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MATHEMATICS OF OPERATIONS RESEARCH 
Vol. 26, No. 2, May 2001, pp. 265-285 
Printed in U.S.A. 

QUITTING GAMES 

EILON SOLAN AND NICOLAS VIEILLE 

Quitting games are n-player sequential games in which, at any stage, each player has the choice 
between continuing and quitting. The game ends as soon as at least one player chooses to quit; 
player i then receives a payoff rs, which depends on the set S of players that did choose to quit. If 
the game never ends, the payoff to each player is 0. 

The paper has four goals: (i) We prove the existence of a subgame-perfect uniform e-equilibrium 
under some assumptions on the payoff structure; (ii) we study the structure of the e-equilibrium 
strategies; (iii) we present a new method for dealing with n-player games; and (iv) we study an 
example of a four-player quitting game where the "simplest" equilibrium is cyclic with Period 2. 

We also discuss the relation to Dynkin's stopping games and provide a generalization of our 
result to these games. 

Introduction. Quitting games are sequential games in which, at any stage, each player 
has the choice between continuing and quitting. The game ends as soon as at least one 
player chooses to quit; player i then receives a payoff rs, which depends on the set S of 
players that chose to quit. If the game never ends, the payoff to each player is 0. 

In the present paper we study subgame-perfect uniform e-equilibria in these games. In the 
case of two players, stationary e-equilibria do exist. A three-player example was devised by 
Flesch et al. (1997), where e-equilibrium strategies are more complex-they have a cyclic 
structure, and the length of the cycle is at least three. This gave the impetus to the study of 
the three-player case, solved by Solan (1999) (for a more general class of games). 

This paper has four goals: 
(1) We prove the existence of a subgame-perfect uniform e-equilibrium strategies 

under some assumptions on the payoff function. 

(2) We study the structure of these e-equilibrium strategies. We show that there 
always exist cyclic e-equilibrium strategies; that is, the players repeat the same behavior 
over and over again until the game ends. 

(3) We introduce a new method of analyzing n-player games, which does not use 
fixed-point arguments, in contrast to the methods that appear in the literature. 

(4) We study an instance of a four-player quitting game, and show that in this 
game, the "simplest" equilibrium is cyclic with a period 2: There is neither a stationary 
e-equilibrium nor an e-equilibrium where the players play, up to e, the same mixed action 
combination every stage. 

We get a stronger result when the game is symmetric, that is, (i) the payoff depends on 
the number of players that quit, (ii) all the players who quit receive the same payoff, and 
(iii) all the players who continue receive the same payoff. There is always a pure stationary 
equilibrium. However, a symmetric e-equilibrium, i.e., one in which all players follow the 
same strategy, does not necessarily exist. 

Quitting games are a variant of the popular attrition models, first introduced in evolution- 
ary biology by Maynard-Smith (1974), also used in auction theory (Krishna and Morgan 
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1997), entry deterrence models (we refer to Hammerstein and Selten 1995, Wilson 1992, 
and Fudenberg and Tirole 1991 for references), or in the analysis of strategic exit (see Ghe- 
mawat and Nalebuff 1985 or Li 1989). 

One difference between the literature dealing with the war of attrition and our work is 
that attrition models are usually continuous-time models, in which strategic interaction lasts 
as long as two players at least do not quit. The major departure point is that papers on 
attrition models have mostly dealt with incomplete information situations and focused on 
the existence and the analysis of equilibria for a given discounting function, whereas we 
are interested in uniform e-equilibria. 

Quitting games are also deeply related to Dynkin's stopping games. The latter are two- 
player, zero-sum games, where the players choose stopping times 7, and r2, and the payoff 
is given by X, 1 <T2 + Y2 1,1>T2 + W7, 1,1=, where (Xn), (Yn), (Wn) are processes. Dynkin 
(1969) gave sufficient conditions on these processes for the game to have a value. Subse- 
quently, some classes of two-player, non-zero-sum games were analyzed (Morimoto 1986, 
Ohtsubo 1987). Thus, we deal here with constant payoff processes, and allow for random- 
ized stopping times. This enables us to deal with any number of players, and different sets 
of assumptions on payoffs. 

Another interest in our result is from the point of view of stochastic games. Quitting 
games form a class of n-player stochastic games, where existence of equilibrium payoff in 

general is still an open problem. Our result is the first result for n-player games, where 
current methods fail to work and the method that we use may be useful in the general case 
as well. 

We assume that the payoff function satisfies two conditions: (i) Each player prefers to be 
the only quitter rather than to have the game continue forever, and (ii) if any player decides 
to quit, he prefers to be the only quitter, rather to have more players quit with him. The 
first assumption is not too restrictive, but the second assumption is. 

The main interest in studying the uniform (or undiscounted) equilibrium payoff is the 
robustness that it offers: A uniform e-equilibrium is a 2e-equilibrium in any discounted 

game with discount factor sufficiently close to 1, and in any finite game which is sufficiently 
long. Recall that usually a strategy that is good for one discount factor may yield a very 
low payoff if the discount factor is slightly changed. Sorin (1986) showed that even if for 

every discount factor a game possesses the same discounted equilibrium payoff, this payoff 
needs not be a uniform equilibrium payoff. 

Our method to prove the result is significantly different from methods used in the liter- 
ature. Where usually one uses a fixed-point argument to show existence in the discounted 

game, or takes a limit of discounted equilibria as the discount factor tends to 1 to show 
the existence of the uniform equilibria for 2 and 3 player games, we look for a cycle, or a 

periodic point, in the correspondence that assigns to each possible continuation payoff the 
set of all Nash equilibria in the corresponding one-shot game. 

The paper is arranged as follows. In ?1, we set up the model and state the main result. 
In ?2, we prove the main result and provide a generalization for stopping games. Finally, 
in ?3, we study an example that shows that our result is sharp. 

1. The model and the main results. A quitting game is a pair (JA, (rs)0csc), where 

(i) JV = {1,.... N} is a finite set of players, and (ii) for every 0 C S c A, r E RN. 
The game is a sequential game that is played as follows. The set of stages is the set N 

of positive integers. At every stage, each player chooses an action, either continue or quit. 
Let S be the subset of the players who choose to quit. If S : 0, then the game terminates, 
and each player i receives the payoff rs. If S = 0, the game continues to the next stage. If 
the game never terminates, each player gets 0. 

We denote the two actions of player i by {c', qi}. A strategy for player i is a function 
x' = (xi) : N - [0, 1], x' being the probability that player i continues at stage n, provided X--(in)' --- 0 ] n 
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the game has not terminated before. If x\ = 1, then at stage n player i plays the pure action 
c, or continue, while if x' = 0, then at stage n player i plays the pure action q1, or quit. In 
particular, c' is the strategy of player i by which he always continues, and q1 is the strategy 
by which he always quits. 

For every stage n E N, Sn is the set of players that quit at that stage, and an is the action 
combination that is played. 

A profile is a vector of strategies, one for each player. A profile x = (xn)nEN induces 
a probability distribution Px over the set of plays. We denote by Ex the corresponding 
expectation operator. If the players abide by x, their expected payoff in the game is given by 

y(x) = Ex(rs, lt<+), 

where t = inf{n, Sn = 0} is the termination stage. For each n, we denote by xn = 
(xn, xn+l ...) the profile induced by x in the subgame starting at stage n. 

