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Abstract. Quitting games are multi-player sequential games in which, at every
stage, each player has the choice between continuing and quitting. The game
ends as soon as at least one player chooses to quit; each player i then receives
a payoff ri, which depends on the set S of players that did choose to quit. If
the game never ends, the payoff to each player is zero.

We exhibit a four-player quitting game, where the “simplest” equilibrium
is periodic with period two. We argue that this implies that all known methods
to prove existence of an equilibrium payoff in multi-player stochastic games
are therefore bound to fail in general, and provide some geometric intuition
for this phenomenon.
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1. Introduction

Quitting games are I-player sequential games in which, at any stage, each
player has the choice between continuing and quitting. The game ends as soon
as at least one player chooses to quit; the payoff to player i € I is ri, where
S < I is the set of players that did choose to quit at that stage. If the game
never ends, the payoff to each player is 0.

A quitting game is therefore a multi-player stochastic game of the simplest
kind. There is only one history of play that does not lead to termination. A
strategy of player i is a sequence X' = (x/), _ ,, where x/ is the probability that
player i quits at stage n, provided the game has not terminated before. The
strategy X is stationary if x! is independent of n.

It is not known whether quitting games have an e-equilibrium for every
& > 0. We briefly review existing results.
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In the case of rwo players, stationary ¢-equilibria do exist, for every ¢ > 0,
see Flesch et al. (1996). A three-player example was devised by Flesch et al.
(1997), with no stationary e-equilibrium. In this example there exist equilib-
rium payoffs in the convex hull of the vectors ry;, € R’, i e I. Moreover, there
exist corresponding e-equilibrium profiles x that are periodic (w.r.t. time) and
such that the mixed move x! is arbitrarily close to 0, for every stage n and
every player i.

A complete analysis was provided in Solan (1999), for the more gen-
eral class of three-player absorbing games.! Solan proved the existence of
(uniform) e-equilibrium profiles, by means of analyzing the limit behavior of
stationary equilibria of a modified discounted game, when the discount factor
goes to zero. This generalizes the method introduced by Vrieze and Thuijsman
(1989) for the analysis of two-player absorbing games. In both of these proofs,
the limit profile x is either a stationary equilibrium or is such that termination
occurs with probability zero. In the latter case, an ¢-equilibrium can be defined
that plays a perturbation of x. In all other known existence proofs of equilib-
rium payoffs for multi-player undiscounted stochastic games, see, e.g., Flesch
et al. (1996), Thuijsman and Raghavan (1997), Solan (2000) or Vieille (2000a,
2000b), close inspection of the proofs reveals a similar dichotomy.

The main purpose of this note is to demonstrate that a// these methods are
bound to fail for four-player quitting games — hence for more complex sto-
chastic games with more players. We provide a four-player example, where
there is neither (1) a stationary e-equilibrium for every ¢ > 0, nor (2) an equi-
librium payoff in the convex hull of {r;,7 € I'}. Actually, the “simplest” equi-
librium in this example is periodic with period 2, in which the probability of
quitting in every stage is bounded away from zero.

The paper is organized as follows. In Section 2, we provide a geometric
understanding of what is specific to two- and three-player games. Next, we
define the game in Section 3 and prove our claims.

In a companion paper (Solan and Vieille (2001)) we introduced new tools
and provided sufficient conditions on the payoffs under which quitting games
admit an ¢-equilibrium, for every ¢ > 0.

2. Two- and three-player quitting games

We here consider quitting games with at most three players and discuss the
result below.

Proposition 1. For every & >0 and every quitting game with at most three
players, there exists an e-equilibrium X = (X;,);.; ,en Such that either X is a sta-
tionary profile or x, < ¢ for every n € N and every i € I.

As discussed in the Introduction, this proposition follows immediately from
Solan (1999). We shall here sketch a geometric proof. We discuss two-player
and three-player games in turn.

We first introduce a few notations. We denote by ¢’ (continue) and ¢’
(quit) the two actions of player i. We let a/ be the action played by player i at

1 An absorbing game is a stochastic game with a single non-absorbing state.
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stage n, denote by / = min{n > 1,a} = ¢' for some player i € I} the stage in
which the game terminates,? and by S, the set of players that choose to quit at
that stage. Given a profile x of strategies, the expected payoff to player i is

Vi(x) = EX[V§III<+w]a

where E, stands for the expectation with respect to the probability distribu-
tion induced by x over the set of plays. We let ¢ denote the profile of actions
(¢’), and by ¢’ (resp. q') the pure stationary strategy of player i that plays
repeatedly ¢’ (resp. ¢').

