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Abstract. We study stochastic games with incomplete information on one side, in which the
transition is controlled by one of the players.

We prove that if the informed player also controls the transitions, the game has a value, whereas
if the uninformed player controls the transitions, the max-min value as well as the min-max value
exist, but they may differ.

We discuss the structure of the optimal strategies, and provide extensions to the case of incom-
plete information on both sides.
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1. Introduction. In a seminal work, Aumann and Maschler [1, 2] introduced
infinitely repeated two-player zero-sum games with incomplete information on one
side. Those are repeated games where the payoff matrix is known to one player, say
player 1, but is not known to the other player—all player 2 knows is that the payoff
matrix was drawn according to some known probability distribution from a finite set
of possible matrices. Aumann and Maschler proved that those games have a value.

The issue faced by player 1 is the optimal use of information. On the one hand,
player 1 needs to reveal his information (at least partially) in order to make use of it.
On the other hand, any piece of information that is revealed to player 2 can later be
exploited against player 1.

In the optimal strategies devised by Aumann and Maschler, player 1 reveals part
of his information at the first stage, but no further information is revealed during
the game. Player 2, on the other hand, has to play optimally whatever the actual
payoff matrix may be. Aumann and Maschler achieved this by using Blackwell’s
approachability strategies.

When the underlying game is a stochastic game rather than a repeated one, the
difficulties the players face are more serious.

Is it optimal for player 1 to reveal information only once in every state, or will
he reveal information several times in each state? In repeated games, it does not
help to dilute the revelation of information over time, since player 2 would wait until
player 1 has revealed all the information he will ever reveal, and since interim payoffs
are irrelevant in the long run. In stochastic games, by contrast, the game can move
to a different state that can be more or less favorable to the informed player. By
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giving away some information about the true game at the initial stage, player 1 might
induce player 2 to adapt in an adverse way, while postponing this disclosure might
allow player 1 to escape from specific states. This is a crude explanation for why it
may help player 1 to conceal his information for a while.

For player 2 the issue is to devise the analog of Blackwell’s approachability strate-
gies for stochastic games.

Sorin [20, 21] and Sorin and Zamir [23] studied classes of stochastic games with
incomplete information on one side that have a single nonabsorbing state, and proved
that these games have a min-max value, a max-min value, and that the values of the
n-stage (resp., λ-discounted) games converge as n goes to infinity (resp., as λ goes
to 0) to the max-min value. Rosenberg and Vieille [17] studied recursive games with
incomplete information on one side, and proved that the max-min value exists and
is equal to the limit of the values of n-stage games (resp., λ-discounted games) as n
goes to infinity (resp., as λ goes to 0).

In the present paper we study stochastic games in which one player controls the
transitions; that is, the evolution of the stochastic state depends on the actions of one
player but is independent of the actions of his opponent.

We show that if player 1 (who is the informed player) controls the transitions,
then the game admits a value. We also propose a specific optimal strategy for player
1 and explain the way this strategy uses the additional information he possesses.
Roughly speaking, the state space is partitioned into disjoint sets, which are called
communicating sets. Whenever the play enters a communicating set, player 1 chooses
a stationary nonrevealing strategy, and he plays this strategy until a new communicat-
ing set is visited. The random choice of the stationary strategy itself may be revealing,
in that the distribution used at stage n to select a stationary strategy depends on the
actual payoff function.

If player 2 controls the transitions, then the game admits a min-max value and a
max-min value. We use an example to show that the two values may differ.

The techniques and the characterizations we provide extend the ideas of Aumann
and Maschler for incomplete information games to our framework.

In the last section of the paper we extend the existence results to the case of
stochastic games with a single controller and incomplete information on both sides;
that is, to the case when each of the players has some partial private information
about the true stochastic game being played.

2. The model and the main results.

2.1. The model. A two-player zero-sum stochastic game G is described by (i)
a finite set Ω of states, and an initial state ω ∈ Ω; (ii) finite action sets I and J for the
two players; (iii) a transition rule q : Ω × I × J → ∆(Ω), where ∆(Ω) is the simplex
of probability distributions over Ω; and (iv) a reward function g : Ω × I × J → R.

A two-player zero-sum stochastic game with incomplete information is described
by a finite collection (Gk)k∈K of stochastic games, together with a distribution p ∈
∆(K) over K. We assume that the games Gk differ only through their reward functions
gk, but they all have the same sets of states and actions, and the same transition rule.
We denote the common transition rule by q.