We say that the profile x is terminating if Px(t < +oo) = 1: That is, if the players follow 
x, then, with probability 1, eventually some players quit. This is equivalent to 

nI f xni = 0. 

nEN ief 

We say that x is cyclic if there exists no E N such that xn = Xn+n0 for every n E N, and 
that x is stationary if xn = xl for each n E N. 

As usual, x-' stands for (xi)jji. We shall abbreviate similarly whenever convenient. 
DEFINITION 1.1. A profile x is an E-equilibrium if for every player i and every strategy 

y' of player i, 

,i(x) > i (x-i, yi) _ . 

It is a subgame perfect E-equilibrium if for every n E N the profile xn is an E-equilibrium. 
The corresponding payoff vector y(x) is an e-equilibrium payoff 

Our main result follows: 

THEOREM 1.2. Let 8 > O. Every quitting game that satisfies the following has a cyclic 
subgame perfect E-equilibrium. 

A.1. r, = 1 for every i E N; 
A.2. rs < 1 for every i E J and every S such that i E S. 

Assumption A.1 essentially claims that any player prefers his unilateral termination to 
indefinite continuation. Assumption A.2 is somewhat restrictive and can be partially weak- 
ened (see Proposition 2.2). It claims that if some player i decides to quit, then he cannot 
profit if some other players also quit. (Janos Flesch commented that the following weaker 
assumption can replace Assumptions A.1 and A.2: For every player i and every set S such 
that i E S, r1i > rs.) 

Some of the quitting games that arise from economic situations are symmetric in the 
sense that the payoff rs to i only depends on the size of S and on whether or not i belongs 
to S. We get a strenghtened version of Theorem 1.2 for such games. 

THEOREM 1.3. Every symmetric quitting game has a pure, stationary (O)-equilibrium. 

Such an equilibrium is of course subgame perfect. We prove this result in ?1.1. We also 
provide an example that shows that a symmetric quitting game needs not admit a symmetric 
e-equilibrium; that is, a profile x such that x1 = xj for every i, j J\. 

In the literature on stochastic games, a stronger concept of uniform equilibrium is often 
used. In ?2.6, we prove that in quitting games, any e-equilibrium is a uniform E-equilibrium. 
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The above result asserts the existence of cyclic e-equilibria in a class of quitting games. 
For two- or three-player games, "better" results are available. For two-player games, sta- 
tionary e-equilibria exist. It is a consequence of more general results of Flesch et al. (1996) 
or Vieille (1992). For three-player games, it follows from Solan (1999) that either a sta- 
tionary e-equilibrium exists, or there exists a cyclic e-equilibrium in which the probability 
of termination in any given stage is arbitrarily small (moreover, there is an e-equilibrium 
payoff in co{r{i}, i E JV}), or both. In ?3, we show on an example that this is no longer true 
for four-player games. In that sense, our result is optimal. 

1.1. Symmetric quitting games. 

1.1.1. Pure stationary O-equilibria. The payoff function for a symmetric quitting game 
is characterized by numbers (ak)k=1...N and (bk)k=1,...,N-1, where ak (resp. bk) is the 

payoff to a quitting (resp. nonquitting) player if the quitting coalition is of size k: rs = ak 
if ISI = k and i E S, whereas rs = bk if ISI = k and i , S. 

It is convenient to set bo = 0. Notice first that any stationary O-equilibrium is a subgame- 
perfect O-equilibrium. We distinguish three cases. 

Case 1. a < O. The profile c (every player continues in every stage) is a stationary 
equilibrium in which every player gets 0. Indeed, any (pure) deviation results in a payoff 
of a, to the deviating player. 

Case 2. For some k e {1,..., N - 1}, ak+l < bk and ak > b_,. With the profile 
(q,..., qk, ck+l, N), players i, i < k, get ak, and players i, i > k, get bk. We claim that 
this profile is a stationary equilibrium. Indeed, for every pure deviation of player i < k, 
player i receives bk-_ < ak. For every pure deviation of player i > k, player i gets ak+1 < bk. 

Case 3. If neither Case 1 nor Case 2 hold, then a, > 0 = bo and, for every k, 

ak > bk-1 = ak+1 > bk. 

This readily implies that aN > bN-1. Therefore, the profile q (every player quits at every 
stage) is an equilibrium. 

1.1.2. Nonexistence of a symmetric equilibrium. We now show that a symmetric 
game does not necessarily admit a symmetric e-equilibrium, even under Assumptions A.1 
and A.2. That is, there needs not exist an e-equilibrium x such that xi = xi for every i, j E JA. 

EXAMPLE 1. Consider the following two-player quitting game, where Player 1 is the 
row player and Player 2 is the column player: 

2 

cl 
1 

C continue 2, 1 

1,2 1,1 

Note that al = a2 = 1 and b1 = 2, hence (ql, c2) is a pure stationary equilibrium, as is 
(q2, cl). 

Assume that x is a symmetric e-equilibrium, where e satisfies E + 2/e < 1/2. It is clear 
that Px(t < +oo) > 1 - E. Indeed, player i could otherwise play x' until some distant stage 
n, and then quit. If the residual probability of termination after stage n is small enough, 
this strategy improves upon x1 by more than e. 
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Since x is symmetric, y'(x) = y2(x). Moreover, e > P(t = +oo) = fl x)2, hence 

Pxt,c (t = +oo) = InENX1 < aV. 

Since rs + r2 < 3 for each S, one has y'(x) < 3/2, for each player i. Finally, y2(x1, c2) = 
2Pl c2 (t < +oo) > 2(1- V/) > 3/2 + e, where the last inequality follows by the choice of 
e. However, this implies that x is not an e-equilibrium-a contradiction. 

2. Existence result. This section is devoted to the proof of Theorem 1.2. It is organized 
as follows. For every w E RN, we define in ?2.1 an associated one-shot game G(w), in 
which player i receives wi if termination does not occur (in one stage). Thus, w should 
be interpreted as a continuation payoff. We define an ad hoc refinement of e-equilibrium, 
which we call perfect e-equilibrium. 

In ?2.2, we show that there exists a profile x such that, for every n, xn is terminating and 

xn is a perfect e-equilibrium in G(y(xn+l)). 
In ?2.5, we prove that existence of such a profile implies that either x is a subgame 

perfect El/6-equilibrium, or that there exists a stationary e1/6-equilibrium, or both. 

2.1. The one-shot game. Fix a quitting game G = (J, (rs)0csc). Let p= 

2max{lrl I i E A, 0 C S C JV} be twice the maximal payoff in absolute values. 
For every w E RN, we define a one-shot game G(w) as follows. Each player has two 

possible actions, continue and quit. Let S be the subset of players that chose to quit. If 
S = 0, the players receive the payoff w, and otherwise they receive the payoff rs. 

A profile in G(w) is a vector x E [0, 1]N, x' being the probability that player i chooses 
continue. In particular, c is the profile where everyone continues, and c-i = (cJ)ji. With 

every profile x, we associate the probability of termination: 

p(x)= - n xi; 
iEN 

and the expected payoff in the one-shot game G(w): 

(G(w),x)-=(nlx)+ E (lx)((l1--xi))rs 
)iENA 0cScNj iS iES 

With an abuse of notations, we denote by supp(xi) the actions that are played with positive 
probability under xi. Thus, supp(xi) = {q'i, {ci}, or {c', qi} when x' = 0, 1 or xi E (0, 1), 
respectively. 

