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Abstract

Randomization adds beneficial flexibility to the construction of optimal simple plans in

dynamic environments. A decision-maker, restricted to the use of simple plans, may find a

stochastic plan that strictly outperforms all deterministic ones. This is true even in

noninteractive deterministic environments where the decision-maker’s choices have no

influence on his signals nor on the future evolution of the system. We describe a natural

decomposition of simple plans into two components: an action selection rule and a behavior

modification rule. In noninteractive environments optimal simple plans do not require

randomization in the action selection rule. Only randomization in the behavior modification

rule may be necessary.
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1. Introduction

A celebrated result of Blackwell [2] states that in every Markov decision problem
(MDP) with finite state and action spaces, the decision-maker has an optimal
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deterministic stationary plan. What happens to this result if we restrict the decision-
maker to simple plans?
The main conclusions to be taken from this paper are the following. First, and

somewhat surprising, is the observation that Blackwell’s conclusion no longer holds
(see Example 2). Even if restricted to noninteractive environments, where the
decision-maker actions have no influence on the information he receives nor on the
future evolution of the environment, a simple plan that uses randomization may
outperform all deterministic simple plans.
Given the above observation, one would like to know more about the nature of

such beneficial randomization. The paper describes a natural decomposition of
simple plans into two components: an action selection rule and a behavior

modification rule. It goes on to show (Theorem 1) that Blackwell’s conclusion is
partly retained. Namely, in noninteractive environments, optimal simple plans do
not require randomization in the action selection rule. Only randomization in the
behavior modification rule may be necessary.
Before proceeding with the main results, the following is a brief elaboration of

Blackwell’s result and its extensions to more general MDPs.
The plans obtained by Blackwell [2] are optimal in very strong senses. One can find

an optimal deterministic stationary plan for every discount parameter that the
decision-maker uses for the purpose of evaluating his payoffs. Moreover, one can
find a single plan that is optimal for all MDPs with discount parameter below some
critical level. Such a plan is also optimal under the average cost criterion; that is,
when the decision-maker tries to maximize the limsup of his average daily payoffs
(see, e.g., [1, Theorem 4.3]).
Moreover, one can generalize Blackwell’s result to MDPs unrestricted to finitely

many actions or states, provided that continuity and compactness assumptions are
satisfied: for every discount parameter there is an optimal deterministic stationary
plan (which may depend on the discount parameter), and, under an appropriate
ergodicity assumption, there is an optimal deterministic stationary plan that is
optimal under the average cost criterion (see, e.g., [1, Theorems 6.4 and 6.5]).
The situation becomes more involved when we move to MDPs with partial

observation (see, e.g., [1] or [3]). These are MDPs where the decision-maker does not
observe the actual state of the world, but, rather, observes a stochastic signal, that
depends on the actual state and on his action. The standard approach to deal with
this model is to define an auxiliary problem, where the state variable is the space of
probability distributions over states of the world—the state of the auxiliary problem
at stage n is the conditional probability over states given the information of the
decision-maker up to that stage. One can then apply tools from the theory of
Markov decision problems with general state space.
Unfortunately, the auxiliary problem does not necessarily satisfy an ergodicity

condition, hence the existence of an optimal plan is not assured. Moreover, it is well
known that in MDPs with partial observation there need not exist an optimal
deterministic plan (see [10, Example 7.1.3]) nor an optimal stationary plan in the
auxiliary problem (see [10, Example 7.1.5]). This means that when partial
observation is present, the conditional distribution over states is not a sufficient
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statistic for an optimal plan. Nevertheless, Rosenberg et al. [9] proved that if the
state and action spaces are finite, as is the space of signals the decision-maker can
observe, then there exist epsilon uniformly optimal plans for patient decision-
makers. That is, for every e40 there exist l40 and a plan s; such that s is e-optimal
for every discount parameter smaller than l: under the discounted evaluation, no
plan outperforms s by more than e:
In general, the epsilon uniformly optimal plan is neither deterministic nor

stationary.1 However, if the model is deterministic, that is, both the new state of the
world and the signal depend deterministically on the current state and on the action
chosen by the decision-maker, then this plan can be chosen to be deterministic and
stationary.
In this paper, an MDP with partial observation is described by the following