The game is played in stages. An element k ∈ K is chosen according to p. Player
1 is informed of k, while player 2 is not. At every stage n ∈ N, the two players
choose simultaneously actions in ∈ I and jn ∈ J , and ωn+1 is drawn according to
q(· | ωn, in, jn). Both players are informed of (in, jn, ωn+1). We stress that the actual
reward gk(ωn, in, jn) is not told to player 2 (but is known to player 1).
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We parametrize the game by the initial distribution p and by the initial state ω,
and denote it by Γ(p, ω). We write Γ for (Γ(p, ω))(p,ω)∈∆(K)×Ω.

A few remarks are in order. This model is an extension of the classical model of
zero-sum stochastic games. It is also an extension of Aumann and Maschler’s model
of repeated games with incomplete information, where a zero-sum matrix game is first
drawn using p, then played repeatedly over time. Here, nature chooses a stochastic
game that is then played over time.

We assume without loss of generality (w.l.o.g.) that 0 ≤ gk ≤ 1 for every k ∈ K,
and we identify each k ∈ K with the probability measure over K that gives weight 1
to k.

2.2. Strategies and values. Players may base their choices on the stochastic
states the play has visited so far, as well as on past choices of actions (of the two
players). Player 1 can base his choices also on the state of the world k.

The space of histories of length n is Hn = (Ω × I × J)n−1 × Ω, the space of
finite histories is H = ∪n∈NHn, and the space of plays (infinite histories) is H∞ =
(Ω× I × J)∞. Hn defines naturally a finite algebra Hn over H∞. We equip H∞ with
the σ-algebra ∨n∈NHn spanned by all cylinder sets. A (behavioral) strategy of player
1 is a function σ : K×H → ∆(I). A strategy for player 2 is a function τ : H → ∆(J).
A strategy σ = (σk)k∈K of player 1 is nonrevealing if σk is independent of k ∈ K.1

A strategy σ is stationary if the mixed action played at every stage depends
only on the current state. We identify each vector x = (xω)ω∈Ω ∈ (∆(I))Ω with
the stationary strategy that plays the mixed action xω whenever the game visits ω.
Stationary strategies of player 2 are defined analogously.

Every distribution p, every initial stochastic state ω, and every pair of strategies
(σ, τ) induce a probability measure Pp,ω,σ,τ over K×H∞ (equipped with the product
σ-algebra). We denote by Ep,ω,σ,τ the corresponding expectation operator.

We let k, ωn, in and jn denote, respectively, the actual game being played, the
current state at stage n, and the actions played at stage n. These are random variables.

Define the expected average payoff up to stage N by

γN (p, ω, σ, τ) = Ep,ω,σ,τ [gN ] ,

where gN = 1
N

∑N
n=1 g

k(ωn, in, jn). For fixed strategies σ, τ , γN (p, ω, σ, τ) is linear in
p and 1-Lipshitz.

We recall the definitions of the max-min value, the min-max value, and the (uni-
form) value.

Definition 1. Player 1 can guarantee φ ∈ R in the game Γ(p, ω) if, for every
ε > 0, there exists a strategy σ of player 1 and N ∈ N such that

∀τ,∀n ≥ N, γn(p, ω, σ, τ) ≥ φ− ε.

We then say that the strategy σ guarantees φ− ε in Γ(p, ω).
Player 1 can guarantee a function φ : ∆(K) × Ω → R if player 1 can guarantee

φ(p, ω) in the game Γ(p, ω), for every (p, ω) ∈ ∆(K) × Ω.
Note that, due to the Lipshitz property on payoffs and the compactness of ∆(K),

the integer N in Definition 1 can be chosen to be independent of (p, ω). The definition

1The strategy is nonrevealing in the sense that knowledge of the strategy σ and of past play does
not enable player 2 to gain information on k. This property relies on the fact that transitions are
independent of k.
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of a function that is guaranteed by player 2 is similar, with the roles of the two players
exchanged.

Definition 2. Player 2 can defend φ ∈ R in the game Γ(p, ω) if, for every ε > 0
and every strategy σ of player 1, there exists a strategy τ of player 2 and N ∈ N such
that

∀n ≥ N , γn(p, ω, σ, τ) ≤ φ + ε.(1)

We say that such a strategy τ defends φ + ε against σ in Γ(p, ω).
Player 2 can defend a function φ : ∆(K)×Ω → R if player 2 can defend φ(p, ω)

in the game Γ(p, ω), for every (p, ω) ∈ ∆(K) × Ω.
The definition of a function that is defended by player 1 is similar, with the roles

of the two players exchanged. The following lemma follows from the definitions.
Lemma 3. Player 1 can guarantee (resp., defend) max{φ, φ′} as soon as he

can guarantee (resp., defend) both φ and φ′. Player 2 can guarantee (resp., defend)
min{φ, φ′} as soon as he can guarantee (resp., defend) both φ and φ′.