DEFINITION 2.1. An action a' of player i is an e-best reply for x-i if 

(G(w),x-,ai)i 
> max (G(w), x- b')'-E. 

b'E{c',q'} 

A profile x in G(w) is a perfect e-equilibrium if for every player i, every action ai E supp(xi) 
is an e-best reply for x-i. 

2.2. The proof. Fix an e > 0 sufficiently small once and for all. Let W C RN be a 
compact set. Define the correspondence : W -> W by: i(w) is the subset of all vectors 

(G(w), x), such that x is a perfect pe-equilibrium profile in G(w) that satisfies (G(w), x) E 
W and p(x) >_ . Clearly, ? is upper-semi-continuous. However, i(w) might be empty. 

Theorem 1.2 follows from the next three propositions. 
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PROPOSITION 2.2. Define 

W d=f w E [-p, p] | 3i E J with wi < 1}. 

Assume that (i) A. 1 holds, and (ii) for every w E W there exists an equilibrium x in G(w) 
such that either (a) x = c (everyone continues), or (b) x 4 c and for some i E JNf, x' < 1 
and (G(w), x)1 < 1. Then if has nonempty values. 

In other words, the lemma claims that if for any continuation payoff w E W there is 
an equilibrium in G(w), such that one of the players who quit with positive probability 
receives at most 1, then q has nonempty values 

It is clear that if the game satisfies A.1 and A.2 then the conditions of Proposition 
2.2 hold. However, there are games that do not satisfy A.2 but satisfy the condition of 
Proposition 2.2. 

PROPOSITION 2.3. If there exists a compact set W such that if has nonempty values, 
then there exist a cyclic profile x = (x,n) in G, such that for every n: 

1. xn is terminating; and 
2. xn is a perfect (p + 2)s-equilibrium of G(y(xn+,)). 

PROPOSITION 2.4. Let x = (Xn)n be a profile in G. Assume that the following properties 
hold for every n: 

1. xn is terminating; and 
2. xn is a perfect e-equilibrium of G(y(xn+1)). 
Then either x is a subgame perfect 11/6-equilibrium, or there is a stationary E1/6- 

equilibrium. 

The exponent 6 has been chosen for computational ease. It is not the best possible. 
The following three subsections are devoted to the proofs of these three propositions. 

2.3. Proof of Proposition 2.2. Let w E W be arbitrary, and let x be an equilibrium 
profile in G(w) that satisfies the condition in the statement of the proposition. If x = c, then 
let i be a player with wi = 1. Otherwise, by assumption, there is i E NA such that x' < 1 and 

(G(w), x) < 1. Define a profile x' in G(w) by: x' = (1 - e)x + e(x-, qi). Observe that 

(G(w), x') E W. Then, p(x') > s and 

(1) II (G(w), x')-(G(w), x) II< . 

By (1) and since (G(w), (x-i, ci)) < (G(w), (x -, q1)) (with equality if xi > 0), it follows 
that x' is a perfect pe-equilibrium profile in G(w). D 

2.4. Proof of Proposition 2.3. Let Ilf = {L} be a finite partition of W to sets of 
diameter smaller than e2: 

Vn E r, w' E n, IIw-' II < 2. 

For every fl E X, choose one element w(fl) E Uwen i(w), and set i(w) = w(fl) for 

every w e fl. Therefore, i : W -> W has finite range, hence If has a periodic point: There 
exist w1 and L > 1, such that L(w1) = w1. 

Define the periodic sequence 

(w,, = (W, L-'1(w,) f,L-2(,), ..., (w,i), 1, fL (w), ...). 
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Observe that w, = qi(w+l) for each 1 e N. Let I < L, and denote by ll+, the element 
of "F that contains w,+1. By definition of ?, there exists wl+l E fl+l, such that w, = 
I(wl+l), hence there exists a perfect pE-equilibrium profile x, in G(wl+l) such that w, = 
(G(wi^+), xl) and p(xl) >_ . We extend (xl ..., XL_) to a periodic sequence x =(xl),. 

We now prove that x satisfies the conclusions of the proposition. Since p(xl) >_ for each 
1, the first conclusion is obvious. Our next step is to prove that I y(xl)-wlll < e for every 
1. We then show that x, is a perfect (p + 2)e-equilibrium in G(y(xl+i)), and the second 
conclusion follows. 

Let 1* < L maximize lly(xl) - w,l, and set a = lly(x,) - wl, . Observe first that 

y(x/,) = (G(y(x,l*+)), xl*). 

Since Ilw +l- w/+1 I[ < s2, one has 

II|w--(G(wl*+I), Xl*) < e2. 

Thus 

a = Ily(xi)-w1l, 

< Ilwl,* - (G(wl*+l), Xl*) + l||7(xl*)- G(Wj,+l), Xlj)l 

< E2 + II(G(y(x,*+l)), xl*) - (G(wl*+l), x,*) I 

< E2 + |7(xI*+l)- W*+l X (1 - E) 

< 2 +(1 - )a, 

where the third inequality uses the fact that the probability under x,* that a player quits is 
at least E. Thus a < e, as claimed. 

Since xI is a perfect ps-equilibrium in G(w+i1) and 

IW^i+1- Y(XI+1I) I < I1 l+,- Wi+1 I + || Wi+1- Y(XI+l) || 2 + ?, 

x, is a perfect (p+ 2)e-equilibrium in G(y(x,l+)), which ends the proof. O 
We provide now a simpler derivation, which avoids the discretization of the above proof 

but does not result in cyclic profiles. It is based on the following result, which has its own 
interest. 

LEMMA 2.5. Let : K -- K be an upper-semi-continuous correspondence with 
nonempty values defined over a compact space K. Then there exists a sequence k, k2,... E 
K, such that ki E 0(kj+1) for every i E N. 

Since the correspondence 4) has nonempty values, for every k1 E K there is a sequence 
k1, k2, k3,... such that ki+1 E 4(ki). This lemma claims that an inverse iterative sequence 
also exists. This lemma is used as a substitute for a fixed-point theorem. 

PROOF. Define K0 = K and Ki = )t(Ki1) = 
UkEKi, o(k) for every i E N. Since 4 has 

nonempty values, Ki is nonempty, and since 4 is upper-semi-continuous and K-compact, 
Ki is compact. Clearly, Ki C Ki_l, hence Ko = niENKi is nonempty. 

Choose k, E Ko. In particular, k, E Ki for every i, and therefore for every i there exists 
a sequence kI = ki, k, ..., k} such that kl E )(kj+l). By taking subsequences, we can 
assume that the limit kj = lim, ki exists for every j. Since ) is upper-semi-continuous, 
kj E 0(kj+1l), as desired. D 
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PROOF OF PROPOSITION 2.3 THAT DOES NOT GIVE CYCLIC EQUILIBRIUM. Denote by 
(wn) the sequence obtained by use of Lemma 2.5 w.r.t. i,. For every n E N choose 

y,n [0, 1]N, such that Yn is a perfect ps-equilibrium profile in G(wn+l) that satisfies 

* (G(wn+,), Yn) = Wn; 

* P(Yn) > . 

