).

Lemma 5.2 from “General Tools - Perturbations and Markov Chains”
translates to:

Lemma 2.2 Let Q =
∑
l ηlPl ∈ Q(x0) with a decomposition (Li), and g =∑

l ηlPlr?. Let γ : S → RN coincide with r? on S \ z0 and γ(z0) = g. If the
following conditions hold

1. For every l ∈ Li, Plγi? = gi.

2. For every player i and action ai, p(· | x−i0 , a
i)γi ≤ gi.

then g is an equilibrium payoff.

The last step of the proof is a geometric lemma that shows that if there
is no cyclic equilibrium, then there exists Q ∈ Q(x0) that satisfies Lemma
2.2.

The same technique, without the need of the geometric lemma, proves
the following result. An absorbing game is a team game if the players are
divided into two teams, and the players in each team have the same payoffs
(both absorbing and non-absorbing).
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Theorem 2.3 (Solan, 1997) Every absorbing team game admits a uni-
form equilibrium payoff.

Definition 2.4 A strategy profile σ is (x, ε)-perturbed if it has the following
structure:

1. Any player is checked by a statistical test.

2. As long as no player failed the statistical test, the mixed action profile
prescribed by σ is ε-close to x (in the supremum topology).

3. The first player who fails the statistical test is punished with an ε-min-
max profile forever.

An ε-equilibrium profile σ is perturbed if there exists a stationary profile
x such that σ is (x, ε)-perturbed.

In all classes of non zero-sum stochastic games we have seen so far where
the uniform equilibrium is known to exist, there are ε-equilibrium profiles
that are perturbed.

The importance of having a perturbed equilibrium is the method of the
proof. Most of the proofs we have seen take a sequence of stationary equi-
libria in ε-approximating games that converge when ε goes to 0. Mertens
and Neyman (1981), Vrieze and Thuijsman (1989) and Vieille (1997a) con-
sider the discounted game, Solan (1999) considers the discounted version of
a variation of the game, and Vieille (1997b), Flesch et al. (1996) and Solan
(1998a) consider approximating games where the players have constrained
strategy spaces. In the ε-equilibrium profile the players play mainly the limit
stationary strategy, and perturb to other actions with small probability. In
particular, the ε-equilibrium profile is perturbed.

Solan and Vieille (1998b) constructed a four-player game that has no
perturbed equilibrium payoff. In particular, this example hints that the
classical approach may not work in general.

3 Quitting Games

We should look for a new approach to deal with n-player games. We consider
the simplest class of games we can imagine — quitting games. A quitting
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game is an absorbing game where each player has 2 actions: continue and quit.
If everyone continue then the game continues (terminates with probability
0) and the daily payoff is 0. If at least one player quits, the game terminates
with probability 1. The three-player game we studied in section 1 is a quitting
game.

Theorem 3.1 (Solan and Vieille, 1998b) Every quitting game that sat-
isfies the following two conditions

1. If a single player quits, he receives 1.

2. If player i quits with some other players, he receives at most 1.

admits a subgame perfect ε-equilibrium payoff. Moreover, there is a cyclic
ε-equilibrium strategy profile, but the length of the cycle can depend on ε.

Proof: The approach that is taken in the proof of Theorem 3.1 is different
then the classical one. Instead of defining the best reply correspondence,
and look for a fixed point, we look for a sequence g1, g2, . . . of payoff vectors
such that gk is an equilibrium payoff in the one-shot game with continuation
payoff gk+1. Denote by xk the corresponding equilibrium strategy profile in
this one-shot game. One can verify that if such a sequence exists, and if
the sequence (x1, x2, . . .) is terminating with probability 1, then the profile
(x1, x2, . . .) is an equilibrium of the quitting game.

Since it might be the case that the iterates of the best reply correspon-
dence converge to the “all continue” mixed action, the existence of such a
profile is not clear.