entities. (1) Finite sets of states (of the world), of actions and of signals. One of the
states is designated as the initial state. (2) A payoff function that assigns to every state
and action a real number. (3) A stochastic information function, assigning to every
state and action a probability distribution over the set of signals. (4) A stochastic
transition function, assigning to every state and action a probability distribution over
the set of states.
The MDP evolves as follows. At the initial state the decision-maker chooses an

action (with the possible aid of a randomization device). According to the state and
the selected action, the decision-maker is awarded the associated payoff, and is told
the signal that is generated by the stochastic information function.2 A new state is
selected by the stochastic transition function and the process repeats itself with the
newly selected state playing the role of the initial state.
The present note studies the structure of optimal simple plans for MDPs with

partial observation. Simplicity of plans may be imposed by exogenous considera-
tions, for example if the plan needs to be communicated to a less than fully able
executor, or as a cost savings device, especially if the loss to payoff is not significant.
Example 1 below illustrates the point.
Formally, a decision-maker’s plan is a function that assigns to every sequence of

past signals a probability distribution over the set of actions.
Every such plan induces a subplan in each stage of the evolution of the MDP; that

is, the plan’s action selection as a function of the finite sequences of observed future
signals from the current stage on. One measure of the complexity of a plan is the
number of different subplans it induces. A stationary plan, for example, induces the
same subplan in each stage, while a periodic plan with period p induces p different
subplans. As Kalai and Standford [5] observed, this is also the size of the smallest
automaton that can implement the plan. Indeed, one can represent each induced
subplan by a state of the automaton, and, for every state ð¼ subplanÞ and every
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1Here stationary means stationary in the auxiliary problem.
2Notice that this formulation allows both, situations where the decision-maker is or is not informed of

his realized payoffs. The modeler has the freedom to include the realized payoff in the signal that the

decision-maker receives. But even when the decision-maker is not told his payoff, he may be able to infer it

from his signal, as is the case in some of the examples presented here.
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signal, the new state is the one that corresponds to the induced subplan conditioned
on the signal.
This representation gives rise to a natural decomposition of a plan; a plan is given

by an action selection rule and a behavior modification rule. The former indicates
which action should be taken at the current stage, and the latter indicates what
continuation plan to use from now on.
The definitions follow, and we refer the reader to [4] for general discussion,

and to the survey by Kalai [6] for elaboration on uses in decision theory and game
theory.

Example 1 (Long seasons). Consider the following deterministic MDP with partial
observation with 365 states fWinter1;Winter2;y;Winter165;Summer1;Summer2;
y;Summer200g; two actions fTake Umbrella; Don’t take Umbrellag; and two
signals fRainy;Shinyg:3
Transition is deterministic and independent of the action chosen by the decision-

maker: W1 is the initial state, each state Wi leads to state Wiþ1; except for state W165

that leads to state S1; and each state Si leads to state Siþ1; except for state S200 that
leads to state W1: Payoff is given by:

rðWi;TÞ ¼ 1; rðWi;DÞ ¼ 0; i ¼ 1;y; 165;

rðSi;TÞ ¼ 0; rðSi;DÞ ¼ 1; i ¼ 1;y; 200:

Signals depend deterministically on the state: the signal in state Wi; i ¼ 1;y; 165; is
Rainy, and the signal in state Si; i ¼ 1;y; 200; is Shiny. The MDP is depicted in
Fig. 1.
Clearly, by using a plan that counts to 165, and then to 200, a decision-maker can

achieve an average payoff 1, and cannot do better than that.
Let us now consider only plans that can be described by two-state automata. An

automaton C is given by the following.

* A finite state space with one designated as the initial state.
* A finite action set with an action selection rule that assigns to every state of the

automaton a probability distribution over actions.
* A finite set of input signals.
* A transition rule that assigns to every state and every input signal a probability

distribution over the next state.

