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Abstract. Quitting games are multi-player sequential games in which, at every
stage, each player has the choice between continuing and quitting. The game
ends as soon as at least one player chooses to quit; each player i then receives
a payo¤ ri

S, which depends on the set S of players that did choose to quit. If
the game never ends, the payo¤ to each player is zero.

We exhibit a four-player quitting game, where the ‘‘simplest’’ equilibrium
is periodic with period two. We argue that this implies that all known methods
to prove existence of an equilibrium payo¤ in multi-player stochastic games
are therefore bound to fail in general, and provide some geometric intuition
for this phenomenon.
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1. Introduction

Quitting games are I-player sequential games in which, at any stage, each
player has the choice between continuing and quitting. The game ends as soon
as at least one player chooses to quit; the payo¤ to player i A I is ri

S, where
S J I is the set of players that did choose to quit at that stage. If the game
never ends, the payo¤ to each player is 0.

A quitting game is therefore a multi-player stochastic game of the simplest
kind. There is only one history of play that does not lead to termination. A
strategy of player i is a sequence x i ¼ ðxi

nÞnb0, where xi
n is the probability that

player i quits at stage n, provided the game has not terminated before. The
strategy x is stationary if xi

n is independent of n.
It is not known whether quitting games have an e-equilibrium for every

e > 0. We briefly review existing results.



In the case of two players, stationary e-equilibria do exist, for every e > 0,
see Flesch et al. (1996). A three-player example was devised by Flesch et al.
(1997), with no stationary e-equilibrium. In this example there exist equilib-
rium payo¤s in the convex hull of the vectors rfig A RI , i A I . Moreover, there
exist corresponding e-equilibrium profiles x that are periodic (w.r.t. time) and
such that the mixed move xi

n is arbitrarily close to 0, for every stage n and
every player i.

A complete analysis was provided in Solan (1999), for the more gen-
eral class of three-player absorbing games.1 Solan proved the existence of
(uniform) e-equilibrium profiles, by means of analyzing the limit behavior of
stationary equilibria of a modified discounted game, when the discount factor
goes to zero. This generalizes the method introduced by Vrieze and Thuijsman
(1989) for the analysis of two-player absorbing games. In both of these proofs,
the limit profile x is either a stationary equilibrium or is such that termination
occurs with probability zero. In the latter case, an e-equilibrium can be defined
that plays a perturbation of x. In all other known existence proofs of equilib-
rium payo¤s for multi-player undiscounted stochastic games, see, e.g., Flesch
et al. (1996), Thuijsman and Raghavan (1997), Solan (2000) or Vieille (2000a,
2000b), close inspection of the proofs reveals a similar dichotomy.

The main purpose of this note is to demonstrate that all these methods are
bound to fail for four-player quitting games – hence for more complex sto-
chastic games with more players. We provide a four-player example, where
there is neither (1) a stationary e-equilibrium for every e > 0, nor (2) an equi-
librium payo¤ in the convex hull of frfig; i A Ig. Actually, the ‘‘simplest’’ equi-
librium in this example is periodic with period 2, in which the probability of
quitting in every stage is bounded away from zero.

The paper is organized as follows. In Section 2, we provide a geometric
understanding of what is specific to two- and three-player games. Next, we
define the game in Section 3 and prove our claims.

In a companion paper (Solan and Vieille (2001)) we introduced new tools
and provided su‰cient conditions on the payo¤s under which quitting games
admit an e-equilibrium, for every e > 0.

2. Two- and three-player quitting games

We here consider quitting games with at most three players and discuss the
result below.

Proposition 1. For every e > 0 and every quitting game with at most three
players, there exists an e-equilibrium x ¼ ðxi

nÞi A I ;n AN such that either x is a sta-
tionary profile or xi

n a e for every n A N and every i A I .

As discussed in the Introduction, this proposition follows immediately from
Solan (1999). We shall here sketch a geometric proof. We discuss two-player
and three-player games in turn.

We first introduce a few notations. We denote by ci (continue) and qi

(quit) the two actions of player i. We let a i
n be the action played by player i at

1 An absorbing game is a stochastic game with a single non-absorbing state.
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stage n, denote by t ¼ minfn b 1; a i
n ¼ qi for some player i A Ig the stage in

which the game terminates,2 and by St the set of players that choose to quit at
that stage. Given a profile x of strategies, the expected payo¤ to player i is

g iðxÞ ¼ Ex½ri
St

1t<þy�;

where Ex stands for the expectation with respect to the probability distribu-
tion induced by x over the set of plays. We let c denote the profile of actions
ðciÞ, and by c i (resp. q i) the pure stationary strategy of player i that plays
repeatedly ci (resp. qi).

2.1. Two-player quitting games

For notational convenience, we represent a two-player quitting game as

c2 q2

c1 ðb1; b2Þ

q1 ða1; a2Þ ðd1; d2Þ

If there is a pure stationary equilibrium we are done. Otherwise either
a1 > 0 or b2 > 0 (otherwise ðc1; c2Þ is an equilibrium). Assume w.l.o.g. that

a1 > 0. Then a2 < d2 (otherwise ðq1; c2Þ is an equilibrium), which implies
that d1 < b1 (otherwise ðq1; q2Þ is an equilibrium), which implies that b2 < 0
(otherwise ðc1; c2Þ is an equilibrium).