Definition 4. A function φ : ∆(K) × Ω → R is
• the (uniform) value of Γ if both players can guarantee φ;
• the max-min value of Γ if player 1 can guarantee φ and player 2 can defend
φ;

• the min-max value of Γ if player 1 can defend φ and player 2 can guarantee
φ.

Note that the value exists if and only if the max-min value and min-max value
exist and coincide.

The value (resp., max-min value, min-max value) is denoted by v (resp., v, v̄)
when it exists. Observe that v ≤ v̄ whenever the two exist. Note that each of the
functions v and v̄ is 1-Lipshitz in p as soon as it exists. When the value v exists, any
strategy that guarantees v up to ε is ε-optimal. Strategies that are ε-optimal for each
ε > 0 are also termed optimal.

2.3. Related literature. Most of the literature deals with the polar cases where
either Ω or K is a singleton. In the former case, the game is a repeated game with
incomplete information. Such games have a value; see Aumann and Maschler [2].
Moreover, an explicit formula for the value exists. Letting u∗(p) be the value of
the matrix game with payoff function

∑
k pkg

k(·, ·), the value of the repeated game
with incomplete information is the concavification cav u∗ of u∗ (see section 3.1 for
definitions).

When K is a singleton the game is a standard stochastic game. Such games have
a value; see Mertens and Neyman [9].

For general stochastic games with incomplete information, little is known, but
some classes were studied in the literature. For “Big Match” games Sorin [20, 21] and
Sorin and Zamir [23] proved the existence of the max-min value and of the min-max
value. These values may differ.

For recursive games, Rosenberg and Vieille [17] proved that the max-min value
exists and provided an example where the value does not exist.

Parthasarathy and Raghavan [14] were the first to study the class of stochastic
games in which one player controls the transitions. They proved that in this class the
value exists, and both players have optimal stationary strategies. They also studied
the two-player non-zero-sum game. Filar [5] studied the situation in which states are
partitioned into two subsets, and each player controls the transitions from states in
his subset of the partition. Several finite-stage algorithms that calculate the value
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and optimal stationary strategies were proposed in the literature (see the survey by
Raghavan and Filar [15] and the references therein).

Recently Renault [16] studied games where transitions do not depend on the
actions chosen by the players and only player 1 observes the current state of the
world. All that player 2 observes are the actions of player 1.

2.4. Statements of the results. In the present paper we consider games where
a single player controls the transitions.

Definition 5. Player 1 controls the transitions if, for every ω ∈ Ω and every
i ∈ I, the transition q(· | ω, i, j) does not depend on j. Player 2 controls the transitions
if the symmetric property holds. We then simply write q(· | ω, i) or q(· | ω, j) depending
on who controls the transitions.

We prove the following two results.
Theorem 6. If player 1 controls the transitions, the value exists.
Theorem 7. If player 2 controls the transitions, both the min-max value and

max-min value exist.
We provide an example of a game where player 2 controls the transitions and v �=

v. We also provide a characterization of v̄ and v as a unique solution to a functional
equation, and we study the structure of simple optimal strategies of player 1.

We prove no result on the existence of the limit of the values of the finitely
repeated games. In the games analyzed so far (see section 2.3), this limit is known
to exist and coincides with v. This property is conjectured to hold in general by
Mertens [8].

3. Various tools. This section gathers a few results that we use in subsequent
sections. The first three subsections introduce a few extensions of tools used in the
analysis of games with incomplete information.

For three vectors a, b, c ∈ RK , c = a + b if and only if ck = ak + bk for every
k ∈ K, c = max{a, b} if and only if ck = max{ak, bk} for every k = 1, . . . ,K, and
a ≥ b if and only if ak ≥ bk for every k = 1, . . . ,K. For a scalar r ∈ R, c = a + r if
and only if ck = ak + r for every k = 1, . . . ,K, and c = ra if and only if ck = rak for
every k = 1, . . . ,K. Finally, the L1-norm and L∞-norm will be denoted by ‖·‖1 and
‖·‖∞, respectively.

3.1. Concavification. Given a continuous function u : ∆(K) → R, we denote
by cav u its concavification, namely, the least concave function v defined over ∆(K),
such that v ≥ u. It is the function whose hypograph is the convex hull of the hy-
pograph of u. Similarly, we denote by vex u its convexification, namely, the largest
convex function v such that v ≤ u. Both cav u and vex u are well defined. Thus, cav
and vex are functional operators that act on real-valued functions defined on ∆(K).