Since P(Yn) > E for every n, it follows that for every n e N, y, is terminating and that 

y(y,) = w,. Indeed, define 

= rs, n>t, 
Yn wn otherwise. 

Then, Yn is a bounded martingale under y, which coincides with rs, for n > t. Since t 
is finite y-a.s., limn Yn = rs,. By dominated convergence, w0 = Ey [rs,] = y(y). A similar 

argument shows that wn = y(Yn). 

By Proposition 2.4, a subgame-perfect E'/6-equilibrium x exists. However, the profile x 
needs not be cyclic. Moreover, it needs not be true that a cyclic one can be obtained by 
repeating a finite segment of x, as the following example shows. 

EXAMPLE 2. Consider the two-player quitting game 

2, 1 

1,1 1,1 

and define a profile x by 

xn = l-r for every n 

X-~ l1-- Xn = 
2n 

where 71 > E. Since the probability under x2 that Player 2 will ever quit is at most e, Player 
l's payoff cannot exceed 1 + e. Hence x is a subgame-perfect e-equilibrium. Let now x be 
a strategy profile that is obtained by taking a finite set of stages and repeating over time the 
restriction of x to this set. Since x1 is stationary, xl = x'. Since 7r > , y1 (x) < 3/2. Under 
-2 e 2wilisnota 
x2, Player 2 will eventually quit, therefore y'(c,1 x2) = 2. Thus, x is not a 2-equilibrium. 

Nevertheless, it can be shown that a slightly more sophisticated procedure than the one 
that repeats a given segment of x may be used to modify x into a cyclic subgame-perfect 
e'-equilibrium (where s' goes to zero with e). We skip the details. O 

2.5. Proof of the main proposition. This section contains the proof of Proposition 2.4, 
which we state again for convenience. 

PROPOSITION 2.6. Let x = (xn)n be a profile in G. Assume that the following properties 
hold for every n: 

1. xn is terminating; 
2. xn is a perfect e-equilibrium of G(y(xn+l)). 

Then either x is a subgame-perfect el/6-equilibrium, or there is a stationary E1/6- 

equilibrium. 

In general, x needs not be an E'/6-equilibrium. Indeed, consider the following game, 
where only the payoffs of Player 1 appear: 
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1 - 2 82 

1 - e continue 5 

e 1 1 

FIGURE 1. 

The stationary profile depicted in Figure 1 yields to Player 1 a payoff (1 + 5e(1- E))/(1 + 
E(1- E)), and hence Player 1 receives, up to 6E, the payoff 1 by either quitting or contin- 
uing in the one-shot game G ((1 + 5E(1 - E))/(1 + E(1 - E))). However, if Player 1 always 
continues, then his payoff is 5. 

Observe that in this case, Player 1 quits with probability E, and Player 2 quits with 
probability E2. Therefore, if Player 2 did continue with probability 1, the expected payoff for 
the players would not change by much, while the altered profile would be an equilibrium. 
This idea is fundamental to the proof. 

The proof requires careful accounting of the probability of termination and the amount 
a player can gain by deviating. We start by explaining the basic difficulty and the basic 
insights of the proof. We continue with a presentation of the proof. 

2.5.1. Overview. The assumption says that, by changing xn, player i may increase his 
expected continuation payoff by at most e above y'(xn). By changing xn repeatedly to c' 
for No stages, it might be the case that player i increases his expected continuation payoff 
by NOE, provided termination does not occur. In general, it is therefore useful to have an 
estimate of the potential gain in one stage, compared with the rate of termination. We have 
no such estimate a priori. 

By playing c' instead of xi at stage n, player i increases his expected continuation payoff 
by at most e times the probability of playing q' at stage n, since whenever this probability is 
positive, q1 is an e-best reply in the one-shot game. Thus, the increase is at most e(1 - x). 
These profits may accumulate only if, when playing repeatedly c' instead of xn, the rate of 
termination is not too large, compared to e(1 - x'). Roughly speaking, this implies that, 
over a large number of stages, the probability that players N \ {i} will quit is small compared 
to the probability that player i quits under x'. It follows that with high probability the 
terminating coalition is {i}, hence the payoff y(x) is close to r{i}. In particular, replacing 
x-i with c-' leaves the payoff vector essentially unchanged. It is not difficult to conclude 
that, for some a > 0, ((1 - a)c + aq', c-i) is a stationary /-equilibrium, where f goes to 
zero with E. 

The technical difficulty is of course that the maximal profit e(1 - xn) may vary with 
n, and comparing the undefined rate of termination with it makes no sense. We use the 
following construction which is made precise later. We divide the stages into consecutive 
(disjoint) blocks of stages, on each of which the probability of termination under x is of 
the order ea, where a is to be specified. Thus, ea is the rate of termination when time 
is measured in blocks. We divide these blocks into two categories, depending on whether 
termination would essentially be because of player i or not: The first category contains the 
blocks on which the probability of termination remains at least eb if player i switches to 
ci (where b > a), and the second category contains all other blocks. Thus, for any block of 
the second type, the payoff under x, conditional on the event that termination occurs there, 
is close to r{i), provided e is sufficiently small. 

Assume that, at some point in time, there are more that 1/8e consecutive blocks of the 
second type, with e > a. At the beginning of the first block in the sequence, the expected 
continuation payoff is close to r{i, and in these blocks, quitting is done mainly by player i. 
As described above, in this case there exists a stationary e-equilibrium with corresponding 
payoff r{i, in which only player i quits with positive probability. 
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Assume now that no two consecutive blocks of the first type are more than 1/e blocks 
apart. We prove that no pure strategy of i improves upon xi by more than some 3. This 
is done by showing that if player i is allowed to deviate only in a single block, he cannot 
profit too much compared to the probability that the other players quit during this block. 
This bound is the core of the whole proof. 

2.5.2. The two types of blocks. Let y be a strategy profile. For any two integers n < m 
we set 

py[n,m] = Py(t < mIt > n) (=Py (t < m-n)). 

This is the probability that the game terminates between stages n and m (conditional on 
t > n). 

We write simply py[n] for py[n, n], and py[B] for py[n, m], when B = {n,..., m). 
In the proof, we use repeatedly the following facts. 

Fact 1. If u is a random variable on a probability space (fQ, X4, P), bounded by p, and 
A e A, 

IE(u) I pP(A) + sup lu. 
A 

Fact 2. For every profile y, and every n E N, 

y(y) = Py(t < n)Ey[rs, It < n] + Py(t > n)y(y,). 

Fact 3. For each i and x, the vector (G(w), (x-i, q')) is independent of w and is equal 
to y(x-, qi). 

We fix a, b, e ]0, 1[ so that e > a , b> b-eb-> -b-> (choose e between and 
3, then a and b). These are the powers of E that were mentioned in the overview. Assume 

for convenience that 1/te is an integer. We will also assume that e > 0 is sufficiently 
small, so that (a finite number of) inequalities like No02 < e, (1 - a)1/E <_ will hold. 
Observe that (1- _a)1/Ee = exp((l/ee)ln(l - a)) < exp(-ea-e) for e < 1. Since e > a, 

(1/s)exp(-ea-e) goes to zero when e goes to zero. Hence, the second inequality for 
small s. 