Notice that the word state in this paper has a double use, since states of the
world are different from states of the automaton. When it is not clear from
the context, we refer to states as either states of the automaton or states of the
world.
The automaton ‘‘plays’’ as follows. (i) Starting at the two initial states, of the

world and the automaton, the decision-maker takes the random action generated by
the automaton’s initial state, and is paid off accordingly. (ii) The automaton is given
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etc.
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the random input signal generated stochastically at the state of the world and the
action just taken. (iii) Based on the initial state of the world and the action chosen by
the automaton, a new state of the world is selected according to the stochastic
transition function of the MDP. (iv) According to its transition rule, the automaton
chooses its next state stochastically, according to the probability distribution at the
initial state and the input signal. (v) The process repeats itself with the current states
of the world and the automaton playing the roles of the initial states.
If a plan can be described by an automaton, then the expected average payoff of

this plan is well defined. Moreover, as the discount parameter goes to 0, the
discounted evaluation of the stage payoffs converges to the expected average payoff.
One can verify that the optimal two state automaton in this example is the one that

appears in Fig. 2, where the action Take umbrella is taken in state sT (the initial
state), and the action Don’t take umbrella is taken in state sD:
The arrows that leave each state denote the (deterministic) transition rule of the

automaton, and the labels next to the arrows describe the associated (deterministic)
input signals about the state just visited. This automaton ‘‘misses’’ twice in every
year: in states W1 and S1: Its expected payoff is, therefore, 363/365, which is pretty
close to the optimal value 1.
In the present note we consider MDPs with partial observation, and with the

added restriction of the decision-maker to use plans of complexity n; i.e., ones that
can be implemented by automata with n or fewer states. We assume that n is fixed
throughout the paper. In the sequel, we identify each plan with the automaton that
implements it.
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Since we bound the size of the automata the decision-maker can use, unless there is
a sufficient statistic with a small state space, the epsilon uniformly optimal plan that
exists by Rosenberg et al. [9] may not be feasible.
Let the set of complexity n plans, CðnÞ; consist of all plans that can be described by

automata with n states. The main interest of this note is the optimal or nearly
optimal automata in this set.4 Two subsets of plans are of interest: deterministic-
transition automata and deterministic-action automata. Deterministic-transition

automata are automata where the transition rule is deterministic, but the action
selection rule may be nondeterministic, whereas deterministic-action automata are
automata where the action selection rule is deterministic, but the transition rule may
be nondeterministic. An automaton is deterministic if both transition rule and action
selection rule are deterministic. The automaton that appears in Fig. 2 is
deterministic.
A MDP with partial observation is called noninteractive, if its transition function

and information function are both independent of the action chosen by the decision-
maker. This means that in every stage of the process, the action chosen by the
decision-maker only affects his stage payoff. It has no effect on his next signal or on
the future evolution of the environment.

Theorem 1. Consider a noninteractive MDP. For every complexity n automaton

CACðnÞ there exists a deterministic-action automaton in CðnÞ that performs at least as

good as C:

As already stated, one may view the above theorem as conveying both a positive
and a negative result. The positive one is the fact that as in the intuition developed
from Blackwell and the follow up literature, despite the restriction to simple rules we
can still choose actions deterministically.
But perhaps more surprising is the negative result that is illustrated by the fact that

Theorem 1 is sharp. More specifically, optimization among simple plans does require
randomization, even if only in the automaton’s transition rules. As explained in the
sequel, randomization introduces a certain amount of flexibility that is lacking in
rigidly deterministic simple plans. Such flexibility may lead to strictly higher expected
payoffs.
Example 2 below illustrates this point. There, the optimal automaton in Cð2Þ

requires the use of randomization in the transition rule. To make the point as sharp
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4 In general, as pointed out by Abraham Neyman, there need not be optimal plans in CðnÞ for any n: As

an example, take a MDP with 4 states fBad;Good; t0; t1g; Bad being the initial state, 2 actions

fInvest;Collectg; and no signals. States t0 and t1 are absorbing, with payoff 0 and 1 respectively. In both

states Bad and Good, payoff is 0 whichever action is chosen. Transition is as follows:

qðt0 j Bad; CollectÞ ¼ qðt1 j Good; CollectÞ ¼ 1

qðGood j Bad; InvestÞ ¼ 1	 qðBad j Bad; InvestÞ ¼ 1=2; qðGood j Good; InvestÞ ¼ 1:

In this MDP, no plan guarantees an expected average payoff 1. The automaton in Cð1Þ that plays

repeatedly the action Collect with probability p and the action Invest with probability 1	 p guarantees an

expected payoff 1	 p=ð1	 ð1	 pÞ=2Þ; which goes to 1 as p goes to 0.
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as possible the example uses a deterministic MDP, so the use of randomization by
the decision-maker has nothing to do with randomness in the environment.
Additional examples that follow illustrate that Theorem 1 is tight in other aspects.