Lemma 8 (see, e.g., Laraki [7]). When ∆(K) is endowed with the L1-norm, the
two operators cav and vex map C-Lipshitz functions into C-Lipshitz functions.

Lemma 9. When the set of functions u : ∆(K) → R is endowed with the L∞-
norm, the two operators cav and vex are nonexpansive.

Proof. For any two real-valued continuous functions over ∆(K), u, and v, one has

‖u∗∗ − v∗∗‖∞ ≤ ‖u∗ − v∗‖∞ ≤ ‖u− v‖∞,

where u∗(x) = inf{〈y, x〉 − u(y), y ∈ RK} is the conjugate of u. Since u∗∗ = cav u,
the result follows.

The argument for the operator vex is analogous.
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The following lemma is classical (see, e.g., Mertens, Sorin, and Zamir [10, Corol-
lary V.1.3], or the discussion in Zamir [24, p. 118]).

Lemma 10. Assume that player 1 can guarantee u. Then player 1 can guarantee
cav u.

Proof. We briefly recall the main ideas of the proof. Prior to the first stage,
player 1 performs a state-dependent lottery, designed as follows. By the Carathéodory
theorem there exist pe ∈ ∆(K), αe ∈ [0, 1], for e = 1, . . . , |K|+1, such that

∑
e αe = 1,∑

e αepe = p, and

cav u(p) ≤
∑
e

αeu(pe) + ε.(2)

If u is continuous, ε may be set to zero in (2). To guarantee cav u(p) in Γ(p, ω),
player 1 chooses a fictitious distribution pe, and he plays optimally in Γ(pe, ω). The
distributions (pe) must satisfy that their average is p. We now provide one mechanism
player 1 can employ.

For each e set µk(e) = αep
k
e/p

k if pk > 0, and we let µk be arbitrary if pk =
0. Observe that

∑
e p

kµk(e) =
∑

e αep
k
e = pk. The following strategy of player 1

guarantees cav u(p) − 2ε: given k, choose e according to µk, and play a strategy σe

that guarantees u(pe) − ε.

The following result will be useful later.

Lemma 11. Let (Ai)i∈I be a finite collection of convex closed upwards compre-
hensive sets, and let A be the set

{
a ∈ RK : a = maxi∈I ai, ai ∈ Ai

}
. Then

fA(p) = (cav max
i∈I

fAi
)(p),

where, for any convex upwards comprehensive set B, fB(p) = infa∈B 〈a, p〉 .
Proof. Since each Ai is upwards comprehensive, A coincides with ∩iAi. Therefore

fA ≥ fAi for each i. In particular fA ≥ maxi∈I fAi . Since fA is concave, fA ≥
cav maxi∈I fAi .

To prove the opposite inequality, we first observe that if B is convex, closed, and
upwards comprehensive, one has

B =
{
a ∈ RK : 〈a, p〉 ≥ fB(p) for each p ∈ ∆(K)

}
.(3)

Set g = cav maxi∈I fAi , and

D =
{
a ∈ RK : 〈a, p〉 ≥ g(p) for each p ∈ ∆(K)

}
.

Since g ≥ fAi for each i ∈ I, and using (3) with B = Ai, one has D ⊆ Ai. Therefore,
D ⊆ A, which readily implies g ≥ fA.

3.2. Approachability. We present here the basic approachability result of Black-
well [4], in the framework of stochastic games. Let G be a stochastic game with payoffs
in RK . The description of such a game is the same as that of a two-player zero-sum
stochastic game given in section 2.1, except that the reward function g now takes
values in RK . The definition of strategies in this framework is similar to that given
in section 2.2.

We denote ḡN = 1
N

∑N
n=1 g(ωn, in, jn) ∈ RK , the average vector payoff in the

first N stages.
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Definition 12. A vector a ∈ RK is approachable by player 2 at ω if, for every
ε > 0, there is a strategy τ of player 2 and N ∈ N such that2

∀σ,Eω,σ,τ

[
sup
n≥N

(ḡn − a)
+

]
≤ ε.

We say that such a strategy τ approaches a + ε at ω.

In other words, for every ε player 2 has a strategy such that the average payoff
vector will eventually not exceed a + ε. Note that a is approachable if and only if
a+ ε is approachable for every ε > 0, so that the set of approachable vectors is closed
and upwards comprehensive.