If a2 b b2 then the stationary profile ðx1; c2Þ is an e-equilibrium, where
x1

n ¼ h, and h A ð0; 1Þ is su‰ciently small.
If a2 < b2 then the stationary profile ðx1; q2Þ is an e-equilibrium, where x1

is defined as above.
Therefore, any two-player quitting games has a stationary e-equilibrium.

Note that equilibria need not exist, as e.g. in the zero-sum game

c2 q2

c1 ð1;�1Þ

q1 ð1;�1Þ ð0; 0Þ

2.2. Three-player quitting games

A complete discussion would be both tedious and repetitive. We shall only deal
with the case where ri

fig > 0 for each i A I . It can be checked that the other

cases do not involve additional ideas.
We normalize the payo¤s to have ri

fig ¼ 1 for each i A I . We organize the
discussion according to the configuration of payo¤s. The di¤erent cases are

2 By convention, the minimum of an empty set is þy.
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exhaustive, but not mutually exclusive. All strategies are stationary unless
explicitly specified. Abusing notations, for every x A ½0; 1� and every player
i A I we denote by ð1� xÞc i þ xq i the stationary strategy in which player i
quits at every stage with probability x. For convenience, we sometimes refer
to this stationary strategy simply as x.

Given e A ð0; 1�, set Te ¼ fx A ½0; 1�3 j
P3

i¼1 xi ¼ eg, and De ¼ fx A ½0; 1�3 jP3
i¼1 xi b eg. The set De is a subset of the set of stationary profiles. It contains

all profiles for which the probability of termination in any given stage is non-
negligible.

Case 0: There exists e A ð0; 1Þ such that, for every profile x A Te, there is at
least one player i whose unique best reply to x is q i.

We prove that the game has a stationary equilibrium. The proof is based
on a standard fixed-point argument, applied to the best replies of a constrained
game. Loosely speaking, on Te, the best-reply correspondence is pointing
inwards De. Hence, its restriction to De has a fixed point, which is a stationary
equilibrium of the game.

We let C A R be an upper bound for all payo¤s in the game.
For every x A Te let Ix J I be the set of players i such that g iðx�i; qiÞ�

g iðxÞ > 0. The assumption tells us that Ix is not empty for every x A Te.
Since g iðxÞ and g iðx�i; qiÞ are continuous over the compact set Te, r ¼
minx ATe

maxi A Ix
fg iðx�i; qiÞ � g iðxÞg > 0.

It follows that there is e0 > e such that for every e1 A ½e; e0�, and every
x A Te1

there is a player i such that g iðx�i; qiÞ � g iðxÞ > r=2. Fix e1 A
ðe;minfe1; eþ 1=CgÞ and define a continuous function f : De ! De by

f iðxÞ

¼ xi þ ðe1 � eÞðg iðx�i; qiÞ � g iðxÞÞ g iðx�i; qiÞb g iðxÞ
xið1þminf1; r=4gðe1 � eÞðg iðx�i; qiÞ � g iðxÞÞÞ g iðx�i; qiÞ < g iðxÞ:

�

Since f is continuous, it has a fixed point in De, which is a stationary equilib-
rium.

Case 1: r2
f1g; r

3
f1gb 1.

In that case, both players 2 and 3 are at worst indi¤erent between quitting
alone or waiting for player 1 to quit. The stationary profile ðð1� hÞc1þ
hq1; c2; c3Þ is an e-equilibrium, provided h is su‰ciently small.

This analysis remains valid when the roles of the players are permuted.

Case 2: There is no convex combination a1rf1g þ a2rf2g þ a3rf3g of the three
vectors ðrf1g; rf2g; rf3gÞ such that a1rf1g þ a2rf2g þ a3rf3gb ð1; 1; 1Þ.

By compactness, there is r > 0 such that in every convex combination of
rf1g, rf2g and rf3g, at least one player receives at most 1� r. It follows that
for e > 0 su‰ciently small, the assumption of Case 0 holds. In particular,
there is a stationary equilibrium.

Case 3: r1
f2g; r

1
f3g < 1.

One can easily verify that the assumption of Case 1 or Case 2 is sat-
isfied.
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Case 4: There is a convex combination a1rf1g þ a2rf2g þ a3rf3g of the three
vectors ðrf1g; rf2g; rf3gÞ such that a1rf1g þ a2rf2g þ a3rf3g ¼ ð1; 1; 1Þ.

The stationary profile ðð1� ha1Þc1 þ ha1q1; ð1� ha2Þc2 þ ha2q2;
ð1� ha3Þc3 þ ha3q3Þ is an e-equilibrium, provided h is su‰ciently small.

We next introduce a notational convention. For i0 j, we shall write
ri
f jg ¼0 þ0 if ri

f jgb 1 and ri
f jg ¼0 �0 if ri

f jg < 1. If neither Case 1 nor Case 3

holds (nor their analogue symmetric cases), the triplet ðrf1g; rf2g; rf3gÞ A R9 is
either of the form ðð1;þ;�Þ; ð�; 1;þÞ; ðþ;�; 1ÞÞ or ðð1;�;þÞ; ðþ; 1;�Þ;
ð�;þ; 1ÞÞ. Each of these two situations is reducible to the other by a permu-
tation of two players. We will proceed under the assumption that

ðrf1g; rf2g; rf3gÞ is of the form ðð1;þ;�Þ; ð�; 1;þÞ; ðþ;�; 1ÞÞ:

Hence, player 2 (resp. player 3, player 1) is happy if player 1 (resp. player
2, player 3) quits, but gets a low payo¤ if player 3 (resp. player 1, player 2)
quits.