We now introduce the partition of N into a sequence (Bk)k>l of blocks. Set n- = 1 and 

nk+1 = inf{n > nk, p[nk, n - 1] > a}. 

Set Bk = {nk ... nk+1 - 1}. Since xn is terminating for each n, every Bk is a finite set. 

Observe that nk+1 is characterized by the inequalities 

Px[nk, nk+ - 2] < a Px[nk, nk+1 
- 1]. 

In particular, 
* in every stage n of Bk except possibly the last one (stage nk+1 - 1), px[n] < e", hence 

xn is close to c (recall that c is the action combination where everyone continues); and 
* no such estimate is available for Xnk+l-,1 and px[nk+ - 1] may be "large." 
DEFINITION 2.7. Let i E J. A block Bk is of Type I for player i if x-,ci[Bk] > eb, and 

of Type II otherwise. 
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In words, a block Bk is of Type I for i if there is a nonneglibible probability that some 
other player will quit in Bk. 

We prove Proposition 2.6 by discussing the following two cases: 

Case 1. If, for some player i, there exist at least 1/Ee consecutive blocks that are of 
Type II for i, then for some a > 0, (aq + (1 - a)c', c-i) is a stationary E -equilibrium. 

Case 2. Otherwise, x is a subgame-perfect e1/6-equilibrium. 
These two cases are dealt with in the following two subsections. 

2.5.3. A stationary equilibrium when blocks of Type I are sparse. We place our- 
selves here under the assumptions of Case 1. The assumptions of Proposition 2.6 are still 
satisfied when the first stage is shifted. Thus, we may assume that the first block of Type I 
has an index I > 1/ee. 

We prove first that both y(x) and y(x2) are close to r{iI. To prove that, we have two 
intermediate steps: We first show that if the game terminates before stage nl, then with high 
probability, the quitting coalition is {i}. We then show that with high probability the game 
terminates before stage nl. 

Let k < I be given. Observe that pxi,ci[Bk] (resp. pX[Bk]) is the probability that at least 
some player j -7 i (resp. at least some player j) plays qJ during Bk. Since the block Bk is 
of Type II, 

(2) Px(aj = qJ for some j # i, and some nk < n < +l) < ?e. 

Since Px[Bk] > ea, one deduces 

Px{3j i,j E Stlt EBk} < eb-a 

that is, PX{St = {i}lt E Bk} 1 - eb-a. By summing over k, one obtains 

Px{St =i { ilt < nl} > 1-eb-a 

In words, if the game terminates before stage nl, then with high probability the quitting 
coalition is {i}. 

On the other hand, the probability p,[Bk] of termination in block Bk is at least ea, for 
each k < 1. Since 1 > 1/Ee, 

Px(t > nl) < (1- Ea)e < . 

In words, with high probability the game terminates before stage nl. 
Thus, Px(St = {i}, t < nl) > 1 - - eb-a. By Fact 1, one gets 

(3) I y(x) - r{i} I< p( + eb-a). 

Observe that this proof is also valid in the case 1 = 1/Ce. Hence, written for the Blocks 2 
to 1, it yieldsll y(xn2) - ri} ||I p(? + ?b-a). 

We now deal with y(x2). If px[l] < ea, one has II y(x) - y(x2) II pEa (Fact 2), hence 

(4) 1(x (X2) - ri| II_p + eb-a + 
- 

a). 

If Px [] > ea, the block B1 is reduced to Stage 1, and n2 = 2, hence (4) also holds in that 
case. Thus, we showed that both y(x) and y(x2) are close to r{i}. We now construct a 
stationary e1/6-equilibrium in the game. 

Denote by x' the stationary strategy of player i which quits with probability xi= 
max(e, xl) in every stage. Since p, [1] < px [B1] < Eb, one has I x, - (c-i, xi) 11< Eb. Since 
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xl is an E-equilibrium in G(y(x2)), (c-i,xi) is an (s + pN8b)-equilibrium in G(y(x2)). 
Observe that y(c-i, x) = r{i1. Thus, by (4), (c-i, i) is an ri-equilibrium in G(y(c-i, xi)) 
with r7 = + p(e + Nb + sa + 

- 
-a) < S1/6 

We now check that (c-', xi) is an ,q-equilibrium of the quitting game. 
Any pure deviation by player i from xi yields a payoff which is either 0 (deviation to c') 

or yi(c-i, xi) = 1 (any other deviation). Since ri} = 1, player i cannot profit by deviating. 
Since (c-i, xi) is stationary, any pure deviation by player j 4 i from cj yields a payoff equal 
to yi(c-" , xi, qi), which, by Fact 3, is also equal to 

(G(y(c-i, x')), (c-iJ, X, qJ))i < ,i (c-i, x) +. 

Thus, (c-i, xi) is a stationary 77-equilibrium of the quitting game G. 

2.5.4. The case where blocks of Type I are regularly scattered. We place ourselves 
in Case 2: For every player i, no two consecutive blocks of Type I for i are too distant. We 
prove that x is an e1/6-equilibrium. Let i E J\ be fixed. 

First step: Estimates for local deviations. For each k E N, we define an auxiliary game 
Fk, played during the block Bk: It starts in stage nk, and ends after stage nk+1 -1, with 

payoffs given by rst if t < nk+l, and by y(xn+, ) if termination did not occur. We prove that 

player i cannot profit too much by deviating from (xi, x k, ..., 
. 

)nkl) in the game Fk, 
against the profile (X-ki, Xnk. +l ... Xnk+ _l). In the original quitting game, this will imply 
that player i cannot profit too much by deviating only during Bk. 

For notational simplicity, we deal with the game F1. The corresponding estimates for Fk 
will be obtained by conditioning on the event {t > nk}. 

In the game F1, the payoff induced by a strategy profile y is 

g(y) = Ey[rSt l,<n2 + y(xn2) l t>2]. 

Observe that g(x) = y(x). 
We shall compute a bound on gi(x-i, s), where s' is any pure strategy of player i. We 

analyze in turn the case where si = q' (the strategy of i where he continues at every stage 
except stage n, in which he quits with Probability 1), for some n < n2, and s' = c'. 

The goal of this first step is to prove that 

(5) gi(x-i, q) < gi(x) + 2p8a + E, for each n < n, and 

(6) g (x-i, c1) < g'(x) + 7paNP-i,ci (t < n2 - 1) + 2e. 

Note that the bound on the amount player i can profit in (6) is much smaller than the 
corresponding amount in (5). In particular, the proof of (6) is more involved. We need a 
better estimate in (6), since once a player quits the game terminates, while as long as he 
continues, the error in our estimate increases. 

Quitting in the auxiliary game. Fix n < n2. We rewrite gi(x) and gi(x-i, qi) as 

(7) gi(x) = P(t < n) x Ex[r t <n] +P(t >n) x i(xJ), and 

(8) g'(x-',q') = Px-i,ci(t<n) xExi,ci[rs,lt<n]+Px-ici (t>n)x (G(y(xn+l)),(xn, qi))i. 

The last equality is derived as follows: If t > n (this occurs with probability Px-, ci(t > n)), 
player i quits in stage n, hence gets y'(xni, qi), which yields (8), using Fact 3. 