Our definition differs slightly from that of Blackwell [4], where the strategy τ
is required to be independent of ε (i.e., the original definition of Blackwell reads
as ∃τ,∀ε > 0, etc.). Any vector a that is approachable in Blackwell’s sense is also
approachable in our sense. The two definitions are not equivalent. However, it is easily
checked that, if a is approachable (in our sense) at each state, it is also approachable
in Blackwell’s sense.

Every stochastic game with incomplete information Γ(p, ω) induces a stochastic
game with vector payoffs ΓV (ω), in which the payoff coordinates are given by the
reward functions of the component games (Gk) of Γ(p, ω). The next lemma relates
the two games. Its proof is straightforward.

Lemma 13. If a ∈ RK is approachable at ω in the game ΓV , then player 2 can
guarantee 〈a, p〉 in Γ(p, ω) for every p ∈ ∆(K).

We now state Blackwell’s sufficient condition for approachability in this context.
Denote by u∞(p, ω) the uniform value of the two-player zero-sum stochastic game
with reward function

∑
k∈K pkg

k(ω, ·, ·). The existence of u∞ follows, by Mertens
and Neyman [9] or by Parthasarathy and Raghavan [14]. We also denote by un(p, ω)
the value of the n-stage version of that game (thus, limn→∞ un = u∞, and the limit
is uniform in p).

Proposition 14. If cav u∞(p, ω) ≤ 〈a, p〉 for every (p, ω) ∈ ∆(K) × Ω, then a
is approachable in ΓV by player 2 at ω, for each ω ∈ Ω.

In this statement (and in later ones), cav u∞ is the concavification of u∞ with
respect to the first variable, p: cav u∞(p, ω) = (cav u∞(·, ω))(p).

Sketch of the proof. Let ε > 0, and choose N such that ‖uN − u∞‖ ≤ ε, so that
cav uN (p, ω) ≤ 〈a + ε, p〉. We define an auxiliary game with vector payoffs, where
each stage corresponds to N stages in the original game. We apply Blackwell’s result
to the auxiliary game, noting that Blackwell’s proof still holds when the stage game
changes from stage to stage, with payoffs remaining bounded.

A more precise result was proved by Milman [13, Theorem 2.1.1]. For results with
similar flavor, see Shimkin and Shwartz [19].

3.3. Information revelation. Let σ be a given strategy of player 1. For n ∈ N,
we denote by pn the conditional distribution over K given Hn: it is the belief held
by player 2 about the true game being played.3 The difference ‖pn − pn+1‖1 may be
interpreted as the amount of information that is revealed at stage n.

It is well known (see, e.g., Sorin [22, Lemma 3.4] or Mertens, Sorin, and Zamir

2For every real c ∈ R, c+ = max{c, 0}.
3The value of pn at a specific atom of Hn depends on σ but not on τ . Since the distribution on

Hn depends on τ , the law of pn depends on both σ and τ .
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[24, Lemma IV.2.1]) that, for each τ ,

Ep,ω,σ,τ

[ ∞∑
n=1

‖pn − pn+1‖2
2

]
≤ |K| .(4)

Given p ∈ ∆(K), we denote by σp the average nonrevealing strategy defined by
σp(h) =

∑
k∈K p(k)σ(k, h) for each finite history h. It is convenient to relate the

benefit derived by player 1 from using his information at a given stage to the amount
of information revealed at that stage. Let n ∈ N be given. The expected payoff at
stage n, conditional on past play, is

Ep,ω,σ,τ [gn|Hn] =
∑
k∈K

pn(k)gk(ωn, σ(k, hn), τ(hn)),

where σ(k, hn) and τ(hn) are the mixed moves used by the two players at that stage.4

By Proposition 3.2 and Lemma 3.13 in Sorin [22],

|Ep,ω,σ,τ [gn|Hn] − 〈pn, g(ωn, σ
pn(hn), τ(hn))〉| ≤ E [‖pn − pn+1‖1 |Hn] .(5)

Definition 15. Let T̃ be a set of strategies of player 2. Let ε > 0 and σ
be given. The strategy τ̃ ∈ T̃ is ε-exhausting information given (p, ω) and σ if τ̃

maximizes Ep,ω,σ,τ [
∑∞

n=1 ‖pn − pn+1‖2
2] up to ε over T̃ .

This notion is relative to the class T̃ . Which class of strategies is meant will
always be clear from the context.

Lemma 16. Let T̃ , ε, σ, (p, ω) as in Definition 15. Let τ̃ ∈ T̃ be an ε-exhausting

strategy given (p, ω) and σ, and let N ∈ N be such that Ep,ω,σ,τ̃ [
∑∞

n=N ‖pn − pn+1‖2
2]

≤ ε. Then for each strategy τ ∈ T̃ that coincides with τ̃ until stage N , one has

Ep,ω,σ,τ

[ ∞∑
n=N

‖pn − pn+1‖1

]
≤

√
2ε, and Ep,ω,σ,τ [‖pl − pN‖2] ≤

√
2ε for each l ≥ N.

