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Summary. We study a model in which each of finitely many agent cares about a
given subset of finitely many goods. We provide minimal conditions that ensure the
existence and uniqueness of the equilibrium price vector – a price vector for which
supply meets demand.
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Introduction

It is sometimes the case that some economic goods are perfect complements to
some agents, but not to all agents. As an illustration, consider the following highly
stylized story. A regulator faces the problem of pricing the use of a given network,
e.g., a highway network. For our purposes, a network is simply a graph, with no
loop. Each edge of the graph has a capacity: the maximal amount of traffic it can
accommodate. Demand for capacity originates from the agents, who are considering
using their car to commute between two nodes in the network. Whether an agent
is willing to commute on the highway, rather than using some alternative form of
transportation, is simply a function of the total price he would have to pay, i.e., of
the sum of the prices of the edges he would need to use to reach his destination. An
equilibrium price is a vector of prices, one for each edge, such that the capacity of
each edge exactly meets the total demand of that edge. The regulator’s problem is
to set prices at an equilibrium level. Similar issues arise with bandwidth allocation
by a monopoly operating a telecommunications network.
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Here we prove that under minimal conditions on the demand functions there
exists a unique equilibrium allocation.

Our contribution relates to three different strands of literature. On the one hand,
an important theme in general equilibrium theory has been to show that, under
appropriate substituability conditions between goods, the equilibrium price vector
is unique (see, e.g., Pearce and Wise, 1973; Iritani, 1981, and the references therein).
Uniqueness of equilibrium is also obtained when endowments are close to the set
of Pareto optima (see, e.g., Balasko, 1987). By contrast, we here adopt a partial
equilibrium approach, so that the excess demand does not satisfy Walras’ law, and
the different goods are complements rather than substitutes. Indeed, the various
edges of the path used by a given agent are perfect complements, while the other
edges in the graph are deemed irrelevant by this agent.

On the other hand, within a partial equilibrium framework, it has been argued
that (i) assuming away wealth effects, (ii) provided the markets for the different
goods are competitive, and (iii) under sufficient regularity on the fundamentals of
the economy (cost and utility functions), such an existence and uniqueness result
holds (see, e.g., Mas-Colell et al., 1995, Sect. 10.G). The absence of wealth effects
is generally viewed as a reasonable assumption, once agents spend only a small
fraction of their income on the set of goods under consideration (see Marshall,
1920; Vives, 1987). In contrast to (i–iii), our assumptions on the demand function
are of a quite different nature, and the supply side of the economy is not competitive.
Indeed, in the above stylized story, the supply curve is vertical. Plainly also, our
story puts considerable structure on the demand functions.

Finally, on a broader level, the uniqueness question relates to proving that
the excess demand function is globally one-to-one, as a function of the prices of
the various edges. Very few sets of sufficient conditions for this property to hold
are known (see Gale and Nikaido, 1965; Nikaido, 1972). None of these sufficient
conditions applies here.

The note is organized as follows. We first define some notation in Section 1,
which also contains the existence and uniqueness result. In Section 2 we discuss
the existence issue, while Section 3 is devoted to uniqueness.

1 The model

It is convenient to deal with a slightly more abstract model than the one sketched
in the introduction. We let X be the finite set of goods, and I be the finite set of
economic agents. Item x ∈ X is in fixed supply Qx ≥ 0.

Each agent i cares only about a subset of goods Xi ⊆ X , and the different
goods in Xi are perfect complements for agent i. As a consequence, the individual
demand of agent i, as a function of the price vector p = (px)x∈X , reduces to a
function Di(

∑
x∈Xi px). Abusing notations, we sometimes write Di(p) instead of

Di(
∑

x∈Xi px).
Throughout we make the following assumptions on the data of the game.

A1) The demand goes to zero as the price increases: limq→∞ Di(q) = 0, for each
i ∈ I .
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A2) The supply of each item is positive: Qx > 0 for every x ∈ X .
A3) The demand functions Di are continuous and finite except possibly at 0, in

which case limq→0 Di(q) = ∞.
A4) The demand functions Di are non-increasing and decreasing whenever posi-

tive: Di(q) > Di(q′) as soon as Di(q) > 0 and q > q′.

The aggregate demand for item x is

Dx(p) =
∑

i∈I : x∈Xi

Di(
∑

y∈Xi

py).

For every C ⊆ X , the demand for bundle C is

DC(p) =
∑

i∈I : Xi=C

Di(
∑

y∈Xi

py).

Definition 1. An equilibrium price is a vector p ∈ [0,∞)X such that Dx(p) ≤ Qx

for each x ∈ X , with equality whenever px > 0.

The assumption that the demand for item x may fall below the supply when its
price is 0 is equivalent to saying that when the price is 0 the demand for bundle {x}
is at least Dx(0), and it clears the market.

The allocation that corresponds to a price vector p is the vector of demands
(Di(p))i∈I .

We can now state our result.

Theorem 1. The following holds:

– Under assumptions (A1)–(A3) there is at least one equilibrium.
– Under assumption (A4) there is at most one equilibrium allocation.

Clearly the equilibrium price need not be unique. Indeed, if two goods are
perfect complements for all agents, only the sum of their prices matter.