Since xn is an e-equilibrium in the game G(y(xn+,)), one has 

(G(y(xn+1)), (Xn, qi))' < (G((Xn+ )), Xn)i + E 

(9) 
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By definition of n2, and since n <n2 

(10) Px-ixi(t < n) < Px(t < n) < s'. 

From (7), (8), (9), and (10), one gets 

g' (x-' q') < g' (x) + 2pEa + E, 

which is (5). 

Continuing in the auxiliary game. As in the previous paragraph, we compare g'(x-', c1) 

and g (x). For notational simplicity, set 

7r, = Px(t < n2 - 1, i E St), 

U1 = Ex[rjt J I< n2 -1, i E St], 

IT2 = Px(t<n2 - ,iS), and 

U2 =Ex[rst It < n2 -1,i St], 

so that 

(11) gi(x) = 'TIu1 + iT2u2 +(1- TI1 - 'w2)Y'(X,2-1)- 

Set also 

iiT2* = Px-i,,i(t < n2 -l), and 

ui2 = Ex-i'ci[rs', It < n2 - ] 

so that 

(12) g"(x-', c') = 7T2*u* (1 -,7T2*(G(Y(Xn2)) (Xn,-1 C >>V. 

Since xn2 is an E-equilibrium in the game G(y(xn2)), one gets (as in (9)) 

(G(Y(Xn2)), (xn 2l' CT) ( Y1(Xn2 -) + S. 

Plugging this inequality into (11) and (12), one obtains 

(13) g2(x * )?)y(X,2-1 7T(yi(Xn2-1) -u?8+ E. 

In the next three lemmas, we provide estimates on I v2 - v2* on - u* and on 

yi(Xn2-1) 
- u1 that immediately yield, using (13), 

g' (x ', c') < gi(x) + 7p8aN?rT2 + 28, 

which is (6). This will end the first step. 

LEMMA 2.8. One has I r- _ 
2*I <8aT7T2*. 

PROOF. Observe first that by the definition of n2, 

(14) 7TT , 7T2 7T2* < P. It < n2 < -- .a 

For n < n2 - 1, set X, = 1 if at least some player j =A i quits in stage n, X, = 0 otherwise, 
and set S1 = infIn < n2 - 2, Xn = 11 (by convention inf 0 = +oc). Set Yn = 1 if player i 
quits in stage n, Yn = O otherwise, and set S2 = inf{n < n2 - 2, Yn = 1. Finally, set T = S 
if SI < S2 and T = +oc otherwise. 
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Thus, 

7r2=Px(Sl_n2-2) and 72 =Px(T <n2-2). 

In particular, i2 < iTr. By Lemma 3.1, 

1rT2-,2I _< T2 x P(S2 < 2-2). 

Clearly, Px(S2 n2-2) < PX(t < n2 - 1) < ea. The conclusion of Lemma 2.8 follows. O 

LEMMA 2.9. One has \U2 
- u2* < 2pea. 

PROOF. Denote by 112 the distribution of t under Px, conditional on the event {t < 

2 -2, i g St}. Denote by [I1 the distribution of t under Px-,ici, conditional on the event 
{t < n2 -2}. Since u2 (resp. u*) is the expectation of rs under I2 (resp. under HI), one has 

(15) lu2 - u2;I p< PIl2 - nI211, 

where 112 - n11III = En 1II2(n) - I(n)I is the L'-distance between 12 and Hn. 
With the notations of the previous lemma, 

n,2(n) = P(S, = ni T < n2 -2), 
n (n) = P (S = n Sl _< n2- 2). 

By Lemma 3.1, one has 

11I2 - n,111 < 2Px(S2 < n2- 2) < 2a. 

The conclusion of Lemma 2.9 then follows from (15). 0 

LEMMA 2.10. One has 

(16) lyi(Xn2-1) - Ul < 4PNT2* + E, 

where N is the number of players. 

PROOF. Recall that ul is the payoff received in the termination stage, conditional on 
the event that i belongs to the quitting coalition. We proceed in three steps. 

Step 1 : We first estimate how close ul is to ri = 1. 
Let n < n - 1. Conditional on {t = n, an = q'}, the vector of actions an' is distributed 

according to x,'. Since the overall probability that some player j $ i quits before stage 
n2 - 1 is 7rr, one has 

(17) 
X- 

c---i 11< 1r2. 

Hence, 

IEx[r, la' = q, t= n]- I <pNir. 

By summation over n, this yields 

(18) lu - 1< pNT2. 

Step 2. We now compare yi(x+1) to r1i) = 1, where n is the last stage prior to n2 -1, 

for which xn < 1. 
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Since x- is a perfect e-equilibrium in the one-shot game G(y(xn+l)), qi is a best reply 
to Xi, up to s: 

(19) yi(x-) < (G(y(x-+l)), (x-i, q1))1 + ?. 

By (17), 

,)/i (X-+1 ) Yi (X-) + r2*Np, 

I (G(y)(x+1)), (xn-, qi))i < (G(y(x,1)), (c-i, q))i + r*Np = 1 + TrNp 

which yields, using (19), 

(20) y'(x,+l) < 1 + E + 2pNi2*. 

Step 3. We finally compare yi(x,,+) to yi(xIn2_). 
By definition of n, player i continues in every stage between n + 1 and n2 -2 under xi. 

Thus, 

px[n+ 1, n2 - 2] = _i,ci [n+ 1, n2 - 2] < 2*. 

By Fact 2 (applied with y = x,+1), this yields 

(21) Iyi(xh+l)- Y(X,n2-)I < P7T2 

The conclusion of Lemma 2.10 follows from (18), (20), and (21). O 

Second step: Global estimates and conclusion. In this paragraph, we compare 
yI(x-i, Si) to yi(x), where si is any pure strategy of player i: either c' or q'. In the first 

step, we proved (see (5) and (6)), that 

Ex-i qi [rs ] < yi(x) + 2ps + , for every n < n2, and 

Ex -i s[r 1 t<n2 + Yi(Xn2) lt>n] < Yi(X) +7psaN7T2- + 2E, for any other pure strategy s'. 

These estimates, which were obtained for the game played on the first block, have analogs 
for the game Fk played on Bk, obtained by conditioning upon {t > nk}. These analogs are 

(22) Ex, iqi [rs, t > nk] < y(Xnk) +2pa +?, for every nk < n < nk+, 

and 

(23) 
Ex-i,si [rSt 1t<k+ )l+l ] < yl X(Xnk+)lt>nk+l t > n] (k)+ 7pEaNPx-i,ci(t < nk+ it > nk) + 2s, 

for any si that coincides with c' up to nk+. 
It is convenient to introduce the sequence (Xk)kEN of random variables defined by 

yi(xnk) if t > nk 
Xk i if t < nk 

Notice that E-i, ci[Xk] is the payoff to player i if player i follows ci up to stage nk, then 

xi, while players -i use x-'. We first compare y'i(x-, s') and Ex-i,ci[Xk]. 

LEMMA 2.11. One has y'(x-', i) supkExi,i[Xk]+ + 2pE. 
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PROOF. Let Si = c'. Since there are infinitely many blocks of Type I for player i, the 
profile (x-i, c') is terminating. Thus, yi(xi, ci) = limk Ex-i,i[Xk], hence the conclusion of 
the lemma holds in that case. 