Proof. By Jensen’s inequality and since (pn) is a martingale, for every l ≥ N one
has

(Ep,ω,σ,τ [‖pl − pN‖2])
2 ≤ Ep,ω,σ,τ

[
‖pl − pN‖2

2

]
= Ep,ω,σ,τ

[
l−1∑
n=N

‖pn − pn+1‖2
2

]
.

(6)

The equality in (6) is a standard result for martingales; see, e.g., Karatzas and Shreve
[6, p. 32]. The second inequality follows. The first inequality follows using Jensen’s
inequality (applied to each stage independently) and since ‖ · ‖1 ≤ ‖ · ‖2.

The next lemma is specific to stochastic games with incomplete information. In
effect, it proves that the amount of information revealed by player 1 up to stage l ∈ N
is an upper bound on the excess gain from the private information.

Lemma 17. Let (σ, τ) be given. For every p ∈ ∆(K), every ω ∈ Ω, and every
l ∈ N, one has

|Ep,ω,σ,τ [gl] − Ep,ω,σp,τ [gl]| ≤ 4Ep,ω,σ,τ

[
l∑

m=1

‖pm − pm+1‖1

]
.

4There is a small notational inconsistency here, since the right-hand side is the value of the
left-hand side on a typical atom of Hn.
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Proof. To distinguish between Ep,ω,σ,τ and Ep,ω,σp,τ , we denote the latter by

Ẽp,ω,σp,τ . Let n ≤ l be given. Since σp is nonrevealing, and by the Lipshitz property,∣∣∣〈pn, g(ωn, σ
pn(hn), τ(hn))〉 − Ẽp,ω,σp,τ [gn|Hn]

∣∣∣
= |〈pn, g(ωn, σ

pn(hn), τ(hn))〉 − 〈p, g(ωn, σ
p(hn), τ(hn))〉|

≤ 2 ‖pn − p‖1 .(7)

By (5), it follows that

∣∣∣Ep,ω,σ,τ [gn|Hn] − Ẽp,ω,σp,τ [gn|Hn]
∣∣∣ ≤ 2 ‖pn − p‖1 + Ep,ω,σ,τ [‖pn − pn+1‖1 |Hn] .

(8)

On the other hand, it is easily checked that the probabilities Pn
p,ω,σ,τ and P̃n

p,ω,σp,τ

induced by P and Pp,ω,σp,τ on Hn satisfy

∥∥∥Pn
p,ω,σ,τ − P̃n

p,ω,σp,τ

∥∥∥
1
≤ Ep,ω,σ,τ

[
n∑

m=1

‖pm − pm+1‖1

]
.(9)

By (8) and (9),

∣∣∣Ep,ω,σ,τ [gn] − Ẽp,ω,σp,τ [gn]
∣∣∣ ≤ 4Ep,ω,σ,τ

[
n∑

m=1

‖pm − pm+1‖1

]
,

which implies the result.

3.4. A partition of states. In this section we define a partition of the set of
states that will be extensively used in what follows. It hinges on the fact that a
single player controls the transitions, but it does not matter who is the controller.
The partition is similar to the one defined by Ross and Varadarajan [18] for Markov
decision processes, who also provide an algorithm to calculate it.

We assume that player 1 controls the transitions. The partition when player 2
controls the transitions is defined analogously. Since transitions are independent of
player 2’s actions, we here omit player 2’s strategy from the notations.

Given ω ∈ Ω, we denote by

rω = min {n ∈ N, ωn = ω}

the stage of the first visit to ω. By convention, the minimum over an empty set is
+∞.

Definition 18. Let ω1, ω2 ∈ Ω. We say that ω1 leads to ω2 if ω1 = ω2, or if
Pω1,σ(rω2

< +∞) = 1 for some strategy σ of player 1.
Note that the relation leads to is reflexive and transitive.
We define an equivalence relation over Ω by

ω ↔ ω′ if and only if ω leads to ω′ and ω′ leads to ω.

The equivalence classes of this relation are called communicating sets. Given ω ∈ Ω,
we let Cω denote the communicating set that contains ω, and we define

Iω = {i ∈ I : q(Cω | ω, i) = 1}.
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Thus, whenever Cω contains at least two elements, by properly selecting actions in
(Iω′)ω′∈Cω player 1 can ensure that the play reaches any state in Cω infinitely often,
provided the play starts in Cω.