2.1. Two-player quitting games
For notational convenience, we represent a two-player quitting game as

CZ qZ

Cl (b17b2)

q (a1, a2) (dy,d>)

If there is a pure stationary equilibrium we are done. Otherwise either

a; > 0 or by > 0 (otherwise (c¢!,¢?) is an equilibrium). Assume w.l.o.g. that

a; > 0. Then a, < d, (otherwise (q',¢?) is an equilibrium), which implies
that d, < b; (otherwise (q',q?) is an equilibrium), which implies that b, < 0
(otherwise (¢!, ¢?) is an equilibrium).

If ay > b, then the stationary profile (x',¢?) is an e-equilibrium, where
x} =n, and 5 € (0,1) is sufficiently small.

If a; < by then the stationary profile (x!,q?) is an e-equilibrium, where x
is defined as above.

Therefore, any two-player quitting games has a stationary g-equilibrium.
Note that equilibria need not exist, as e.g. in the zero-sum game

1

62 q2

c! (1,-1)

‘11 (1571) (070)

2.2. Three-player quitting games

A complete discussion would be both tedious and repetitive. We shall only deal
with the case where réi > 0 for each i € I. It can be checked that the other

cases do not involve additional ideas.
We normalize the payoffs to have r;,, = 1 for each i € I. We organize the
discussion according to the configuration of payoffs. The different cases are

2 By convention, the minimum of an empty set is +oc0.
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exhaustive, but not mutually exclusive. All strategies are stationary unless
explicitly specified. Abusing notations, for every x € [0, 1] and every player
i e I we denote by (I — x)c’ + xq’ the stationary strategy in which player i
quits at every stage with probability x. For convenience, we sometimes refer
to this stationary strategy simply as x.

Given e € (0,1], set T, = {xe[0,1| 37, x' = ¢}, and 4, = {xe[0,1)|
S22, x> ¢}. The set 4, is a subset of the set of stationary profiles. It contains
all profiles for which the probability of termination in any given stage is non-
negligible.

Case 0: There exists ¢ € (0,1) such that, for every profile x € T,, there is at
least one player i whose unique best reply to x is q'.

We prove that the game has a stationary equilibrium. The proof is based
on a standard fixed-point argument, applied to the best replies of a constrained
game. Loosely speaking, on T,, the best-reply correspondence is pointing
inwards 4,. Hence, its restriction to 4, has a fixed point, which is a stationary
equilibrium of the game.

We let C € R be an upper bound for all payoffs in the game.

For every x € T, let I, = I be the set of players i such that y'(x™/, ¢") —
7!(x) > 0. The assumption tells us that I, is not empty for every x e T,.
Since y(x) and yp/(x',¢') are continuous over the compact set T,, p=
minye7, max;er {y'(x~, ¢') — y'(x)} > 0.

It follows that there is g > ¢ such that for every ¢ € [¢, &), and every
xeT, there is a player i such that y'(x7' ¢') —y/(x) > p/2. Fix ¢ €
(e, min{¢;, ¢ + 1/C}) and define a continuous function f : 4, — 4, by

f1(x)

_ {Xf+(81 -0’ (xg) =y’ () P'(x7q') = ' (x)
x'(14+min{l,p/4}(e1 — &) (7' (x7",¢') —7'(x))) »'(x7",q") <p'(x).

Since f is continuous, it has a fixed point in 4., which is a stationary equilib-
rium.

Case I: 1}y, 17, > 1.

In that case, both players 2 and 3 are at worst indifferent between quitting
alone or waiting for player 1 to quit. The stationary profile ((1 —7)e! +
nq',¢?, ¢%) is an e-equilibrium, provided # is sufficiently small.

This analysis remains valid when the roles of the players are permuted.

Case 2: There is no convex combination ojr(jy + oarya) + o373y of the three
vectors (V{l}, I}, r{3}) such that oryy + ooy +osrzy = (1,1,1).

By compactness, there is p > 0 such that in every convex combination of
{1}, {2y and r(3y, at least one player receives at most 1 — p. It follows that
for ¢ > 0 sufficiently small, the assumption of Case 0 holds. In particular,
there is a stationary equilibrium.

Case 3: riy, 15 < L.
One can easily verify that the assumption of Case 1 or Case 2 is sat-
isfied.
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(0,1,0)

(LOaO) (0,0,].) Fig. 1

Case 4: There is a convex combination or(jy + aaryy + o3r(3; of the three
vectors (1"{1}, 2}, r{3}) such that orrgy + oor(ay +03rzy = (1,1,1).

The  stationary  profile  ((1 —noy)e! +oarq, (1 — non)e? + noaq?,
(1 — naz)e® + nazq?) is an e-equilibrium, provided 7 is sufficiently small.