2. Proof of Theorem 1 and Examples

Proof of Theorem 1. Let a noninteractive MDP with partial observation be given.
Let O be the set of states of the world, A the actions of the decision-maker, and
rðo; aÞ the daily payoff when the action a is chosen in state o:
Let an automaton C in CðnÞ be given, and denote its state space by S: Let pCðs;oÞ

be the conditional probability that the MDP is in state o provided the decision-
maker uses C and that the automaton is in state s: Formally, we let pCðsÞ ¼
limn-N EC ½#fkpn j at stage k; the automaton is in state sg�=n; which is well
defined. Whenever pCðsÞ40; pCðs;oÞ ¼ limn-N EC ½#fkpn j at stage k; the
automaton is in state s and the state of the world is og�=ðn � pCðsÞÞ:
Since the actions of the decision-maker influence neither the transition function of

the MDP nor the distribution of signals, we have for every automaton D in CðnÞ that
has the same transitions as C

pCðs;oÞ ¼ pDðs;oÞ for every sAS and every oAO:

Since the payoff is linear in the actions of the decision-maker, one can choose,
for every state s; an action as of the decision-maker that maximizesP

oAO pCðs;oÞrðo; aÞ: as is defined arbitrarily when pCðsÞ ¼ 0:
Define a deterministic-action automaton D in CðnÞ as follows. It has the same

state space and transition rule as C; and in every state sAS the action as is taken. The
automaton D achieves at least as high a payoff as C: &

We now show that Theorem 1 is tight in the following senses. In Example 2 we
show that even for a deterministic noninteractive MDP there need not be an optimal
deterministic simple automaton. In Example 3 we show that if the actions influence
the distribution of the signals, but not the transitions of the MDP, Theorem 1 no
longer holds. In Example 4 we show that if the actions influence the transitions of the
MDP, but not the distribution of the signals, Theorem 1 need not hold as well. In
Example 5 we show that Theorem 1 does not generalize to a model with two
decision-makers.
In all these examples the MDP is deterministic and we take n ¼ 2: the decision-

maker can use automata of size two. Analogous examples can be constructed for any
finite n:

Example 2 (Short seasons, deterministic noninteractive MDP requiring automaton
with stochastic transitions). Take a MDP with 3 states fWinter1;Winter2;Summerg;
two actions fTake umbrella; Don’t take umbrellag; and two signals fRainy;Shinyg:
Transition is deterministic and periodic: W1 is the initial state, it leads to state W2;

which leads to state S; which leads to state W1:
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Payoff is given by:

rðWi;TÞ ¼ 1; rðWi;DÞ ¼ 0; i ¼ 1; 2;

rðS;TÞ ¼ 0; rðS;DÞ ¼ 1:

The signal is Rainy in states W1 and W2; and is Shiny in state S: The MDP is
depicted in Fig. 3.
The best the decision-maker can do using deterministic automata in Cð2Þ is 2/3,

which is obtained by always taking an umbrella. Indeed, if the automaton uses only a
single action, the best it yields is 2/3. If it uses both actions, denote the two states of
the automaton by sT (action T is taken) and sD (action D is taken). If the transition
from sT given the signal Rainy is to sD; the automaton misses in state W2; while if it is
to stay at sT ; it misses in state S:
We now show that there is a deterministic action automaton that yields expected

average payoff 3/4. One can show that this automaton is optimal in Cð2Þ:
Consider the deterministic action automaton KðpÞ; that depends on a single

parameter pA½0; 1�; and has the following transition rule.
In KðpÞ; p is the probability to move to state sD if the current state is sT and the

observed signal is Rainy. The initial state is sT (see Fig. 4).
Under KðpÞ; after a shiny day the automaton will be in state sT ; hence the

probability of success in state W1 is 1, the probability of success in state W2 is 1	 p;

and the probability of success in state S is 1	 ð1	 pÞ2 ¼ 2p 	 p2: In particular, the

expected average payoff is ð2þ p 	 p2Þ=3; which is maximized at p ¼ 1=2; and gives
an expected average payoff 3/4.