The set Iω may (but does not have to) be empty only if |Cω| = 1. Actions in Iω
are called stay actions, and any state ω such that Iω = ∅ is a null state. The set of
nonnull states is denoted by Ωc. Note that Cω ⊆ Ωc whenever ω ∈ Ωc.

Lemma 19. ω ∈ Ωc if and only if there is a stationary strategy xCω such that Cω

is a recurrent set for x.

Thus, a state is null if it is visited only finitely many times, whatever player 1
plays: Iω = ∅ if and only if ω is transient for every stationary strategy x.

Proof. We start with the direct implication. Let ω ∈ Ωc. For ω′ ∈ Cω, define
xω′ ∈ ∆(A) by

xω′ [i] =

{
0, i �∈ Iω′ ,
1/|Iω′ |, i ∈ Iω′ ,

and let x be any stationary strategy that coincides with xω′ in each state ω′ ∈ Cω. It
is easy to show that Cω is recurrent under x.

The reverse implication is straightforward.

Some communicating sets are absorbing, in the sense that once entered, the play
remains there forever. We now single them out. Let x∗ be a fully mixed stationary
strategy, i.e., x∗

ω[i] > 0 for every ω ∈ Ω and every i ∈ I. If R ⊆ Ω is a recurrent set
for x∗, then R is a communicating set, and Iω = I for every ω ∈ R.

We denote by Ω0 the union of these sets:

Ω0 = ∪{R : R recurrent for x∗} = {ω ∈ Ω : Iω′ = I for every ω′ ∈ Cω}.

The following lemma implies that the max-min value and the min-max value are
constant over Cω for every ω ∈ Ω0, provided they exist.

Lemma 20. Assume player 1 controls transitions. Let ω ∈ Ω and ω′ ∈ Cω. If
one of the players can guarantee φ in Γ(p, ω), he can also guarantee φ in Γ(p, ω′).

Proof. Assume first that player 1 can guarantee φ in Γ(p, ω). Let σ be a strategy
that guarantees φ − ε in Γ(p, ω), and let σ∗ be the strategy that plays xCω until rω,
then switches to σ. In the game Γ(p, ω′), the strategy σ∗ guarantees φ − ε′ for each
ε′ > ε.

Assume now that player 2 can guarantee φ in Γ(p, ω), but assume to the contrary
that he cannot guarantee φ in Γ(p, ω′) for some ω′ ∈ Cω. We argue that player 2
cannot guarantee φ in Γ(p, ω), a contradiction. Since player 2 cannot guarantee φ in
Γ(p, ω′), there is ε > 0 such that for every strategy τ of player 2 and every N ∈ N there
is a strategy στ,N of player 1 and an integer nτ,N ≥ N such that γnτ,N

(p, ω′, στ,N , τ) >
φ + ε. Let τ and N be given. Let σ∗ be the strategy of player 1 defined as follows.
Play xCω until stage rω′ , then switch to στν ,M , where τν is the strategy induced by τ
after stage ν, and M is sufficiently large so that Pω,xCω

(rω′ < M) > 1 − ε
2 . One can

verify that there is n′ ≥ N such that γn′(p, ω, σ∗, τ) > φ+ε/2, a contradiction.

When player 2 controls the transitions, we denote by Jω the set of stay actions
at ω:

Jω = {j ∈ J : q(Cω | ω, j) = 1}.
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3.5. Auxiliary games. As for the analysis of zero-sum repeated games with
incomplete information on one side, it is convenient to introduce an average game in
which no player is informed of the realization of k.

For notational ease, assume that player 1 is the controller. For every p ∈ ∆(K)

and every nonnull state ω ∈ Ω, we denote by Γ̃R(p, ω) the zero-sum stochastic game
with (i) initial state ω, (ii) state space Cω, (iii) reward function

∑
k pkg

k, (iv) action
sets Iω′ and J at each state ω′ ∈ Cω, and (v) transition function induced by q.

In the case where player 2 is the controller, the game Γ̃R(p, ω) is defined by
restricting player 2’s action set to Jω′ in each state ω′ ∈ Cω.

Thus, Γ̃R(p, ω) is the stochastic game in which player 1 is not informed of the
realization of k (or does not use his information), and the controller is restricted to
stay actions. In particular, the game remains in Cω forever. The letter R is a symbol
for restricted, while the symbol ˜ stands for average.

Note that Γ̃R(p, ω) is a single controller game, so that both players have optimal
stationary strategies. Denote by ũ(p, ω) its value. Note that ũ(p, ω) = u∞(p, ω) for
each ω ∈ Ω0.

