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Abstract

We prove that every two-player nonzero-sum deterministic stopping game with uniformly bounded
payoffs admits ar-equilibrium, for everye > 0. The proof uses Ramsey Theorem that states that
for every coloring of a complete infinite graph by finitely many colors there is a complete infinite
subgraph which is monochromatic.
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1. Introduction

Consider the following two-player nonzero-sum game, that is played in stages. At every
stagen each of the two players has to decide whethegui or to continuethe game. If
both players decide to continue, the game proceeds to stage. Otherwise, the game
terminates, and playeémreceives the payoﬁg_n, wheref #£ S C {1, 2} is the set of players
that decide to quit at stage If no player ever quits, the payoffis 0 to both players.

This game is a stopping game with deterministic payoff processes. Stopping games
have been introduced by Dynkin (1969) as a generalization of optimal stopping problems,
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and later used in several models in economics and management science, such as optimal
equipment replacement, job search, consumer behavior, research and development (see
Mamer (1987) and the references therein), and the analysis of strategic exit (see Ghemawat
and Nalebuff (1985) or Li (1989)). Dynkin was interested in zero-sum stopplng games

in which the sequence§s ,), are stochastic processes, whegg, := r%n = —rsn

He proved the existence of optimal pure strategies, under the assumption that at any
stage, only one of the players is allowed to stop. Since then, a very extensive literature
in the theory of stochastic processes has dealt with zero-sum stopping games, both in
discrete and continuous time. Most contributions provide conditions on the sequences
(rs.») under which each player has pur@ptimal strategies (a pure strategy corresponds

to the notion of stopping time in probability theory). The typical condition takes the form:
ry.n < rL2ye < rezyn for eachn. Rosenberg et al. (2001) removed this assumption and
proved that every zero-sum stopping game admits a uniform value, when mixed strategies
are allowed.

Nonzero-sum stopping games were studied, amongst others, by Mamer (1987),
Morimoto (1986), Nagai (1987), and Ohtsubo (1987, 1991). They provided conditions on
the payoff process under whiehequilibria exist.

We prove that every two-player nonzero-sum deterministic stopping game with
uniformly bounded payoffs admits artequilibrium, for everye > 0. The proof uses
Ramsey Theorem that states that for every coloring of a complete infinite graph by finitely
many colors there is a complete infinite subgraph which is monochromatic. Ramsey’s
(1930) original work has been extended in many directions, to become Ramsey Theory.
This theory expresses a basic principle: every large set of objects necessarily contains a
highly regular pattern. Put differently, if we partition a “large” system into “few” classes,
one of these classes contains a “large” subsystem, whatever be the partition. The interested
reader is referred to, e.g., Bollobas (1998) for more details on this theory.

An interesting feature of the proof is that it does not rely on the proof for zero-sum
games.

We are not aware of any previous application of Ramsey Theorem to game theory,
except for Ramsey games, which were designed to fit Ramsey theory. More information
on Ramsey games, and on combinatorial game theory in general, can be found in http://
www.l.ics.uci.edu/~eppstein/cgt/.

2. Thegameand the result

A deterministiqtwo-playe) stopping gaméd™ is described by a bounded sequenge
in R®. The components of, are labeled! . Wherei = 1,2 andd # S C {1, 2}. The game
is played as follows. At every stage> 1, each of the two players has to decide whether
to quit or to continuethe game. Leb be the first stage, possibly infinite, in which at least
one of the players decides to quit, anddgtbe the subset of players who decide to quit at
stage’ (providedd < +00). The payoff to player is rS P if 6 <400, and 0 ifd = +o0.

A (behavioral) strategy for player 1 is a functionx : N — [0,1], x(n) being the
probability player 1 quits at stage provided no player quit before that stage. Strategies
of player 2 are defined analogously.
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Every pair of strategie6r, y) induces a payoff to both players:
Vi(xa y)= Ex,y [rg*’919<+oo],

where the expectation is taken w.r.t. the probability distribuBlery over plays induced by
the strategies andy.
Our main result is:

Theorem 1. For everye € (0, 1) the game admits am-equilibriunt there is a pair of
strategies(x*, y*) such that

Y,y <yt yH +e and 20t y) <yt yf) +oe,
for everyx andy.

We conclude this section by an example, showing that a 0-equilibrium needs not exist,
even if the sequence of possible payoffs is constant.