Example 3. The present example shows that even in partially noninteractive MDPs,
where the choice of an action influences the next signal but not the transition to the
next state of the world, the conclusion of Theorem 1 no longer holds.
Take a MDP with 2r; states fW1;W2;y;Wr;S1;S2;y;Srg; where r41 is even,

two actions fHome;Workg and three signals f0; 1;	1g:
Transition is deterministic and independent of the actions of the decision-maker:

W1 is the initial state, each state Wi leads to state Wiþ1; except for state Wr that leads
to state S1; each state Si leads to state Siþ1; except for state Sr that leads to W1:
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The payoff is given by:

rðWi;HÞ ¼ rðSi;HÞ ¼ 0; i ¼ 1;y; r;

rðSi;WÞ ¼ 1; rðWi;WÞ ¼ 	1; i ¼ 1;y; r:

The signal the decision-maker receives coincides with his payoff. Thus, as long as the
decision-makers remains at home, he does not learn anything about the weather, but
once he goes to work, he observes it.
Consider the two-state automaton HðpÞ that appears in Fig. 5.
In state sH (the initial state), the action H is taken; in state sW ; the action W is

taken. Transition is as follows: if the automaton is in state sW and the signal is 1, the
automaton remains in the same state, whereas if the signal is 	1; it moves to state sH :
If the automaton is in state sH ; the signal is 0, and then the automaton remains in
state sH with probability 1	 p; and moves to state sW with probability p:
One can verify that the optimal deterministic automaton in Cð2Þ is Hð1Þ; which

achieves an expected average payoff 1/4: this automaton goes to work all summer,
and every other day during winter. Consider now the automaton HðpÞ for 0opo1:
During winter, the automaton goes to work in each day with probability p: Once
summer starts, it takes the automaton on average 1=p stages to observe that, and
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thereafter it goes to work for the remaining of the season. When p is small, and r is
much larger than 1=p; the expected average payoff of this automaton is close to 1.

Example 4. The present example shows that if the selected action influences the
transition of the MDP but not the signals, Theorem 1 no longer holds.
Consider an MDP with three states fo1;o2;o3g (o1 being the initial state), three

actions fa1; a2; a3g and no signals. The payoff is 1 if action ai is chosen in state oi;
and 0 otherwise:

rðoi; ajÞ ¼ 1 if i ¼ j; rðoi; ajÞ ¼ 0 if iaj:

Transition is as appears in Fig. 6.
Any deterministic action automaton in Cð2Þ can use only two actions, and

therefore its expected average payoff is 0. However, there is an automaton in Cð1Þ
that achieves on average 1/3 (choose all three actions with equal probabilities).
The same point can be made by properly adapting the example studied by Piccioni

and Rubinstein [8].

Example 5. The present example shows that Theorem 1 cannot be generalized to the
setup of several decision-makers.
We consider an MDP with a single state and two decision-makers DM1 and DM2,

or a repeated game. Each of the two decision-makers has three actions, fa1; a2; a3g
and fb1; b2; b3g; respectively (see Fig. 7).
There is one state of the world, so the transition is trivial, and there are no signals.

The MDP is zero-sum, so the sum of the payoffs of the two decision-makers is 0. The
payoff of DM1 is:

rðai; bjÞ ¼ 1 if i ¼ j; rðai; bjÞ ¼ 0 if iaj:
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By using an automaton with a single state, that chooses each action with probability
1/3, DM1 can guarantee that his expected average payoff is at least 1/3, and DM2
can guarantee that his expected average payoff does not fall below 	1=3: However,
for any deterministic action automaton of DM1 in Cð2Þ; DM2 has a deterministic
automaton in Cð1Þ that guarantees him an expected average payoff 0. Indeed, any
deterministic action automaton of DM1 in Cð2Þ uses at most two actions. If DM2
uses the automaton that deterministically chooses the action that corresponds to the
one not used by DM2, the expected average payoff is 0.

3. Interpretation and discussion

1. Example 1: On randomization, flexibility and bounded recall. At first glance, it
seems surprising that a decision-maker would choose to randomize in a
noninteractive one-person decision problem. Under the conditions of Kuhn’s [7]
theorem (restricted to the case of one player), any nondeterministic plan is a convex
combination of deterministic plans, with payoffs being linear in the convex
combinations. Thus, no nondeterministic plan could do better than all deterministic
plans. Fig. 8 helps clear the situation.
For one cycle ðW1;W2;SÞ; the graph describes the probability tree of the optimal

plan in Example 2. It gives the paths that can occur in the cycle.
The state of the automaton at the beginning of the cycle is sT : Then, a signal Rainy