Case 5: There is a convex combination a1rf1g þ a2rf2g þ a3rf3g of the three
vectors ðrf1g; rf2g; rf3gÞ such that a1rf1g þ a2rf2g þ a3rf3gb ð1; 1; 1Þ.

The set of such ða1; a2; a3Þ is defined by three halfspaces and by the
conditions ai b 0, a1 þ a2 þ a3 ¼ 1. It is therefore a triangle (reduced to a
singleton if and only if Case 4 holds).

The vertices of this triangle are labelled A;B;C in such a way that players
1 and 3 (resp. 1 and 2, 2 and 3) get a payo¤ 1 under the convex combination
A ¼ ðaA

1 ; a
A
2 ; a

A
3 Þ (resp. B;C) (see Figure 1).

We write A (resp. B;C) as a convex combination of ð1; 0; 0Þ and B (resp. of
ð0; 1; 0Þ and C, of ð0; 0; 1Þ and A):

A ¼ b1ð1; 0; 0Þ þ ð1� b1ÞB

B ¼ b2ð0; 1; 0Þ þ ð1� b2ÞC

C ¼ b3ð0; 0; 1Þ þ ð1� b3ÞA:

Fig. 1
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Fix M A N, large enough. Define a non-stationary profile s as follows. Players
1, 2 and 3 (in that order) alternate indefinitely as follows. During M stages,
player i quits with probability

bi

M
(while the other two players continue).

Depending on who starts first, the payo¤ induced by s is close to the payo¤
associated with the convex combination A, B or C respectively. Moreover, the
profile s is an e-equilibrium of the quitting game.

3. The example

Here we analyze the following four player quitting game:

In this game player 1 chooses a row (top row ¼ continue), player 2 chooses
a column (left column ¼ continue), player 3 chooses either the top two
matrices or the bottom two matrices, (top two matrices ¼ continue) and
player 4 chooses either the left two matrices or the right two matrices (left two
matrices ¼ continue).

Note that there are the following symmetries in the payo¤ function: for
every 4-tuple of actions ða; b; c; dÞ we have:

v1ða; b; c; dÞ ¼ v2ðb; a; d; cÞ;

v1ða; b; c; dÞ ¼ v4ðc; d; b; aÞ and

v2ða; b; c; dÞ ¼ v3ðc; d; b; aÞ;

where viða; b; c; dÞ is the payo¤ to i if the action combination is
ða; b; c; dÞ ðviðc1; c2; c3; c4Þ ¼ 0Þ.

In Solan and Vieille (2001), it is proven that this game admits a cyclic
equilibrium profile y with period 2 and with the following structure:

yn ¼
ðx; 0; z; 0Þ n odd

ð0; x; 0; zÞ n even

�

where x; z A �0; 1½ are independent of n; that is, at odd stages players 2 and 4
continue, while 1 and 3 quit with positive probability, whereas at even stages 1
and 3 continue, while 2 and 4 quit with positive probability.

Fig. 2
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We shall now prove the following:

Proposition 2. The game does not admit a stationary equilibrium.

Proposition 3. For every e > 0 small enough, the game does not admit an
e-equilibrium x such that kxn � ck < e for every n A N.

It follows from Propositions 2 and 3 that the game does not admit a
stationary e-equilibrium, provided e is small enough. Indeed, let us argue
by contradiction, and assume that for every e > 0 there exists a stationary
e-equilibrium xe. Let x� be an accumulation point of fxeg as e! 0. If x� is
terminating (x�0 c) then it is a stationary 0-equilibrium, which is ruled out by
Proposition 2. Otherwise, x� ¼ c, and then, for e > 0 su‰ciently small, there is
an e-equilibrium x where kxn � ck < e, which is ruled out by Proposition 3.

Proposition 2 is proved in section 3.1, while Proposition 3 is proved in
section 3.2.

3.1. No stationary equilibria

We check here that the game has no stationary equilibrium. We organize the
discussion according to the number of players who play both actions with
positive probability.

3.1.1. No non-fully mixed stationary equilibrium

We prove here that there is no stationary equilibrium in which at least one
player plays a pure strategy.

It is immediate to check that there is no stationary equilibrium in which at
least three players play pure stationary strategies.

We shall now verify that there is no stationary equilibrium where two
players play pure stationary strategies. Using the symmetries in the payo¤
function, it is enough to consider the cases where either player 3 and 4 play
pure strategies, or players 2 and 4 play pure strategies.

Assume first that there is an equilibrium in which players 3 and 4 play pure
stationary strategies. The strategies of players 1 and 2 form then an equilib-
rium of a 2� 2 game. We will see that these two-player games have only pure
equilibria. The four-player game would thus have an equilibrium in pure sta-
tionary strategies – a contradiction. In the first three cases, the induced game
is equivalent to a one-shot game. In the last case, it is a quitting game.

Case 1: Players 3 and 4 play ðq3; q4Þ: the unique equilibrium in the induced
game is ðc1; c2Þ.

Case 2: Players 3 and 4 play ðc3; q4Þ: the unique equilibrium is ðc1; q2Þ.

Case 3: Players 3 and 4 play ðq3; c4Þ: symmetric to case 2.

Case 4: Players 3 and 4 play ðc3; c4Þ: the unique equilibria are ðq1; c2Þ and
ðc1; q2Þ.
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We shall now see that there is no stationary equilibrium where players
2 and 4 play pure actions, by analyzing the induced game between players 1
and 3.