For every payoff vector w ∈ RN , let G(w) be the one-shot game with
continuation payoff w. Let

W = {w ∈ [−ρ, ρ]N | wi ≤ 1 for at least one i}

where ρ is the maximal payoff in the game (in absolute values).
We denote by 〈G(w), x〉i the payoff of player i in this one shot game if

the mixed action profile x is played.

Definition 3.2 The action ai is an ε-best reply against x−i if

〈G(w), x−i, ai〉 ≥ max
bi
〈G(w), x−i, bi〉 − ε.

The mixed action profile x is an ε-equilbirium of G(w) if for every i and
every ai ∈ supp(xi), ai is an ε-best reply against x−i.
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Lemma 3.3 For every w ∈ W , the game G(w) possesses a ρε-equilibrium
that is absorbing with probability of at least ε.

Proof: Let x be an equilibrium payoff in G(w). If x prescribes all players to
continue, then the corresponding equilibrium payoff is w. In particular, there
exists a player i with wi ≤ 1, and by the first condition wi = 1. Otherwise,
by the second condition, there exists a player i who plays in x a fully mixed
action, and is indifferent between his two actions. Let yj = xj for all j 6= i,
and yi = xi + ε otherwise (increase the probability to quit by ε). It is easy
to verify that y is a ρε-equilibrium that is absorbing with probability of at
least ε.

Define the correspondence φ : W → W as follows. For every w ∈ W ,
φ(w) is the set of all ρε-equilibria that are absorbing with probability of at
least ε. This correspondence has non-empty values, and clearly is upper-
semi-continuous.

Lemma 3.4 For every upper-semi-continuous correspondence φ with non-
empty values from a compact set W into itself there exists a sequence w1, w2, . . .
such that for each i, wi ∈ φ(wi+1).

It is clear that one can generate a sequence w1, w2, . . . such that wi+1 ∈
φ(wi).
Proof: Define W0 = W and Wi+1 = φ(Wi). Since W is compact and φ
upper-semi-continuous with non-empty values, Wi is compact. By induction,
Wi+1 ⊆Wi, hence W∞ = ∩Wi 6= ∅.

Let w1 ∈W∞. For each i choose a sequence w1 = w1
i , w

2
i , . . . , w

i
i such that

wji ∈ φ(wj+1
i ). By taking a subsequence, assume that wj∞ = limiw

j
i exists

for all j. By upper-semi-continuity, the sequence (wj∞)j satisfies the lemma.

We have generated a sequence of continuation payoffs (wi) such that wi
is a ρε-equilibrium in G(wi+1). Let xi be the corresponding mixed-action
profile. The profile x = (x1, x2, . . .) is our natural candidate to be an ε′-
equilibrium in the quitting game. However, if players follow x then at every
stage each player may profit ρε by deviating. How do we know that these
small profits do not aggregate?
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One can now prove that either (x1, x2, . . .) is an ε′-equilibrium, or there
exists a player i such that if i quits alone, everyone get at least 1, hence a
stationary ε-equilibrium exists.

Problem: Can one bound the length of the cycle?
Problem: Does the result hold for general quitting games (without the two
assumptions)?

4 Correlated Equilibrium

Correlation devices were introduced by Aumann (1974, 1987). A correlation
device chooses for every player a private signal before the start of play, and
sends to each player the signal chosen for him. Each player can base his
choice of an action on the private signal that he has received.

For multi-stage games, various generalizations of correlation devices have
been introduced. The most general device receives at every stage some pri-
vate message from each player and has perfect recall (communication device,
Forges (1986, 1988), Myerson (1986), Mertens (1994)). The most restrictive
device bases its choice only on the currect state (and not even on past sig-
nals) (Nowak and Raghavan (1992)). In between there are devices that base
their choice on past signals that were sent, but not on past play (autonomous
correlation devices, Forges (1986)).