Let now si= q', and let Bk be the block containing n. The payoff yi(x-i, q) can be 
written 

(24) y (x-, q in) = , E x-i,[Xklt<k] +E [ li,[ ]. 

By definition, yi(Xnk) = Ex-i,q [Xklt > nk]. Using (22), the Equality (24) implies 

Y'(x-i, q') < Ex-i,ci [Xk] + + 2pEa. 

D 

LEMMA 2.12. supkEX,ii[Xk] y'(x) +21-b-e +7pNa. 

PROOF. Using the definition of (Xk), rewrite (23) as 

Ex-,,i [Xk+l It > n] < Ex-i,ci[Xk t > nk] + 7pNEaPiP,-ci(t < nk+l It > nk)+ 2e. 

Note that Xk+l = Xk if t < nk. Therefore, 

Ex-i ci[Xk+l] < E-i ,Ci[Xk] +7pNeaP,-ici(t E Bk) + 2eP-i,ci(t > nk), 

which yields by summation over k 

00 

(25) sup Ex,-,i[Xk] < X1 + 2 P,-i,i (t > nk) + 7pNa. 
k k=l 

We use now the fact that consecutive blocks of Type I are never distant by more than 1/se 
blocks. Thus, in the first pe/e blocks, there are at least p - 1 blocks of Type I. For such a 
block Bk, Px-i,ci{t > nk+I t > nk} < 1- b. Therefore, 

Px-i,ei(t > n4) < (1 - -b)-1. 

Since P-i,i(t > nk) < Px-i,ci(t > nlp/e) for p/?e < k < (p+ l)/ee, one obtains 

00 

(26) E PXi(t nk) < 21-be 
k=1 

The conclusion of the lemma follows from (25) and (26), since X1 = yi(x). O 
By Lemmas 2.11 and 2.12, x is a sl/6-equilibrium of the quitting game. This ends the 

proof of Proposition 2.4. 

2.6. Equilibrium and uniformity. In the literature on stochastic games, a stronger 
concept of uniform equilibrium is often used. In this section we prove that in quitting 
games, any e-equilibrium is a uniform E-equilibrium. 

For every n E N, define 

Yn(x) = Ex [lt<nrS' 
n ] 

This is the expected average payoff if the players receive a payoff equal to zero prior to the 
termination stage, and the termination payoff in every subsequent stage. 
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A profile x is a uniform s-equilibrium if it is an e-equilibrium for each payoff function 
yn, provided n is sufficiently large. That is, there exists no E N such that for every n > no, 
every i E JV and every strategy y' of i, 

yi(X) > (X-, (x-Yi)- ?. 

We now prove that the requirement of uniformity has no bite in the context of quitting 
games. Note that uniform e-equilibrium is a stronger concept than s-equilibrium. 

PROPOSITION 2.13. If x is an s-equilibrium then it is a uniform s'-equilibrium, provided 
E > E. 

PROOF. Since the details are standard, we only sketch the proof. Let x be an s- 
equilibrium, i E Af and s' > s. We shall prove that, for n large, player i can not profit more 
than E' in the game with payoff function y,. Note that for every profile y, yl (y) -> yi(y). 

Assume first that (x-', c') is terminating. There exists N0, such that for every n > No and 
every strategy y', 

Il7(x-i, yi) - 
7 (x-i, Yi)II < (E' - )/2. 

By the E-equilibrium property, one deduces y/(x-i, y) < y'(x)+E' for every n > N0. 
Assume now that Px-i,i (t < +oo) < 1. Choose No such that 

(27) P-_i,ci(t < +oo|t > No) < (E' - )/3Np. 

In particular, for each n > No, x,' is close to c-'. Let s' be any pure strategy of player i. 
We now estimate -y(x-i, si) for n sufficiently large. 
* Assume si = c'. 

Since y'(x-i, c') < y'(x)+E, one has y^(x-i, c) < yn(x)+E', for n large enough. 
* Assume s' = qio, where no < No. 

In that case, l'yn(x-i, qno)- y(x-i, qno)l converges to zero, uniformly in n0. Hence, 
iY(x-i' qn) < yl(x)+(s'- E)/3, for n > N1, where N1 > 3Np/(e' - e). 

* Finally, assume s' = qio, where no > No. 
By (27), for each n > NO the expected payoff of player i, conditional on {t = no} satisfies 

IEx-i,q/ [Irst t -= no]- II1 < (E'- E)/3. 

By the choice of No, y/(x-', qio) < y/(x-', qNo) + (E' - )/3, for every n > N1. The result 
follows from the second case with no = No. D 

2.7. General payoff processes. We give here a slight extension of Theorem 1.2 within 
the framework of non-zero-sum Dynkin games. Let r = (rn)n>1 be a process over (fl, s, P), 
where rn = (rn,s)0#5sc is a vector of RN-valued variables. The quitting game F(r) is played 
as above: rn,s is the payoff vector if termination occurs at stage n, and the quitting coalition 
is S. 

Set Jn = o((rp, p < n). A strategy of player i is a process xi = (xn)n>l adapted to (en)n>l, 
with values in [0, 1]. Provided expectations are well defined, the extension of the above 
definitions of y and e-equilibrium is straightforward. 

THEOREM 2.14. Assume that the sequence (rn) converges to r,, P-a.s. Assume r, sat- 
isfies Assumptions A.1 and A.2 of Theorem 1.2, P-a.s. Assume p = E[suPn>, I r, 11] < +0o. 
Then, for every e > 0, F(r) admits an s-equilibrium. 
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PROOF. The idea is the following. Take No large enough, so that rN and r,o are close. 
At stage No, players start using an 7r-equilibrium of the quitting game with constant payoffs 
r(rN, rN, ... ). Behavior in the first NQ - 1 stages is then defined by backwards induction. 

We address first the measurability issue. Set m = N(2N - 1). Denote by X = [0, 1]j XN the 

space of strategy profiles in a quitting game with constant payoffs. Denote by A C Rm the 
set of vectors r = (rs)00sc, which satisfy A.1 and A.2. For r7 > 0, and r E R', denote by 
AI the 71-neighborhood of A, and by E,(r) c X the set of 7--equilibria of the quitting game 
with constant payoffs F(r, r,...). By Theorem 1.2, E (r) 0 0, for every r E A, r1 > 0. 

It is clear that whenever 11 r- r' 11< 77, EK(r) c E2,(r'). Therefore, there is a measurable 
step function ao : R' -- X, with o-(r) E E2,(r), for every r E A1. 

Choose 0 < 7< 1/(4 + p) and N0, such that 

(28) P(3n > No, } r,- r 11> r) < . 

We now construct a profile x. Set xN = (xN, XNo+ ,...) = on(rN). By construction, x, 
is !No-measurable, for n > No. We define xN_ , ..., x inductively: For k < N - 1, define 
xk to be a ek-measurable equilibrium in G(E[y(xk+l)|lk]). 

Such a choice for xk exists. Indeed, let R be a ek-measurable correspondence, defined as 
the set of all mixed Nash equilibria in G(E[y(xk+l) I kk]). Then R has nonempty and closed 
values. By Kuratowski and Ryll-Nardzewski (1965), R has a ek-measurable selection. 