Case 1: Players 2 and 4 play ðc2; c4Þ: the induced game has a unique equilib-
rium ðq1; q3Þ.

Case 2: Players 2 and 4 play ðq2; c4Þ: the unique equilibrium in the induced
game is 1

2 c1 þ 1
2 q1; 1

4 c3 þ 3
4 q3

� �
. Player 2 would receive 5

8 , but he would get 1
by playing c2.

Case 3: Players 2 and 4 play ðc2; q4Þ: the unique equilibrium is ðq1; c3Þ.

Case 4: Players 2 and 4 play ðq2; q4Þ: the unique equilibrium is ðc1; q3Þ.

Next, we check that there is no stationary equilibrium where one player,
say player 4, plays a pure strategy, and all the other players play a fully mixed
strategy. We denote by ðx; y; zÞ the fully mixed stationary equilibrium in the
three-player game when player 4 plays some pure stationary strategy.

Assume first that player 4 plays q4. Then, in order to have player 2 indif-
ferent, we should have

xð1� zÞ ¼ z� ð1� xÞð1� zÞ;

which implies that z ¼ 1=2. In order to have player 1 indi¤erent, we should
have

ð1� yÞzþ yð1� zÞ ¼ yz� ð1� yÞð1� zÞ;

which solves to yz ¼ 1=2, and therefore y ¼ 1, which is pure.
Assume now that player 4 plays c4. First we note that x < 1=2, otherwise

player 3 prefers to play q3 over c3. Next, if player 2 is indi¤erent between his
actions, then

ð1� xÞð1þ 3zÞ
1� xz

¼ xþ ð1� xÞz;

or, equivalently,

ð1� xÞð1þ 2zþ xz2Þ ¼ ð1� xzÞx:

Since x < 1=2, it follows that 1� x > x. Therefore it follows that

1þ 2zþ xz2 < 1� xz;

which is clearly false.

3.1.2. No fully mixed stationary equilibrium

We prove now that there is no fully mixed stationary equilibrium. We shall
first write the best-reply conditions. Next, we shall check that these can not be
satisfied simultaneously.
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We focus on player 1. Let ðy; z; tÞ A ð0; 1Þ3 be a given fully mixed profile of
players 2, 3 and 4.

By playing c1 at stage 1 and the mixed action x A ð0; 1Þ in all subsequent
stages, player 1’s expected payo¤ is

aðy; z; tÞ :¼ yztðg1ðx; y; z; tÞ � 2Þ � 2yzþ 3zt� ytþ yþ z:

On the other hand, by playing q1 at stage 1, player 1’s expected payo¤ is

bðy; z; tÞ :¼ tþ ð1� tÞðyþ z� 1Þ:

If x A ð0; 1Þ is a stationary best reply to ðy; z; tÞ, the two payo¤s are equal,
and equal to g1ðx; y; z; tÞ:

aðy; z; tÞ ¼ bðy; z; tÞ ¼ g1ðx; y; z; tÞ:

In particular, the polynomial D1 that is defined by

D1ðy; z; tÞ :¼ aðbðy; z; tÞ; y; z; tÞ � bðy; z; tÞ

vanishes at ðy; z; tÞ. Observe that facing ðy; z; tÞ, the stationary strategy c1

yields a payo¤ in ½0; 1�. Defining D2ðx; z; tÞ;D3ðx; y; tÞ and D4ðx; y; zÞ in a
symmetric way, we have thus proved the next result.

Lemma 4. If ðx; y; z; tÞ A ð0; 1Þ4 is a fully mixed stationary equilibrium, then,
D1ðy; z; tÞ ¼ D2ðx; z; tÞ ¼ D3ðx; y; tÞ ¼ D4ðx; y; zÞ ¼ 0 and g iðx; y; z; tÞ A ½0; 1�
for each i ¼ 1; 2; 3; 4.

We shall prove (see Lemmas 6, 7 and 8 below) that there is no
ðx; y; z; tÞ A ð0; 1Þ4 such that (i) y ¼ minfx; y; z; tg, (ii) D1ðy; z; tÞ ¼ D4ðx; y; zÞ
¼ 0 and (iii) g1ðx; y; z; tÞ; g4ðx; y; z; tÞ A ½0; 1�. By symmetry, condition (i) is
w.l.o.g. By Lemma 4, this will therefore imply that the game has no fully
mixed stationary equilibrium.

For simplicity of notations we sometimes omit the arguments in b.

Lemma 5. D1ðt; t; tÞ > 0 for every t A ½0; 1�.

Proof: t 7! D1ðt; t; tÞ is a polynomial in one variable. The result follows by
using any method for counting the number of zeroes of a polynomial in a
compact interval, e.g. Sturm’s method. 9

We state a useful observation.

Fact 1: b is separately increasing on the set fy a minfz; tgg.

Fact 2: D1 is decreasing in y and increasing in z on the set fy a minfz; tgg.

The proofs of the Fact 1 and the first assertion in Fact 2 are obtained by
elementary algebraic manipulations, and are therefore omitted. For the second
assertion in Fact 2, observe that qD1

qz
is decreasing in y. Since y a t, this yields

qD1

qz
ðy; z; tÞb qD1

qz
ðt; z; tÞ ¼ ðb � 2Þt2 þ t2zð1� tÞ þ 2t > 0.
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Lemma 6. D1 > 0 on the set fy a t a zg.

Proof: By Fact 2, D1ðy; z; tÞb D1ðt; t; tÞ > 0 if y a t a z. 9

Lemma 7. D4 > 0 on the set y a z a 1
2

� �
X fg4 b 0g.