We next introduce a notational convention. For i # j, we shall write
”f;} ="+ if "Ei} > 1 and rfj} = 'if ”f;} < 1. If neither Case 1 nor Case 3
holds (nor their analogue symmetric cases), the triplet (r1y,rpy,73) € R’ is
either Of the form ((17 +7 _)7 (_7 1; +)7 (+7 ™ 1)) or ( 17 ™ +)7 (+7 17 _)a

(—,4+,1)). Each of these two situations is reducible to the other by a permu-
tation of two players. We will proceed under the assumption that

(ri1ys g2y, rizy) s of the form ((1, 4+, =), (=, 1, 4), (+, =, 1)).

Hence, player 2 (resp. player 3, player 1) is happy if player 1 (resp. player
2, player 3) quits, but gets a low payoff if player 3 (resp. player 1, player 2)
quits.

Case 5: There is a convex combination oyr{y + oorys) + a3r3, of the three
vectors (rq1y, 72y, 7(3y) such that ayry + oorpy +asrgy > (1, 1,1).

The set of such (oy,a;,03) is defined by three halfspaces and by the
conditions o; >0, oy + ap + o3 = 1. It is therefore a triangle (reduced to a
singleton if and only if Case 4 holds).

The vertices of this triangle are labelled 4, B, C in such a way that players
1 and 3 (resp. 1 and 2, 2 and 3) get a payoff 1 under the convex combination
A = (ail, 05!, 04" (resp. B, C) (see Figure 1).

We write 4 (resp. B, C) as a convex combination of (1,0,0) and B (resp. of
(0,1,0) and C, of (0,0,1) and A):

A :ﬂ1(17070) + (1 _ﬂl)B
B:ﬁz(ov 170) + (1 _BZ)C

C =f5(0,0,1) + (1 — B5)4.
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Fix M € N, large enough. Define a non-stationary profile ¢ as follows. Players
1, 2 and 3 (in that order) alternate indefinitely as follows. During M stages,
player i quits with probability % (while the other two players continue).
Depending on who starts first, the payoff induced by o is close to the payoff
associated with the convex combination A4, B or C respectively. Moreover, the
profile ¢ is an e-equilibrium of the quitting game.

3. The example

Here we analyze the following four player quitting game:

4
2 2
1 continue 41 1; 05 0 1 07 0)4a 1 ]-7 17 07 1
1,4,0,0 1,1,1,1 1,0,1,1 0,1,0,0
3
L 00,14 0,1,1,1 sy 0,0,1,0
1,1,1,0 1,0,0,0 0,0,0,1 |-1,-1,-1,-1
Fig. 2

In this game player 1 chooses a row (top row = continue), player 2 chooses
a column (left column = continue), player 3 chooses either the top two
matrices or the bottom two matrices, (top two matrices = continue) and
player 4 chooses either the left two matrices or the right two matrices (left two
matrices = continue).

Note that there are the following symmetries in the payoff function: for
every 4-tuple of actions (a, b, ¢, d) we have:

Ul(avbvc7d) = Uz(b’aa d7 C)a
v'(a,b,c,d) = v*(c,d,b,a) and
vz(a,b,c,d) = 1;3((:, d,b,a),

where v'(a,b,c,d) is the payoff to i if the action combination is
(a7 b7 C? d) (vl(cl7 627 63? C4) = 0)'

In Solan and Vieille (2001), it is proven that this game admits a cyclic
equilibrium profile y with period 2 and with the following structure:

_ [(x,0,2,0) nodd
In = (0,x,0,z) neven
where x, z € ]0, 1] are independent of #; that is, at odd stages players 2 and 4

continue, while 1 and 3 quit with positive probability, whereas at even stages 1
and 3 continue, while 2 and 4 quit with positive probability.
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We shall now prove the following:
Proposition 2. The game does not admit a stationary equilibrium.

Proposition 3. For every ¢ > 0 small enough, the game does not admit an
g-equilibrium x such that ||x, — ¢|| < ¢ for every n € N.

It follows from Propositions 2 and 3 that the game does not admit a
stationary e-equilibrium, provided ¢ is small enough. Indeed, let us argue
by contradiction, and assume that for every ¢ > 0 there exists a stationary
e-equilibrium x,. Let x, be an accumulation point of {x.} as ¢ — 0. If x, is
terminating (x, # ¢) then it is a stationary 0-equilibrium, which is ruled out by
Proposition 2. Otherwise, x. = ¢, and then, for ¢ > 0 sufficiently small, there is
an ¢-equilibrium x where ||x, — ¢|| < &, which is ruled out by Proposition 3.

Proposition 2 is proved in section 3.1, while Proposition 3 is proved in
section 3.2.

3.1. No stationary equilibria

We check here that the game has no stationary equilibrium. We organize the
discussion according to the number of players who play both actions with
positive probability.