Example. Consider the zero-sum game definedrfly , =, , =1 andrf; , , =0 for

everyn € N. The strategy, defined byx, (n) = ¢ guarantees & ¢: inf, yi(xe, y)=1—c¢.
Since payoffs are at most one, the value of the game is equal to one. However, player 1 has
no optimal strategy. Indeed, letbe any strategy and Igtbe the strategy defined by

0 ifx(n)=0,
1 ifx(n) >0.
It is easy to verify thai’1(x, y) < 1.

ﬂm={

3. The proof

Since payoffs are uniformly bounded, we assume w.l.0.g. that payoffs are bounded by 1.
Fix ¢ > 0 sufficiently small once and for all, and choosesadiscretizationA of the set
[—1,1]% that is, A is a finite set such that for everye [—1, 1]2, there isa € A with
lla —ulloo <e.

Step 1. Periodic games

For every two positive integells < [, we define a periodic stopping gamgk, /) as
follows:

ronk, 1) = rfs,k+(n71 mod[—k)
We interpret this game as “the game that starts at stagad restarts at stage(from
stagek).” We denote byyx ;(x, y) the payoff function in the gamé (k, [).

The gameG (k, [) may be analyzed as a stochastic game with finitely many states. The
most convenient way is to define a stochastic gdmig, /), where each stage of play
corresponds to a period of play 6f(k, ). To be more formal, the set of actions of each
playerinl"(k,l)is{c,1,2,...,1 —k}. Action ¢ corresponds to continuing in all stages of
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c 1 1—k
c 0 ok rLi—1 "
ryk | L2kt {1,k
I—k | ryi—1* | rzve ™ r(1,2),1-1"

Fig. 1. The gamd™ (k, 1).

the period. Action labeleg, 1 < p <1 — k, corresponds to continuing in the firgt— 1
stages of the period, and stopping in {iil stage. As is customary for stochastic games,
we represent this game through the shown matrix in Fig. 1.

An entry is starred if the corresponding combination of actions leads to an absorbing
state with the corresponding payoff; that is, the game terminates. Note that stationary
strategies inI"(k,l) correspond to periodic strategies @(k,!), with period! — k.

A stationary strategy of playeérin I" (k, [) can be identified with a probability distribution
7' over the sefc, 1,...,1 — k} of his actions, with the interpretation that is used in
every stage until at least one of the players chooses an action other thad the game
terminates).

The gameI'(k,l) is a recursive absorbing stochastic game: there is a unique
nonabsorbing state, in which the reward function is identically zero.

By Flesch et al. (1996), such games have a stationagguilibrium = = (1, 72).
Moreover, it follows from their proof, or, alternatively, by the analysis of Vreize and
Thuijsman (1989), that the profile can be chosen such that one of the following
alternatives holds:

Al 7le)=72c)=1.
A2 (i) yi,(r)=0fori=12"and
(i) 71(c) <1—e2orm?(c) <1— &2
A3 If yt, () <0thenw?(c) < 1—e%if y2,(m) <O thentl(c) <1-—¢2.

In particular, either the probability that both players continue is 1 or it is at mest2l

We denote byxy 1, yx.1) the periodic profile irG (k, [) which corresponds to a stationary
g-equilibriumm of I'(k, ) that satisfies one of A.1-A.3. It is a periodieequilibrium of
G (k, 1), with period! — k.

For everyk <[ we choose(k, ) € A such that

Ik Gexs yen) —ak. D <e.
Step 2. Application of Ramsey Theorem
To every pair of positive integeks< [ we attached in Step 1 an element in the finite set

A—a color. By Ramsey Theorem there is an infinite subset of intekjefsN anda € A
such that(k,!) = a foreveryk,l e K, k <.

1 with abuse of notation%f ; () is the payoff of playei in I"(k, [) under the stationary strategy pair
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In particular, there exists an increasing sequence of positive integers, < - - - such
that for everyj € N, a(k;, kj4+1) = a. For notational convenience, we wri(ej, y}*) for

(Xkj kjp1s Yk kj1)-

For everyk € N, we letG (k, oo) denote the stopping game inducedByrom stagek,
ie.,rg,(k,oo)=ri, .. 4 foreveryn e N. We denote by «(x, y) the payoff function
in the gameG (k, 00).