Proof: Indeed, if g4 b 0, one has

D4ðx; y; zÞb�2xyz� 2xzþ 4xyþ 1� 2y ¼ yð�2xzþ 4x� 2Þ þ 1� 2xz:

Denote by fx; zðyÞ the a‰ne function in y that appears in the right-hand side.
Since fx; zð0Þ ¼ 1� 2xz > 0 and fx; zðzÞ ¼ ð1� 2zÞ þ 2xzð1� zÞ > 0, it is pos-
itive on y a z a 1

2

� �
. 9

Lemma 8. D1 > 0 on the set max y; 1
2

� �
a z a t

� �
.

Proof: We split the discussion into several steps.

Step 1: D1 > 0 on y < 1
2 a z a tg

� �
.

Indeed, by Fact 2, D1ðy; z; tÞb D1
1
2 ;

1
2 ; t

� �
¼ 1

2� t
2þ b t

4 > 0.

Step 2: D1 > 0 on 1
2 a y a z a t a 2

3

� �
.

Indeed, by Fact 2, D1ðy; z; tÞb D1ðz; z; tÞ. We prove below that D1ðz; z; tÞ is
decreasing in z. This will imply D1ðz; z; tÞb D1ðt; t; tÞ > 0, hence the claim.

An elementary computation gives

q

qt

q

qz
fD1ðz; z; tÞg ¼ 2zðb � 2Þ þ 2ztð2� y� zÞ þ 2z2ð1� tÞ � 2z2tþ 4:

Therefore, q
qz
fD1ðz; z; tÞg is increasing in t and

q

qz
D1ðz; z; tÞa

q

qz
D1 z; z;

2

3

� �

¼ 4

3
zðb � 2Þ þ 4

9
z2 � 4zþ 8

3
: ð1Þ

The right-hand side in (1) is decreasing in z. It is therefore maximal for z ¼ 1
2 .

It is then equal to 2
3 ðb � 1Þ þ 1

9 < 0 since, by Fact 1, bðy; z; tÞa b 2
3 ;

2
3 ;

2
3

� �
¼ 7

9 .

Step 3: D1 > 0 on 1
2 a y < 2

3 a z a t
� �

.

By Fact 1, b 2
3 ;

2
3 ; t

� �
b b 2

3 ;
2
3 ;

2
3

� �
b 3

4 . Hence, by Fact 1,

D1ðy; z; tÞb D1
2

3
;
2

3
; t

� �

¼ b
2

3
;
2

3
; t

� �

� 2

� �
4

9
tþ 1

9
þ 2

3
t

b
tþ 1

9
:

Step 4: D1 > 0 on 2
3 a y a z a t
� �

.
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By Fact 1, b b 3
4 . Plainly,

qD1

qt
¼ ðb � 2Þyzþ yztð2� y� zÞ þ 4z� 2 b ðb � 2Þyzþ 4z� 2: ð2Þ

The right-hand side of (2) is increasing in z. Therefore, it is minimal when

z ¼ y, hence at least � 5
4 y2 þ 4y� 2. This latter expression is itself minimized

at y ¼ 2
3 where it equals 1

9 . Thus, D1 is increasing in t. By Fact 2, this implies
D1ðy; z; tÞb D1ðz; z; zÞ > 0.

Step 5: D1 > 0 on 1
2 a y a z a 2

3 a t
� �

.

By Facts 1 and 2, bðy; z; tÞb 2
3 and D1ðy; z; tÞb D1ðz; z; tÞ. Therefore,

D1ðy; z; tÞb�
4

3
z2t� 2z2 þ 4ztþ 1� 2t: ð3Þ

Let f be the function defined by the right-hand side of (3), and t b 2
3 . The

function f ð� ; tÞ is a quadratic concave function in z. Since

f
1

2
; t

� �

¼ 1

2
� t

3
> 0 and f

2

3
; t

� �

¼ 2

27
tþ 1

9
;

it is positive on ½1=2; 2=3�. 9

3.2. No perturbed e-equilibrium

We first present a sketch of the proof. The proof goes by contradiction. Let
x ¼ ðxnÞ be an e-equilibrium such that kxn � ck < e for each n. Since each
player gets a positive payo¤ when quitting alone, the probability that the
game terminates in finite time is close to one. Moreover, since xn is close to 0,
the quitting coalition is a singleton with high probability. In particular, the
sum of the payo¤s of all four players under x is close to 5. Hence, at least one
player gets a payo¤ substantially higher than 1 under x, while no player
receives a payo¤ that is much below one. There is no convex combination of
r1, r2 and r3 which satisfies these conditions. Therefore, the probability that
player 4 belongs to the quitting coalition is bounded away from zero. By
symmetry, the same holds for each player i A I .

Next, we claim that there is no such e-equilibrium that gives to players 1
and 2 (or 3 and 4) a payo¤ substantially higher than one. Indeed, assume such
an equilibrium were to exist. In the first stage of the game, both players 1 and
2 would choose to continue with very high probability, since the payo¤
obtained by quitting is approximately 1. Moreover, by the e-equilibrium prop-
erty, they will do so in every stage n such that their expected payo¤, starting
from stage n, is higher than one, unless the probability that the game reaches
stage n is close to zero. (This is specific to the class of quitting games.) There-
fore, as long as their continuation payo¤ exceeds 1 and the probability of sur-
viving is not too small, players 1 and 2 will not contribute to the quitting
coalition. However, as long as players 1 and 2 do not contribute, their con-
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tinuation payo¤ increases. Indeed, the expected payo¤ starting from today is a
weighted average of the payo¤ received if someone quits today and of the
expected payo¤ starting from tomorrow. Since the payo¤ to players 1 and 2
is below one if only player 3 or 4 quits, the expected payo¤ starting from
tomorrow must exceed the continuation payo¤ starting from today.