3.1.1. No non-fully mixed stationary equilibrium

We prove here that there is no stationary equilibrium in which at least one
player plays a pure strategy.

It is immediate to check that there is no stationary equilibrium in which at
least three players play pure stationary strategies.

We shall now verify that there is no stationary equilibrium where two
players play pure stationary strategies. Using the symmetries in the payoff
function, it is enough to consider the cases where cither player 3 and 4 play
pure strategies, or players 2 and 4 play pure strategies.

Assume first that there is an equilibrium in which players 3 and 4 play pure
stationary strategies. The strategies of players 1 and 2 form then an equilib-
rium of a 2 x 2 game. We will see that these two-player games have only pure
equilibria. The four-player game would thus have an equilibrium in pure sta-
tionary strategies — a contradiction. In the first three cases, the induced game
is equivalent to a one-shot game. In the last case, it is a quitting game.

Case 1: Players 3 and 4 play (¢°,¢*): the unique equilibrium in the induced

game is (¢!, ¢?).

Case 2: Players 3 and 4 play (c?,¢*): the unique equilibrium is (¢!, ¢?).
Case 3: Players 3 and 4 play (¢°, ¢*): symmetric to case 2.

Case 4: Players 3 and 4 play (c3,c*): the unique equilibria are (¢',c?) and
(', q?).
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We shall now see that there is no stationary equilibrium where players
2 and 4 play pure actions, by analyzing the induced game between players 1
and 3.

Case 1: Players 2 and 4 play (c?, ¢*): the induced game has a unique equilib-
rium (¢', ¢?).

Case 2: Players 2 and 4 play (¢°,c*): the unique equilibrium in the induced
game is (¢! +3¢",2¢3 +343). Player 2 would receive 3, but he would get 1
by playing c?.

Case 3: Players 2 and 4 play (c?,¢*): the unique equilibrium is (¢!, ¢?).
Case 4: Players 2 and 4 play (¢>, ¢*): the unique equilibrium is (¢!, ¢?).

Next, we check that there is no stationary equilibrium where one player,
say player 4, plays a pure strategy, and all the other players play a fully mixed
strategy. We denote by (x, y,z) the fully mixed stationary equilibrium in the
three-player game when player 4 plays some pure stationary strategy.

Assume first that player 4 plays ¢*. Then, in order to have player 2 indif-
ferent, we should have

x(1=z)=z— (1 =x)(1 —2),

which implies that z = 1/2. In order to have player 1 indifferent, we should
have

(I1=y)z+y(l—z)=pz— (1 -p)(1 -2),

which solves to yz = 1/2, and therefore y = 1, which is pure.

Assume now that player 4 plays ¢*. First we note that x < 1/2, otherwise
player 3 prefers to play ¢ over ¢’. Next, if player 2 is indifferent between his
actions, then

—(1 _;C)_(lx: 32) =x+ (1 —x)z,

or, equivalently,
(1= x)(1 +2z+x2%) = (1 — x2)x.

Since x < 1/2, it follows that 1 — x > x. Therefore it follows that
1+ 224+ xz22 <1 —xz,

which is clearly false.

3.1.2. No fully mixed stationary equilibrium

We prove now that there is no fully mixed stationary equilibrium. We shall
first write the best-reply conditions. Next, we shall check that these can not be
satisfied simultaneously.



Quitting games — An example 373

We focus on player 1. Let (y,z,¢) € (0,1)” be a given fully mixed profile of
players 2, 3 and 4.

By playing ¢! at stage 1 and the mixed action x € (0, 1) in all subsequent
stages, player 1’s expected payoff is

a(y,z,0) = yzt(y' (x, y,2,0) = 2) = 2yz + 3zt =yt + y + 2.
On the other hand, by playing ¢! at stage 1, player 1’s expected payoff is
P,z ) =t+ (1 —0)(y+z—-1).

If xe(0,1) is a stationary best reply to (y,z,¢), the two payoffs are equal,
and equal to y'(x, y, z, 1):

O((y,Z,[) :ﬂ(y,Z,l‘) :yl(x,y,z,t).

In particular, the polynomial 4; that is defined by

Al(yazal) = OC(ﬂ(y,Z,l);y,Z,l) —ﬂ(y,Z,l)

vanishes at (y,z,¢). Observe that facing (y,z, 1), the stationary strategy c!
yields a payoff in [0, 1]. Defining A4»(x,z,1), 43(x, y,¢) and A4(x,y,z) in a
symmetric way, we have thus proved the next result.