Nowak and Raghavan (1992) proved that in discounted stochastic games
with general setup (the only restricting condition is that the transition law
is absolutely continuous w.r.t. some fixed probability distribution and the
Radon-Nikodym derivative satisfy some continuity condition) admits a sta-
tionary correlated equilibrium. Their use of the correlation device was to
convexify the set of Nash equilibria. They define for every continuation pay-
off function the convex hull of the set of selections of Nash equilibria in the
corresponding one-shot game (which is a subset of the set of selections of
correlated equilibria). They prove that this correspondence is upper-semi-
continuous and has non-empty values, and apply Kakutani’s fixed point the-
orem.

This approach fails for undiscounted games from the same reason that
the proof of existence of Nash equilibrium fails: keeping your continuation
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payoff high does not mean that you will eventually get this payoff.
Here we concentrate on two types of correlation devices: (i) stationary

devices, that choose at every stage a signal according to the same probability
distribution, independent of any data, and (ii) autonomous devices, that
base their choice of new signal on the previous signal, but not on any other
information.

Theorem 4.1 (Solan and Viellle, 1998a) Every n-player stochastic game
has a correlated equilibrium, using an autonomous correlation device. The
equilibrium path is sustained using threat strategies, but punishment occurs
only if a player disobeys the recommendation of the device.

A stronger result is possible for positive recursive games (those are re-
cursive games where the payoff in absorbing states is non-negative for all
players).

Theorem 4.2 (Solan and Viellle, 1998a) If the game is positive re-
cursive, then the correlation device can be taken to be stationary, and devia-
tors are punished with the min-max value.

The proofs utilize various methods that we have already seen, and one
new idea. They are divided into two steps. First we construct a “good”
strategy profile; meaning, a strategy profile that yields all players a high
payoff, and no player can profit by a unilateral deviation that is followed by
an indefinite punishment (where in Theorem 4.1 punishment is given by the
max-min value, and in Theorem 4.2 by the min-max value).

The construction of the “good” strategy profile uses the method of Mertens
and Neyman (1981) for Theorem 4.1, and a variant of the method of Vieille
(1997b) for Theorem 4.2.

Second, we follow Solan (1998b) and define a correlation device that mim-
ics that strategy profile: the device chooses a pure action profile according
to the probability distribution given by the strategy profile, and recommends
each player to play “his” action in the action profile. To make deviations non-
profitable, the device reveals to all players what were his recommendations
in the previous stage. This way, a deviation is detected immediately, and
can be punished. In particular, the device that we construct is not canonical
(Forges (1988)).
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We shall now explain the construction in more details. Assume for a
moment that the device can base its choice of a signal on the state of the
world as well as on previous signals. First we construct a device that mimics
a given strategy profile σ. We will then add to it a component that prevents
profitable deviations.

The device sends a recommended action to every player at each stage. If
the stream of states is (s1, . . . , sn) and the previous recommendations were
(a1, . . . , an−1), the recommendation at stage n is an action profile that is
chosen according to the probability distribution σ(s1, a1, s2, . . . , an−1, sn).

To prevent profitable deviations, the device sends at stage n to each
player both the recommended action for that stage and the recommended
action profile of the previous stage. This way, any deviation is detected
immediately, the deviator is identified by everyone, and can be punished.

Note that if punishment is given by the max-min value, the players need
to correlate also in the punishment phase. In such a case, before the start
of play the device chooses for every player i a sequence of i.i.d. uniformaly
distributed numbers in the unit interval, and sends those numbers to all
players except player i. If player i ever deviates, these numbers are used by
all other players to correlate punishment.

To overcome the need of knowing the current state, the device sends a
vector of signals, one for each possible stream of states. The players, who
know what is the realized stream of states, pick the correct signal from the
vector, and play according to it.

Problem: Does any stochastic game (resp. positive recursive game) ad-
mits a correlated equilibrium payoff (that is, the device sends only one signal
before the start of play).

A first step to answer this question was given by Solan and Vohra (1999)
for quitting games.
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