Assume now that player 1, but not player 2, gets a payo¤ substantially
higher than 1. Let n1 be the first stage such that the continuation payo¤ of
player 1 is close to one. Since the continuation payo¤ of player 1 decreases
between stages 1 and n1, the probability that player 2 quits before stage n1 is
non-negligible. Since player 1 hardly contributes to the probability of quitting
before stage n1, the continuation payo¤s of player 2 do not decrease over time
up to stage n1. Since player 2 quits with non-negligible probability, his con-
tinuation payo¤s must remain close to one for a while. In particular, players 3
and 4 should not quit in those stages. This implies that the continuation pay-
o¤s of player 3 and 4 increase in these stages. After a while (stage n1 at the
latest), both continuation payo¤s of players 3 and 4 are higher than one, a
situation that has been ruled out above.

We now proceed to the formal proof. We let r ¼ 8 be twice the maximal
payo¤ in absolute value, and N ¼ 4 be the number of players.

It is convenient to assume that, in any given stage, at most one player quits
with positive probability. This assumption entails no loss of generality, as
shown by the next lemma.

Lemma 9. Let e a 1=8 and let x be an e-equilibrium such that kxn � ck < e for
every n. Then there exists a 12Nre-equilibrium y such that, for every n A N,
kyn � ck < e and jfi A I ; y j

n > 0gja 1.

Proof: We define y by dividing each stage into four substages, and by letting
each player quit in turn with the probability specified by x. Formally, for
n A N and j A I , we set

yi
ðn�1ÞNþj ¼

xi
n if i ¼ j

0 if i0 j

�

:

We first compare the payo¤ vectors under the two profiles x and y. Plainly,

Pyðt > nN j t > ðn� 1ÞNÞ ¼
YN

i¼1

ð1� xi
nÞ

¼ Pxðt > n j t > n� 1Þ for every n A N:

Observe next that, for each j A I ,

PyðSt ¼ fig j ðn� 1ÞN < t a nNÞ ¼
xi

n

Q
j<ið1� x j

nÞ
1�

Q
j A I ð1� x

j
nÞ
; and

PxðSt ¼ fig j t ¼ nÞ ¼
xi

n

Q
j0ið1� x j

nÞ
1�

Q
j A I ð1� x

j
nÞ

The denominator is at least 1� 4e b 1=2, hence the di¤erence between these
two probabilities is at most 2e.
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By summation over n, this yields

jPxðSt ¼ fig j t < þyÞ � PyðSt ¼ fig j t < þyÞja 2e: ð4Þ

Under y, no two players quit simultaneously with positive probability,
therefore

P
i A I PyðSt ¼ fig j t < þyÞ ¼ 1. Using (4), it follows that PxðjStj >

1 j t < þyÞa 2Ne.
Since kgðxÞ � gðyÞka r

P
SJI jPxðSt ¼ SÞ � PyðSt ¼ SÞj, one gets

kgðxÞ � gðyÞka 4Nre: ð5Þ

Next, we prove that player i has no pure profitable deviation from y i.
Consider first the strategy c i. The above argument does not rely on the

e-equilibrium property of x and applies to any profile x such that kxn � cka e
for every n A N. When applied to the profile ðx�i; c iÞ, it yields jg iðx�i; c iÞ�
g iðy�i; c iÞja 4Nre. Since x is an e-equilibrium, this yields, by (5),

g iðy�i; c iÞa g iðyÞ þ eþ 8Nre:

Consider next the strategy q i
ðn�1ÞNþk that quits at stage ðn� 1ÞN þ k for

the first time. We compare the payo¤s to player i under the two profiles
ðy�i; q i

ðn�1ÞNþkÞ and ðx�i; q i
nÞ. When mimicking the above argument, one

obtains

Py�i ;q i
ðn�1ÞNþk

ðt a ðn� 1ÞNÞ ¼ Px�i ;q i
n
ðt a n� 1Þ; and

jEy�i ;q i
ðn�1ÞNþk

½ri
St
j t a ðn� 1ÞN� � Ex�i ;q i

n
½ri

St
j t a ðn� 1Þ�ja 4Nre:

Moreover,

jEy�i ;q i
ðn�1ÞNþk

½ri
St
j t > ðn� 1ÞN� � 1ja ðN � 1Þreþ re,

where ðN � 1Þre accounts for the probability that someone may quit in
the first k � 1 substages of stage n, and re accounts for the probability that
some player other than i may quit in substage k. Also, jEx�i ;q i

n
½ri

St
j t >

ðn� 1Þ� � 1ja rNe. Collecting these inequalities yields

g iðy�i; q i
ðn�1ÞNþkÞag iðx�i; q i

nÞþ 6Nreag iðxÞ þ 7Nreag iðyÞþ eþ 11Nre:

This concludes the proof. 9

We henceforth assume that x is an e-equilibrium such that jfi A I ; xn > 0gj
a 1 and kxn � ck < e for every n A N. We refer to such a profile as a perturbed
e-equilibrium.