Lemma 4. If (x, y,z,1) € (0, 1)4 is a fully mixed stationary equilibrium, then,
A1(y,2,1) = Ma(x,2,1) = A3(x, y, 1) = Aa(x,y,2) = 0 and y'(x, y,z,1) € [0,1]
foreachi=1,2,3,4

We shall prove (see Lemmas 6, 7 and 8 below) that there is no
(x,y,z,t) € (0, 1) such that (i) y = min{x, y, z, ¢}, (ii) 41(y,z,t) = da(x, y,2)
=0 and (iii) y'(x, y,z,1),7*(x, y,2,1) € [0,1]. By symmetry, condition (i) is
w.l.o.g. By Lemma 4, this will therefore imply that the game has no fully
mixed stationary equilibrium.

For simplicity of notations we sometimes omit the arguments in /3.

Lemma 5. 4,(z,¢,1) > 0 for every t € [0, 1].
Proof: t— A;(t,t,t) is a polynomial in one variable. The result follows by
using any method for counting the number of zeroes of a polynomial in a
compact interval, e.g. Sturm’s method. H

We state a useful observation.
Fact 1: f§ is separately increasing on the set {y < min{z, ¢} }.

Fact 2: A, is decreasing in y and increasing in z on the set { y < min{z,¢}}.

The proofs of the Fact 1 and the first assertion in Fact 2 are obtained by
elementary algebraic mampulatlons and are therefore omitted. For the second

oAl(

y,z,1) > “"(tzt) (8- 2)t2+z2 (1—t)+2t>0.
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Lemma 6. 4, > 0 on the set {y <t < z}.
Proof: By Fact 2, A1(y,z,t) = A1(t,t,t) >0if y<t<z. N
Lemma 7. 44 > 0 on the set {y <z < 1} n {y* > 0}.
Proof: Indeed, if y* > 0, one has
Aa(x,p,2) = =2xyz = 2xz+4xy+ 1 =2y = p(—2xz +4x —2) + 1 — 2xz.
Denote by f -(») the affine function in y that appears in the right-hand side.
Since fi-(0) =1 —2xz > 0and f; .(z) = (1 — 2z) + 2xz(1 — z) > 0, it is pos-
itiveon {y<z<1i}. W
Lemma 8. 4, > 0 on the set {max{y,3} <z <1}.
Proof: We split the discussion into several steps.
Step 1: 41 >0on {y <} <z<r}}.
Indeed, by Fact 2, 41(y,z,0) > 4,(,4,0) =1 -+ pL>0.
Step2: 4y >00n {3 <y<z<r<3}
Indeed, by Fact 2, 4,(y,z,t) > 4:(z,z,t). We prove below that 4,(z, z, ?) is

2,z
decreasing in z. This will imply 4;(z,z,t) = 41(t,¢,¢) > 0, hence the claim.
An elementary computation gives

{A)(z,2,0)} =22(f —2) + 2212 — y — 2) + 22%(1 — 1) — 22%1 + 4.

2>
Dl

Therefore, £ {4,(z,z,¢)} is increasing in  and

5 0z

4, 8

0 0 2 4
EAl(Z z, Z) a_A <Z,Z,§> _gz(ﬁ_2)+§z —4Z+§ 1)

—

The right-hand side in (1) is decreasmg in z. It is therefore maximal for z = 1.
It is then equal to (S — 1) + 4 < 0 since, by Fact 1, B(y,z,7) < $(3,3,3) =1.

Step3:A1>00n{%£y<%£z£t}.

By Fact 1, $(3,3,1) > B(3,3,3) > 3. Hence, by Fact 1,
22 22 4 1 2
A >4, (2.2 ZZ)—2) a4z
1(y,z,t) = <3 3 Z) (5(3 3 l) )9l+9+3t
+1
>t
9

Step 4: 41 >0o0n {§ <y<z<t}.
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3 .
By Fact 1, § > 7. Plainly,

%:(ﬁ_z)y2+y2t(2—y—z)+4z—22(ﬁ—2)y2+4z—2. (2)

The right-hand side of (2) is increasing in z. Therefore, it is minimal when

z =y, hence at least — % y? 4 4y — 2. This latter expression is itself minimized
at y = % where it equals §. Thus, 4 is increasing in 7. By Fact 2, this implies
A1(p,z,8) = A1(z,2,2) > 0.

Step 5: 4y >00n {3 <y<z<3<t}.