Example. Assume that X = {A, B}, with QA = QB = 1, and the demand func-
tions for bundles are given by D{A}(pA) = (5/4 − pA)1pA<5/4, D{B}(pB) =
(1/4 − pB)1pB<1/4, and D{A,B}(pA + pB) = (1 − (pA + pB)/2)1pA+pB<2.

We observe that the vector (pA, pB), that is defined by pA = 5/6, pB = 0, is
an equilibrium price. Indeed, the corresponding demand is

D{A}(p) =
5
4

− 5
6

=
5
12

,

D{B}(p) =
1
4
,

D{A,B}(p) = 1 − 5
12

=
7
12

,

so that the aggregate demand of item A is 1, and the aggregate demand of item B
is less than 1.

Theorem 1 implies that in this case there is no price vector that clears both
goods from the market. This can also be verified analytically.
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2 Equilibrium existence

Here we prove the first statement in Theorem 1.
By assumptions (A1) and (A2), there is q∗ sufficiently large such that

Dx(q∗) < Qx, ∀x ∈ X.

Let ∆ = [0, q∗]X . Define a set-valued function φ : ∆ → ∆ as follows:

φ(p) =


0 Dx(p) < Qx,

q∗ Dx(p) > Qx,

[0, q∗] Dx(p) = Qx.

By (A3) φ is an upper-semi-continuous set-valued function with convex values. As
∆ is compact, Kakutani’s fixed point theorem implies that φ has a fixed point. But
any fixed point of φ is an equilibrium.

3 Equilibrium uniqueness

We here prove the uniqueness claim in Theorem 1. All vectors in the sequel are
column-vectors. The proof relies on the following lemma:

Lemma 1. Let C be a non-empty collection of non-empty subsets of X , and let
π = (πx)x∈X ∈ RX be given. Then the system (1) below in the variables (dC)C∈C
has no solution: 

dC

∑
x∈C

πx > 0 ∀C ∈ C,∑
C∈C : x∈C

dC = 0 ∀x ∈ X.
(1)

Proof. For C ∈ C and x ∈ X , define

aC,x =


0 x /∈ C,

1∑
y∈C πy

x ∈ C.

Denote by A = (aC,x) the matrix with |C| rows and |X| columns that consists of
all those aC,x.

The vector Aπ is given by

(Aπ)C =
∑
x∈X

aC,xπx =
∑
x∈C

1∑
y∈C πy

πx = 1.

In particular, the system (S1) Az ≥ 0, Az �= 0 has a solution in RX . By Stiemke’s
theorem (Stiemke (1915), see also Mangasarian (1969, p. 32)), this implies that the
system (S2) yT A = 0, y > 0 has no solution.
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To prove that the system (1) has no solution, we prove that any solution of (1)
defines a solution of the system (S2).

Let (dC)C∈C be a solution of the system (1), and set yC = dC

∑
x∈C πx for

C ∈ C. By (1), yC > 0 for every C ∈ C, and for every x ∈ X ,

(yT A)x =
∑
C∈C

yCaC,x =
∑
C∈C

dCaC,x

∑
y∈C

πy =
∑

C∈C : x∈C

dC = 0.

Hence y = (yC)C∈C is a solution to (S2) – a contradiction. 	


We now turn to the uniqueness proof. We show that if there are two distinct
equilibrium allocations then a solution to the system (1) exists.

Assume that p and p̂ are two different equilibrium price vectors, such that the
corresponding equilibrium allocations differ, and set π := p̂ − p.

We now modify the demands DC for goods which have price 0. Set

D̃C(·) =

{
DC(·) |C| ≥ 2,

Qx − ∑
B⊆X : x∈B,|B|≥2 DB(·) C = {x}.

Since p is an equilibrium, if px > 0 then D̃{x}(p) = D{x}(p), while if px = 0
then D̃{x}(p) ≥ D{x}(p). A similar statement holds for p̂. By definition,∑

C⊆X : x∈C

D̃C(p) = Qx =
∑

C⊆X : x∈C

D̃C(p̂), ∀x ∈ X. (2)

We define C =
{

C ⊆ X : D̃C(p̂) �= D̃C(p)
}

to be the set of bundles for which

the demand changes when moving from price p to price p̂.
By assumption, the set C is non-empty. For C ∈ C, define dC = D̃C(p) −

D̃C(p̂) �= 0 to be the change in the demand for bundle C. Since DC(p) = DC(p̂)
for C /∈ C, (2) yields ∑

C∈C : x∈C

dC = 0. (3)

By the monotonicity assumption (A4) on the demand functions, one has for each
C ∈ C

dC

∑
x∈C

πx > 0. (4)

Indeed,
∑

x∈C πx < 0 if and only if
∑

x∈C px >
∑

x∈C p̂x if and only if DC(p) <

DC(p̂). If C = {x} and px = 0 < p̂x then D̃{x}(p̂) = D{x}(p̂) ≤ D{x}(p) ≤
D̃{x}(p), and (4) holds. An analogous argument holds when px > 0 = p̂x. In all

other cases D̃C(p) = DC(p) and D̃C(p̂) = DC(p̂), and (4) holds as well.
By (3) and (4), (dC)C∈C is a solution of the system (1) – a contradiction.
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