Lemma 10. For every perturbed e-equilibrium x one has

1. Pxðt < þyÞb 1� e.
2. g iðxÞb 1� re� e for every i A I , and g iðxÞb 5

4� 2e for some i A I .
3. PxðSt ¼ figÞb 2

15� re for every i A I .

The first claim holds for any e-equilibrium, whether it is a perturbed e-
equilibrium of not.

Quitting games – An example 377



Proof: Given n A N, let y i;n be the strategy of player i that coincides with x i

in the first n stages and plays qi at stage nþ 1. The sequence of payo¤s
ðg iðx�i; y i;nÞÞn AN converges to g iðxÞ þ Pxðt ¼ þyÞ, as n goes to infinity. Since
g iðx�i; y i;nÞa g iðxÞ þ e for every n, claim 1 follows.

By quitting at the first stage, player i obtains at least 1� re. The first part
of claim 2 follows. Whenever the quitting set is a singleton the payo¤s to the
players sum up to 0þ 0þ 1þ 4 ¼ 5. Therefore,

X

i A I

g iðxÞ ¼ 5Pxðt < þyÞb 5� 5e:

In particular, there exists i such that g iðxÞb 5
4� 5

4 e. The second part of
claim 2 follows.

We turn to the proof of claim 3. Set pi :¼ PxðSt ¼ figÞ. Note that

g1ðxÞ ¼ p1 þ 4p2;

and that analogous identities hold for players 2, 3 and 4. In particular, by
claim 2, one has

p1 þ 4p2
b 1� 2re and 4p1 þ p2

b 1� 2re;

which implies p1 þ p2 b 2
5� 4

5 re. By exchanging the roles of the players, one
gets p3 þ p4 b 2

5� re. Therefore, p1 þ p2 a 3
5þ re. Thus, ðp1; p2Þ satisfy

p1 þ 4p2
b 1� 2re; 4p1 þ p2

b 1� 2re; and p1 þ p2
a

3

5
þ re: ð6Þ

Any solution to the system (6) satisfies p1; p2 b 2
15� re. 9

Given a profile x, a player i A I , and a stage n A N, we let x iðnÞ be
the strategy which plays ci up to stage n, and coincides with x i after stage
n. We denote by xn ¼ ðxn; xnþ1; . . .Þ the profile induced by x in the subgame
starting from stage n. Finally, we let pi

n :¼ Pxðt < n;St ¼ figÞ. Note that
pi ¼ limn!y pi

n. Though pi
n depends on the profile, this is not made explicit

in the notation.
We prove now that, as long as the continuation payo¤ of player i

exceeds 1, player i ’s contribution to the probability of termination is small.

Lemma 11. Let x be a strategy profile such that jfi : xi
n > 0gja 1 for every n.

Assume that g iðxnÞb 1þ
ffiffi
e
p

for some player i and every n a n0. Then

g iðx�i; x iðnÞÞb g iðxÞ þ
ffiffi
e
p
� pi

n; for every n a n0:

In particular, by the e-equilibrium property, this yields pi
n a

ffiffi
e
p

.

Proof: We proceed by induction. Assume n ¼ 1. If xi
1 ¼ 0, then x ið1Þ ¼ x i

and pi
1 ¼ 0, and the result holds. Otherwise, pi

1 ¼ 1� xi
1, hence

g iðxÞ ¼ pi
1 þ ð1� pi

1Þg iðx�i; x ið1ÞÞ:
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Then

g iðx�i; x ið1ÞÞ ¼ g iðxÞ þ pi
1

1� pi
1

ðg iðxÞ � 1Þb g iðxÞ þ
ffiffi
e
p

pi
1:

Assume now that 1 < n a n0. If xi
n ¼ 0, then x iðnÞ ¼ x iðn� 1Þ and pi

n ¼ pi
n�1.

In particular, by the induction hypothesis,

g iðx�i; x iðnÞÞ ¼ g iðx�i; x iðn� 1ÞÞb g iðxÞ þ
ffiffi
e
p

pi
n�1 ¼ g iðxÞ þ

ffiffi
e
p

pi
n;

and the result holds.
If xi

n > 0 then, applying the case n ¼ 1 to the profile xn�1 we get

g iðx�i
n�1; x

iðnÞn�1Þb g iðx�i
n�1; x

iðn� 1Þn�1Þ þ
ffiffi
e
p
ð1� xi

nÞ:

Using the induction hypothesis we get:

g iðx�i; x iðnÞÞb g iðx�i; x iðn� 1ÞÞ þ Px�i ; c iðt b n� 1Þ
ffiffi
e
p
ð1� xi

nÞ

b g iðxÞ þ
ffiffi
e
p
ðpi

n�1 þ Px�i ; c iðt b n� 1Þð1� xi
nÞÞ

b g iðxÞ þ
ffiffi
e
p

pi
n: 9

We say that players 1 and 2 (resp. 3 and 4) are partners. The partner of
player i is denoted by ~{{.

We next prove that, whenever player i gets a payo¤ higher than one in a
perturbed e-equilibrium, player i will not contribute to the probability of ter-
mination, while the partner of i will contribute, until a stage is reached in
which the continuation payo¤ of player i is close to one.

Lemma 12. Let a > 0, e A ð0; 1=900Þ and i A I . Let x be a perturbed e-
equilibrium such that g iðxÞb 1þ a. Then there exists n1 > 1 such that (i)
g iðxn1

Þ < 1þ
ffiffi
e
p

, (ii) pi
n1

a 2
ffiffi
e
p

, and (iii) 3p~{{
n1

b a�
ffiffi
e
p

.