By Facts 1 and 2, f(y,z,7) > 3 and 4,(y,z,1) > 4,(z, z, ). Therefore,
4 5 2
Al(y,z,t)z—gzt—2z +4zt+1-2¢1 (3)

Let f be the function defined by the right-hand side of (3), and # > % The
function f'(-,¢) is a quadratic concave function in z. Since

(1 1 ¢ (2 2 1
f(z,t)—§—§>0 and f(g,l)—ﬁl+§,

it is positive on [1/2,2/3]. W

3.2. No perturbed &-equilibrium

We first present a sketch of the proof. The proof goes by contradiction. Let
X = (x,) be an g-equilibrium such that ||x, — ¢|| < ¢ for each n. Since each
player gets a positive payoff when quitting alone, the probability that the
game terminates in finite time is close to one. Moreover, since x,, is close to 0,
the quitting coalition is a singleton with high probability. In particular, the
sum of the payoffs of all four players under x is close to 5. Hence, at least one
player gets a payoff substantially higher than 1 under x, while no player
receives a payoff that is much below one. There is no convex combination of
r1, r» and r3 which satisfies these conditions. Therefore, the probability that
player 4 belongs to the quitting coalition is bounded away from zero. By
symmetry, the same holds for each player i e I.

Next, we claim that there is no such e-equilibrium that gives to players 1
and 2 (or 3 and 4) a payoff substantially higher than one. Indeed, assume such
an equilibrium were to exist. In the first stage of the game, both players 1 and
2 would choose to continue with very high probability, since the payoff
obtained by quitting is approximately 1. Moreover, by the ¢-equilibrium prop-
erty, they will do so in every stage n such that their expected payoff, starting
from stage n, is higher than one, unless the probability that the game reaches
stage n is close to zero. (This is specific to the class of quitting games.) There-
fore, as long as their continuation payoff exceeds 1 and the probability of sur-
viving is not too small, players 1 and 2 will not contribute to the quitting
coalition. However, as long as players 1 and 2 do not contribute, their con-
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tinuation payoff increases. Indeed, the expected payoff starting from today is a
weighted average of the payoff received if someone quits today and of the
expected payoff starting from tomorrow. Since the payoff to players 1 and 2
is below one if only player 3 or 4 quits, the expected payoff starting from
tomorrow must exceed the continuation payoff starting from today.

Assume now that player 1, but not player 2, gets a payoff substantially
higher than 1. Let n; be the first stage such that the continuation payoff of
player 1 is close to one. Since the continuation payoff of player 1 decreases
between stages 1 and n;, the probability that player 2 quits before stage n; is
non-negligible. Since player 1 hardly contributes to the probability of quitting
before stage n;, the continuation payoffs of player 2 do not decrease over time
up to stage n;. Since player 2 quits with non-negligible probability, his con-
tinuation payoffs must remain close to one for a while. In particular, players 3
and 4 should not quit in those stages. This implies that the continuation pay-
offs of player 3 and 4 increase in these stages. After a while (stage n; at the
latest), both continuation payoffs of players 3 and 4 are higher than one, a
situation that has been ruled out above.

We now proceed to the formal proof. We let p = 8 be twice the maximal
payoff in absolute value, and N = 4 be the number of players.

It is convenient to assume that, in any given stage, at most one player quits
with positive probability. This assumption entails no loss of generality, as
shown by the next lemma.

Lemma 9. Let ¢ < 1/8 and let x be an e-equilibrium such that ||x, — ¢|| < ¢ for
every n. Then there exists a 12N pe-equilibrium 'y such that, for every neN,
lyn—cl| <eand|{iel, y] >0} < 1.

Proof: We define y by dividing each stage into four substages, and by letting
each player quit in turn with the probability specified by x. Formally, for
neNand je I, we set

xioifi=j

Vit = {0 ifi]

We first compare the payoff vectors under the two profiles x and y. Plainly,

(1=x)

—

Il
—_

Py(t>nN|t>(n—1)N)=

1
=Py(t>nlt>n—1) foreveryneN.

Observe next that, for each j € I,

X, Hj<i(1 )

1 - Hje](l - x,,’) ’
X, Hj;éi(l - x7)

1- Hje](l —x{;)

The denominator is at least 1 —4¢ > 1/2, hence the difference between these
two probabilities is at most 2.

Py(S;={i}|(n—1)N <t<nN) = and

Py(Si ={i}[1=n) =
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By summation over #, this yields
[P(S; = {i} |t < +00) = Py(S; ={i} |t < +0)| < 2e. 4)

Under y, no two players quit simultaneously with positive probability,
therefore >, ; Py(S; = {i} |t < +00) = 1. Using (4), it follows that Py(|S,| >
1|t < +mw)<2Ne.

Since [[7(x) — ()| < p S se; IPx(S, = S) — Py(S, = S)], one gets

ly(x) = »(¥)|| < 4Npe. (5)

Next, we prove that player i has no pure profitable deviation from y'.

Consider first the strategy ¢’. The above argument does not rely on the
e-equilibrium property of x and applies to any profile x such that ||x, — cH <e¢
for every n e N. When applled to the profile (x~/,¢), it yields |y/(x~,¢’) —
yi(y~i, ¢")| < 4Npe. Since x is an e-equilibrium, this yields, by (5),

Yy e)) <y(y) + &+ 8Npe.