is observed: with probability 0.5 the new state is sT ; and with probability 0.5 it is sD:
Again a signal Rainy is received, and a new state is chosen. A bold circle means that
at that stage the action chosen by the automaton is ‘‘correct’’, and a thin circle means
it is ‘‘incorrect’’.
Note that any path yields an average payoff at least 2/3. The path sT–sT–sT can be

represented by an automaton that prescribes always taking an umbrella, and the
path sT–sD–sD can be represented by an automaton that prescribes taking an
umbrella after a shiny day, and not taking an umbrella after a rainy day. These two
automata are deterministic, and yield average payoff 2/3. The middle path, sT–sT–
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sD; yields average payoff 1, but alas, cannot be generated by a deterministic
automaton of size 2.
Thus, with probability 0.25, the randomizing automaton adds to the decision-

maker a behavior pattern not possible with deterministic automata of size 2. Or, in
other words, flexibility is not possible otherwise. This is exactly where our gain came
from.
It is also easy to see why the conclusion of Kuhn’s theorem does not hold. Kuhn’s

decomposition of the optimal plan in that example involves two deterministic plans
(automata) of two states, and one deterministic plan of three states, which is not
permissible.
In terms of Kuhn’s assumptions, requiring a decision-maker to use plans

describable by automata with bounded number of states, forces him to have
imperfect recall—the automaton only ‘‘knows’’ what state it is in but not how it got
there.
Example 2 shows that simplicity, flexibility and randomization remain tied

together even in the most elementary environments.
2. Example 3: On randomization and learning. In Example 3 randomization is used

for experimenting and learning. This example illustrates a subtle, yet important,
point. Here, the selected action, while not affecting the transitions, does have an
effect on the future state of the system, namely the informational state. This is not
the case in Example 2 where the decision-maker observes the same signal regardless
of his action. Thus, the randomization illustrated in Example 2 is more revealing
since it takes place in environments that are in a certain sense more truly time
independent of the decision-maker actions.
The overall logic of the automaton HðpÞ depicted in Fig. 5 is clear. At the

beginning of each ‘‘season’’, the state of the world is unknown. Randomization
allows the decision-maker to experiment, and find out the true state of the world.
The optimal rate of such experiments is carefully balanced. It is not too high, so that
he does not experiment too often once the information is already revealed, and it is
not too low, so the information is not revealed too late.
One could argue, however, that even in Example 2 there is informational time

dependency which is not due to the physical rules of the environment, but to the
constrains (self-imposed or not) on the decision-maker. Even if given information, a
limited decision-maker may not have the ability to ‘‘remember it’’ due to a limitation
on the number of states. His optimal automaton is constructed to do learning of
information that is available from the environment, but not in his limited memory.
In this sense we may want to differentiate and think of Example 3 as one involving
exogenous dependencies between environment changes and action, whereas in
Examples 1 and 2 this dependency is endogenously chosen.
Viewed in this way, the optimal design of a simple plan should address the issue of

what information should be forgotten, or ignored, to be generated when needed by
experimentation.
3. On the type of simplification device. There is no universal agreement on the

proper way of measuring complexity, or simplicity, of plans. Two-state automata
enable us to represent clearly and concisely simple rules of thumb. Note that
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automata are more suitable to dynamic environments with signals than Markovian
plans, since the latter force the decision-maker to ignore the observed signal.
Moreover, the number of states of the automaton can serve as a fine measure of the
complexity of the plan. This is unlike Turing machines where all computable decision
rules can be described by the same universal Turing machine, that requires only a
small number of states (see, e.g., [4]).
But under most reasonable measures of complexity two-state automata would be

considered simple. Thus, regardless of the debate on complexity, at a minimum, this
note establishes a connection between randomization and a strong version of
simplicity.
4. The complexity of randomization. The discussion above suggested that the

performance of simple plans may be improved through randomization. It ignored
however, the cost and complexity of the randomization process itself. This may be
the case if the randomization is done in one’s mind, but not if the randomization is
done by the use of some costly device. Does randomization improve performance
even when its cost is taken into consideration seems like an interesting open
question.
5. Open problems. The above examples raise a large number of general open

questions. For example,

(a) When is optimality obtained by a random (rather than a deterministic)
automaton?

(b) Can one bound the performance of the optimal automaton (with an exogenous
bound on the number of states)?

(c) Can one bound the improvement by which the optimal random automaton will
outperform the optimal deterministic automaton?
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