Proof: For convenience, assume i ¼ 1. Since p1 b 2=15� 3e, by Lemma 11,
there is a stage n such that g1ðxnÞ < 1þ

ffiffi
e
p

. Let n1 ¼ inffn A N; g1ðxnÞ <
1þ

ffiffi
e
p
g be the first such stage. Note that n1 > 1. By definition, claim (i) holds

and g1ðxnÞb 1þ
ffiffi
e
p

for each n a n1 � 1 hence, by Lemma 11, pi
n1�1 a

ffiffi
e
p

.
Since p1

n1
a p1

n1�1 þ x1
n1

and x1
n1

a e, claim (ii) follows.

We now prove (iii). Since g1ðxn1
Þ < 1þ

ffiffi
e
p

one has

1þ a a g1ðxÞ ¼ p1
n1
þ 4p2

n1
þ ð1� p1

n1
� p2

n1
� p3

n1
� p4

n1
Þg1ðxn1

Þ

a p1
n1
þ 4p2

n1
þ ð1� p1

n1
� p2

n1
Þ þ

ffiffi
e
p

a 1þ 3p2
n1
þ

ffiffi
e
p
;

and (iii) follows. 9

We next prove that there is no perturbed e-equilibrium in which two part-
ners get a payo¤ substantially higher than one.

Quitting games – An example 379



Corollary 13. Let e A ð0; 1=900Þ and a > 7
ffiffi
e
p

. There is no perturbed e-
equilibrium x such that

g iðxÞ; g~{{ðxÞb 1þ a for some i A I :

Proof: We argue by contradiction. Let x be such a perturbed e-equilibrium,
and assume w.l.o.g. i ¼ 1. Apply Lemma 12 twice, to players 1 and 2. Call
n1 and n2 the corresponding two stages, and assume w.l.o.g that n1 a n2, so
that p2

n1
a p2

n2
. Thus, one has both p2

n1
b a=3�

ffiffi
e
p
=3, and p2

n2
a 2

ffiffi
e
p

. Hence

a�
ffiffi
e
p

a 6
ffiffi
e
p

– a contradiction. 9

We now proceed to the proof of Proposition 3.

Proof of Proposition 3: Let e > 0 be small enough, and let x be a perturbed
e-equilibrium. We assume w.l.o.g. that g1ðxÞb 5=4� 2e. We will exhibit a
stage n2 such that xn2

is a 8e-equilibrium, and g3ðxn2
Þ; g4ðxn2

Þb 1þ 1=12,
contradicting Corollary 13.

Apply Lemma 12 to x and i ¼ 1, and denote n1 the corresponding stage.
Thus, p1

n1
a 2

ffiffi
e
p

and p2
n1

b 1
3� 1

4�
ffiffi
e
p

. By Lemma 11, there exists a stage

n a n1 with g2ðxnÞ < 1þ
ffiffi
e
p

. We set

n2 ¼ maxfn a n1; g
2ðxnÞa 1þ

ffiffiffi
e
p
g:

Since p1
n2

a p1
n1

a 2
ffiffi
e
p

, and p1 b 2
15� re, one obtains

Pxðt < n2Þa 1� Pðt b n2 and St ¼ f1gÞa
13

15
þ reþ 2

ffiffi
e
p

a
7

8
:

Since x is an e-equilibrium, xn2
is a 8e-equilibrium.

Our next goal is to prove that p2
n2

b 1
12� 17

ffiffi
e
p

. If n2 ¼ n1 there is nothing
to prove. Assume n2 < n1, so that g2ðxn1

Þ > 1þ
ffiffi
e
p

. By the definition of n2,
g2ðxkÞ > 1þ

ffiffi
e
p

for every n2 < k a n1. Apply Lemma 11 with y ¼ xn2
(thus

yk ¼ xn2þk, for each k) and n ¼ n1 � n2. Since xn2
is a 8e-equilibrium, the

conclusion, rephrased in terms of x, is that Pxðt < n1;St ¼ f2g j t b n2Þa
8e=

ffiffi
e
p
¼ 8

ffiffi
e
p

. In particular p2
n1
� p2

n2
a 8

ffiffi
e
p

, and therefore p2
n2

b 1
12� 9

ffiffi
e
p

.

We use this result to prove that g3ðxn2
Þ; g4ðxn2

Þb 1þ 1=12. As previously,
one has

1� 2re a g2ðxÞ ¼ 4p1
n2
þ p2

n2
þ 1�

X

i A I

pi
n2

 !

g2ðxn2
Þ: ð7Þ

By definition of n2, g2ðxn2
Þa 1þ

ffiffi
e
p

. Since p1
n2

a p1
n1

a 2
ffiffi
e
p

, one deduces

from (7) that p3
n2
þ p4

n2
a ð7þ 2reÞ

ffiffi
e
p
þ 4re a 8

ffiffi
e
p

.

On the other hand,

1� 2re a g3ðxÞ ¼ 4p4
n2
þ p3

n2
þ 1�

X

i

pi
n2

 !

g3ðxn2
Þ: ð8Þ

Since p2
n2

b 1=12� 17
ffiffi
e
p

, (8) yields g3ðxn2
Þb 1þ 1

11� e1=4 b 1þ 1=12.

Similarly, g4ðxn2
Þb 1þ 1

12 . Since xn2
is a 8e-equilibrium, we get a contradic-

tion to Corollary 13. 9
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