Consider next the strategy q(n DNk that quits at stage (n — 1)N + k for
the first time. We compare the payoffs to player i under the two profiles
(v ,q(n DN ) and (x” i/q’). When mimicking the above argument, one
obtains

(t<(n—1)N)=Pyiq(t<n—1), and

Y vk
Eyiql, e [r§ [t < (n=1)N] — Exi g [l | 1 < (n = 1)]| < 4Npe.
Moreover,
|Ey7i7q(in71)N+k [rg, [ 2> (n—=1)N] = 1| < (N = 1)pe + pe,

where (N — 1)pe accounts for the probability that someone may quit in
the first k — 1 substages of stage n, and pe accounts for the probability that
some player other than i may quit in substage k. Also, [Ey-i g [rs |t >
(n—1)] — 1| < pNe. Collecting these inequalities yields

PO Qo yver) <0 (XTa5) + 6Npe < 9 (x) + TNpe < y'(y) + e+ 11N pe.
This concludes the proof. M

We henceforth assume that x is an ¢-equilibrium such that [{i € I, x, > 0}|
< land ||x, — ¢|| < & for every n € N. We refer to such a profile as a perturbed

e-equilibrium.

Lemma 10. For every perturbed e-equilibrium X one has

. Py(t<+ow0) =1—e
2. (x)zl—pe—sforeverylel and y'(x) > 3 — 2¢ for some i € 1.
3. Pu(Si={i}) > & —peforeveryiel.

The first claim holds for any e-equilibrium, whether it is a perturbed e-
equilibrium of not.
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Proof: Given n e N, let y*” be the strategy of player i that coincides with x'
in the ﬁrst n stages and plays ¢’ at stage n+ 1. The sequence of payoffs
(7'(x7,y"")), N converges to y'(x) + Py(t = +00), as n goes to infinity. Since
Pi(x7 yh") < pi(x) + ¢ for every n, claim 1 follows.

By quitting at the first stage, player i obtains at least 1 — pe. The first part
of claim 2 follows. Whenever the quitting set is a singleton the payoffs to the
players sum up to 0 + 0 + 1 + 4 = 5. Therefore,

D y(x) =5P(1 < +0) =5 - 5e.

iel

In particular, there exists i such that yi(x) > %—%8. The second part of
claim 2 follows. A
We turn to the proof of claim 3. Set p’ := Px(S; = {i}). Note that

P (x) =p' +4p?,

and that analogous identities hold for players 2, 3 and 4. In particular, by
claim 2, one has

pl+4p>>1—2pc and 4p' +p>>1—2pe,

which implies p' + p? > % — % pe. By exchanging the roles of the play'ers, one
gets p* + p* > £ — pe. Therefore, p' + p? < 2+ pe. Thus, (p', p?) satisfy

3
p 4yt =1-2pe Ap'p?=1-2pe, and p'4p’<tpe (6)

Any solution to the system (6) satisfies p', p? > & —pe. W

Given a profile x, a player ie I, and a stage ne N, we let x'(n) be
the strategy which plays ¢’ up to stage n, and coincides with x’ after stage
n. We denote by x,, = (x,, Xu+1,...) the profile induced by x in the subgame
starting from stage n. Finally, we let p! :=Px(t < n,S, = {i}). Note that
p' =lim,_., p.. Though p! depends on the profile, this is not made explicit
in the notation.

We prove now that, as long as the continuation payoff of player i
exceeds 1, player i’s contribution to the probability of termination is small.

Lemma 11. Let x be a strategy profile such that |{i : x}, > 0}| < 1 for every n.
Assume that y'(x,) = 1 + /¢ for some player i and every n < ny. Then

P(x7x(n)) = yi(X) + Ve x pl,  for every n < ng.
In particular, by the ¢-equilibrium property, this yields p! < /e.

Proof: We proceed by induction. Assume n = 1. If x1 =0, then x'(1) =x
and p! = 0, and the result holds. Otherwise, pi =1 — xi, hence

y'(x) =pi+ (1 —py'(x7,x'(1)).
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Then
i

(7'(x) = 1) > y(x) + Vep|.

p (1) = 9 (%) +
1 —p;
Assume now that 1 < n < ny. If x}, = 0, then x'(n) = x'(n — 1) and p} = p!_,.
In particular, by the induction hypothesis,

P (X (m) =y (L X (n = 1) 2 9'(%) + Vep,y = 7' (X) + Vep,,

and the result holds.
If x; > 0 then, applying the case n =1 to the profile x,,_; we get

—i

PG X (1)) = 9 (6L X (= 1), ) + Ve(l = x;).
Using the induction hypothesis we get:
P (X x" () =y (x 7 X (= 1)) + Per i (1 = m = Dve(1 = x)
> 9'(X) + Ve(pp 1 + Perei(t = n = 1)(1 = x;))
>)'(x) +Vep,. W

We say that players 1 and 2 (resp. 3 and 4) are partners. The partner of
player i is denoted by 7.