Let (x*, y*) be the profile inG (k1, oo) obtained by concatenating the profiles, y7):

x*(n):xj(n—kj +ky) fork;—ki+1<n<kj1—ki+1

The definition ofy* is similar.
Step 31y{, (%, y*) —a'| <efori=1,2

Assume w.l.0.g. that; = 1. If [a/| < &, then, for everyj, either A.1 holds 0P+ (0 <
kjiy110 >2kj) > 2. In the first caseP.« y+(k; <6 <kjy1) =0, whereas in the second,

‘Ex*’y*[rg*ﬁ ‘k] <9 <kj+]_] —ai‘ <8.

By summing up oveyj € N we get|y/  (x*, y*) —d'| <e.

Assume now thata’| > ¢. Then, for everyj, Py (8 <kji1160 2 kj) > ¢2 and
|Exxyxlrg, o | kj <O <kji1]l —a'| < e. The first inequality yield®y« (0 < +00) =1
while the second impliefE,« \«[r§_, | 6 < +oo] —a’| <e. Thereforey/ . (x*,y*) —

ail <e.
Step 4(x*, y*) is a 3e-equilibrium of the gamé& (k1, co)

We show that player 1 cannot profit more thand¥ deviating fromx*.

Assume w.l.o.g. thak; = 1. Let x be a strategy inG(k1,00) = I’ and, for every
7 €N, letx; be the corresponding periodic strategyatk ;, k;+1): xj(n) =x(k; + (n — 1
modk;i1 — kj)). Since(xj,y;‘) is ane-equilibrium in G(k;j, kj1), it Py y(k; <0 <
kj+1) > Othen

Evyi[r5.0 | kj <O <kjra] = v s (57050 S g (85, 97) + e <al + 26

Therefore,

Exy[r} glo<ioo] = Z Puye(k; <O <kjz1)Exyo[rg o | kj <O <kjpa]
JjeN

< Py (8 < +00)(at + 2¢). (1)

o Ifal>—¢ onehasil +2¢ >0 henceEx,y*[rsl*ﬁl@GOO] <al+2e.
e If al < —¢, then A.3 holds, and one h&&s ,«(0 < kj11|0 > k;) > &2 for every ;.
HenceP, y«(8 < +00) = 1, which yieIdsEx,},*[rg*’919<+oo] <al+2e.
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Therefore,

yh Gy <al42e <yb () + Be.
Step 5. Backward induction

Consider the followingk; — 1)-stage gamé'. In I, the two players play the firgg — 1
stages of . If no player quits in the first; — 1 stages, the payoffis= (al, a?). Let (x, ¥)
be an equilibrium in". Thus,%, y:{1,..., k1 — 1} — [0, 1]. Denote by(x, y) the profile
in I" that coincides with(x, y) up to stag&i — 1, and with(x*, y*) from stagek; on. Itis
straightforward to deduce from Step 4 thiaf y) is a Z-equilibrium of I". This concludes
the proof of the theorem.

Comment. The e-equilibrium strategy pair that we constructed is uniform in a strong
sense: it is a £-equilibrium in every finiten-stage game, providedis sufficiently large.

This can be seen either by applying a general observation made by Solan and Vieille (2001,
Proposition 2.13), or by the construction itself: if the expected payoff to player 1 under
(x*, y*) is positive, he cannot profit by delaying the termination stage, whereas if it is
negative, then with high probability termination occurs before stage@hatever he plays,

for everym > 1/¢3.

4, Extensions

We here discuss the extensiomtlayer games with > 2, and to games with general
payoff processes.

The proof we presented above is divided into three parts. First we define for every
periodic game a color, by approximating an equilibrium payoff in the periodic game.
Second, we apply Ramsey Theorem to the complete infinite graph. This way we get a
sequence of periodic games. Third, we concatesr@guilibria in these periodic games to
form a 3-equilibrium in the original infinite game.

When there are three players, the technique of Solan (1999) can be used to prove that
periodic deterministic stopping games admit equilibrium payoffs. ddequilibria in the
corresponding stochastic ganh&k, /) need not be stationary: they are either stationary
or periodic. Nevertheless, one can still construct cae§uilibrium by appropriately
concatenating the-equilibrium strategies of the periodic games.

When there are more than three players, it is not known whether periodic deterministic
stopping games admit equilibrium payoffs.

When the payoff processes are general, the periodic game is defined by its starting point,
and by a stopping time that indicates when it restarts. The result of Flesch et al. (1996)
can be applied to show that every such game admits an equilibrium payoff, and one can
generalize Ramsey Theorem to this more general setup. However, it is not clear whether a
concatenation of-equilibria in the periodic games forms a-8quilibrium of the original
game.
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