By (28), P(XNO E3 (rN, rNo +I,...)) > 1 - 7r: The probability of XNo being a 37,- 
equilibrium is at least the probability that rn will remain 2,7-close to rN0, which is at least 
1 - r- by the choice of No. 

This easily yields that x is a (3i7+ rp)-equilibrium of F(r). I 

3. An example. In this section, we study the following four-player quitting game, 
which satisfies Conditions A. 1 and A.2. 

4 
2 2 

continue 4, 1,0,0 0,0,4,1 1,1,0,1 

1,4,0,0 1,1,1,1 1,0,1,1 0, 1,0,0 

3 

0,0,1,4 0,1,1,1 1 1,1,1,1 0,0,1,0 

1, 1, 1,0 1,0,0,0 0,0,0,1 -1,-1,-1,- 

FIGURE 2. 

In this game, Player 1 chooses a row (top row = continue), Player 2 chooses a column 

(left column = continue), Player 3 chooses either the top two matrices or the bottom two 

matrices, (top two matrices = continue), and Player 4 chooses either the left two matrices 
or the right two matrices (left two matrices = continue). 

Note that there are the following symmetries in the payoff function: for every 4-tuple of 
actions (a, b, c, d) we have: 

vl(a, b,c, d) = v2(b, a, d, c), 

v (a, b, c, d) = v4(c, d, b, a), and 

v2(a, b, c, d) = v3(c, d, b, a), 
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where vi(a, b, c, d) is the payoff to i if the action combination is (a, b, c, d) 
(vi(c, c2, c3, c4) = 0). 

One can show that the game does not admit any stationary e-equilibrium, nor an e- 

equilibrium x, such that I xn, -c < s for every n. Since the details are technical, we omit 
them. The interested reader may consult Solan and Vieille (2000). 

We now prove that the game possesses a cyclic equilibrium, where the length of the 

cycle is 2. At odd stages Players 2 and 4 play c2 and c4, respectively, and Players 1 and 
3 continue with probability x and z, respectively, both strictly less than 1. At even stages, 
Players 1 and 3 play c1 and c3, respectively, and Players 2 and 4 continue with probability 
x and z, respectively. 

Thus, in some sense, the "simplest" equilibrium in this game is periodic with Period 2. 

Formally, we study now profiles y that satisfy: 

(x, 1, z, 1) n odd, 
Yn"= (1,x, 1, z) n even, 

where x, z e]0, 1[ are independent of n. 
The one-shot game, played by Players 1 and 3 at odd stages, is 

3 
z 1-z 

x 
1 

1-x 

c , Yc 0,1 

1,0 1,1 

FIGURE 3. The game of Players 1 and 3 at odd stages. 

In this game, Player 1 is the row player, Player 3 is the column player, and y, is the con- 
tinuation payoff of player i = 1, 3. The payoffs received by Players 2 and 4, if termination 
occurs in an odd stage, are given by the matrix below, in which the first coordinate of each 
entry is Player 2's payoff, and the second coordinate is Player 4's payoff. 

0,4 
(29) 

4,0 1,0 

The one-shot game played by Players 2 and 4 at even stages is 

4 
z 1-z 

x 
2 Yc2, Y 0,1 

1-x 1,0 1,1 

FIGURE 4. The game of Players 2 and 4 at even stages. 

where Player 2 is the row player, Player 4 is the column player, and the payoffs that 
are received by Players 1 and 3 if termination occurs are given by Matrix (29). The two 
situations are identical (up to the continuation payoffs). 

We now find necessary conditions on (x, z). First, (x, z) is a fully mixed equilibrium of 
the matrix game in Figure 3, so that 

xy3 =1 and zyc=l, 

and both Players 1 and 3 receive 1 in this equilibrium. 
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By the symmetry of the profile, the continuation payoffs (resp. initial payoffs) of Players 
2 and 4 must coincide with the initial payoffs (resp. continuation payoffs) of Players 1 and 
3. That is, (3y', y3) is the payoff received in the matrix game (29), when the empty entry is 
filled with (1, 1) and the row and column players play according to x and z, respectively, 
so that 

YC = xz +4z(1 - x) + (1 - x)(l - z), 
Y7 =xz + 4z(1 - x). 

Set g = y7 and h = y. Since x = 1/h and z = l/g, one gets 

2h = 1 +4(g- 1)+ (g- )(h- 1), 
gh2 = 1 +4(g-1), 

which is equivalent to 

(30) g 4-h' 
h root of (h-l1)(h4+3h3-2h 2- 9h + 4) =0. 

Conversely, let (g, h) be a solution to (30) with g, h > 1, and define a cyclic profile by 
x = l/h, z = 1/g. Given the above properties, in order to prove that it is an equilibrium, we 
need only prove that neither Player 2 nor 4 can find it profitable to quit in the first stage. 
This is clear, since Players 2 and 4 would receive at most 1 by quitting, whereas they get 
strictly more than 1 under the cyclic profile. 

Thus, the existence of such a cyclic equilibrium is equivalent to the existence of a solution 
(g, h) to System (30) with g, h > 1. If 1 < h < 2, then 1 < 3/(4 - h2). Hence we need to 
assert the existence of a root in ]1, 2[ of the polynomial, 

Q(X) = X4 + 3X3 - 2X2 - 9X + 4. 

Such a root exists since Q(1) < 0 < Q(2). 

Appendix. The following lemma has been used in the proof of Lemma 2.6. It is inde- 

pendent of any other result in the paper. 
LEMMA 3.1. Let N E N, and (Xo, .. ., X, Yo, .. . YN) be independent {0, 1}-valued 

random variables. Let S, = inf{n < N, Xn =1 }, S2 = inf{n < N, Yn = 1} be the first suc- 
cesses of the two sequences. Set T = S1 if SI < S2 and T = +oo otherwise. Assume that 

P(T < N) > 0. Then, 

1. P(S < N) - P(T < N) < P(S, < N)P(S2 < N); 
2. En IP(Sl = nlS, < N)-P(S, = niT < N)l < 2P(S2 < N). 

PROOF. For each n, {T = n} c {S1 = n}, and {S = n)T = n S = n} {S = n} { n}. 
Thus, 

(31) P(S1 = n) -P(T = n) = P(S, = n)P(S2 < n) < P(S1 = n)P(S2 < N). 

The first claim follows by summation over n. 
On the other hand, 

P(S, = n) P(S -= n < S2) jP(S, = nlS, < N)-P(S, = nIT < N) = P ) P( 2) 
P(S < N) P(T < N) 

P(SI = n)P(S2 < n) +P(S1 =n <S2) ( 1 
A 

P(S, < N) P(SI<N) P(T < N) 
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Observe that 

(32) P(SI = n)P(S2 < n)< P(S1 = n) ( N). 
P(S1 < N) P(S1 < N) 

On the other hand, 

P(SI = n < S2)P( N) P(T < N) 

P(S1 n < S2)_ IP(T < N)- P(S, < N) 
P(S, < N)P(T < N) 

P(S1= n < S2) P(T= n) 
(33) < P(S2 < N)P(SI < N) = P(S2 < N), 

- P(S, N)P(T N) (S2 P(T < N) 

using the first part of the lemma. The result follows from (32) and (33). D 
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