We next prove that, whenever player i gets a payoff higher than one in a
perturbed e-equilibrium, player i will not contribute to the probability of ter-
mination, while the partner of i will contribute, until a stage is reached in
which the continuation payoff of player i is close to one.

Lemma 12. Let a >0, £€(0,1/900) and iel. Let x be a perturbed e-
equilibrium such that y'(x) > 1+ a. Then there exists ny > 1 such that (i)

V(X)) <1+ e, (ii) p) < 2v/e and (iii) 3p}, > a — \/e.

Proof: For convenience, assume i = 1. Since p! > 2/15 — 3¢, by Lemma 11,
there is a stage n such that y!(x,) < 1+ /& Let ny =inf{ne N, y'(x,) <
1 + /¢} be the first such stage. Note that n; > 1. By definition, claim (i) holds
and y'(x,) > 1+ /¢ for each n < n; — 1 hence, by Lemma 11, Ph_1 S Ve
Since p} <p} _, +x} and x) <e, claim (ii) follows.

We now prove (iii). Since y!(x,,) < 1+ /¢ one has
L+ a <y (x) = p,, +4pg + (L= p, — o = Poy = Pa)7 (X))
< Py + 40 + (L= py =) + Ve
<1+ 317,31 + Ve,
and (iii) follows. M

We next prove that there is no perturbed e-equilibrium in which two part-
ners get a payoff substantially higher than one.
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Corollary 13. Let ¢ (0,1/900) and a > 7\/e. There is no perturbed e-
equilibrium X such that

7(x),7'(X) = 14a forsomeiel.

Proof: We argue by contradiction. Let x be such a perturbed e-equilibrium,
and assume w.l.o.g. i = 1. Apply Lemma 12 twice, to players 1 and 2. Call
n; and ny the corresponding two stages, and assume w.l.o.g that n; < ny, so
that p,%] Sp,fz. Thus, one has both pﬁl >a/3 —+/¢/3, and pﬁz < 2+/e. Hence
a— /e < 64/¢ — a contradiction. W

We now proceed to the proof of Proposition 3.

Proof of Proposition 3: Let ¢ > 0 be small enough, and let x be a perturbed
e-equilibrium. We assume w.l.o.g. that y'(x) > 5/4 2¢. We will exhibit a
stage np such that x,, is a 8e- equ1hbr1um and 93 (Xp,), 4 (xny) = 1+ 1/12,
contradicting Corollary 13.

Apply Lemma 12 to x and i =1, and denote n; the corresponding stage.
Thus, p, <2y and p; > {x ;- \/E By Lemma 11, there exists a stage
n < ny with y2(x,) < 1 4 /e. We set

ny = max{n < ny,y}(x,) < 1 + \/5}

Since pn < pn <2/, and p! > {5 — pe, one obtains

e JIRN]

Pi(t<m)<1—-Pt=nand S, ={1}) < %ereJrZ\/ES

Since x is an ¢- equlhbrlum X, 1s a 88 equ111br1um

Our next goal is to prove that pn2 > ﬁ — 17y/e. If ny = ny there is nothing
to prove. Assume ny < 1y, so that y?(x,,) > 1 + /e. By the definition of n,,
72(x¢) > 1 + /e for every ny < k < n;. Apply Lemma 11 with y = x,,, (thus
Yk = Xny+k, for each k) and n =n; — ny. Since x,, is a 8e-equilibrium, the
conclusion, rephrased in terms of x, is that Py(r < mny, S, = {2} [t >m) <
8e/\/e = 8\/_ In particular p; — p; < 8/e, and therefore p; > {5 —9v/.

We use this result to prove that y3(X,,), 7*(X,,) =1+ 1/12. As previously,
one has

1= 2pe < y*(x) =4p,, +p;, + ( me) (x,)- (7)
iel
By definition of ny, y*(x,,) <1+ /e Since p. <p. <2/ one deduces
from (7) that p3 + pp < (7+ 2pe)/e + 4pe < 8+/e.
On the other hand,

1= 2pe <9*(x) =4py +p + ( Zm) (Xn)- (8)
Since p2 >1/12— 17/, (8) yields p*(x,,) > 1+ —&/*>1+1/12.

Similarly, y*(x,,) > 1+ 3. Since x,, is a 8e-equilibrium, we get a contradic-
tion to Corollary 13. H
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