By convention, if ω is a null state, we set ũ(p, ω) = −∞ if player 1 controls the
transitions, and ũ(p, ω) = +∞ if player 2 controls the transitions. By Lemma 20, for
every communicating set C, ũ(p, ω) is independent of ω ∈ C.

Proposition 21. For every ω ∈ Ω0 and every p ∈ ∆(K) the value v(p, ω) of
Γ(p, ω) exists and is equal to cav ũ(p, ω)(= cav u∞(p, ω)).

Thus, restricted to Ω0, the game is similar to a standard repeated game with
incomplete information.

Proof. The proof of this lemma is similar to the proof for repeated games with
incomplete information on one side. Let p ∈ ∆(K) and ω ∈ Ω0 be given. Clearly
player 1, by not using his information, can guarantee ũ(p, ω). By Lemma 10, player
1 can guarantee cav ũ(p, ω).

The proof that player 2 can guarantee cav ũ is based on approachability results,
and closely follows classical lines. Let a ∈ RK be such that

〈a, p〉 = cav ũ(p, ω),

〈a, q〉 ≥ cav ũ(q, ω) for every q ∈ ∆(K).

If cav ũ(·, ω) is differentiable at p, then a is defined by the hyperplane tangent to
cav ũ(·, ω) at p. By Proposition 14, a is approachable. By Lemma 13, player 2 can
guarantee cav ũ(p, ω).

Let ΓR(p, ω) be a game similar to Γ̃R(p, ω), but in which player 1 is informed of k.
Thus, ΓR(p, ω) differs from Γ(p, ω) only in that actions of the controller are restricted.

Since in ΓR, for each nonnull state ω the game cannot leave Cω, Proposition 21
yields the following.

Lemma 22. Let ω be a nonnull state. Then ΓR(p, ω) has a value, which is cav
ũ(p, ω).

We denote by ΓV
R the stochastic game with vector payoffs in which the controller

is restricted to stay actions.

3.6. Functional equations. Let B denote the set of functions φ : ∆(K)×Ω →
[0, 1] that are 1-Lipshitz with respect to p, when ∆(K) is endowed with the L1-norm.
We here define three operators on B that will be used to characterize the solutions of
the game.
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When transitions are controlled by player 1, we define the operator T1 by

T1φ(p, ω) = cav max

{
ũ, max

ω′∈Cω,i/∈Iω′
E [φ | ω′, i]

}
(p, ω).(10)

By convention, a maximum over an empty set is −∞. In this expression, E [φ | ω′, i]
stands for the expectation of φ under q(· | ω′, i).

Note that T1φ(p, ω) is equal to cav max
{
cav ũ,maxω′∈Cω,i/∈Iω′ E [φ | ω′, i]

}
(p, ω)

as well.
When transitions are controlled by player 2, we define the operators T2 and T3

by

T2φ(p, ω) = cav min

{
ũ, min

ω′∈Cω,j �∈Jω′
E [φ | ω′, j]

}
(p, ω),

T3φ(p, ω) = min

{
cav ũ, min

ω′∈Cω,j �∈Jω′
E [φ | ω′, j]

}
(p, ω).

Since the maximum (or minimum) of a finite number of elements of B belongs to B,
and since by Lemma 8 concavification preserves Lipshitz properties when ∆(K) is
endowed with the L1-norm, all three operators T1, T2, and T3 map B into B. Note
that for each i = 1, 2, 3 the operator Ti is monotonic: φ1 ≤ φ2 implies Tiφ1 ≤ Tiφ2.
Moreover, for every φ ∈ B, Tiφ is constant over Cω, for each ω ∈ Ω.

We now assume that player 1 controls transitions, and prove a few results on T1.
When transitions are controlled by player 2, identical results hold for both T2 and T3.
Since the proofs are similar, they are omitted.

Proposition 23.

1. T1 has a unique fixed point φ.
2. The sequences (φ0

n) and (φ1
n) defined by φj

0 = j, φj
n+1 = T1φ

j
n for j = 0, 1,

are monotonic and converge uniformly to φ.
3. φ coincides with cav ũ on Ω0.
4. If f ∈ B satisfies f ≤ T1f (resp., f ≥ T1f), then f ≤ φ (resp., f ≥ φ).

Since T1φ and T2φ are concave for every φ ∈ B, the fixed points of those operators
are concave functions. Since 0 is concave, and since T3 maps concave functions to
concave functions, the analog of Proposition 23 for T3 implies that the fixed point of
T3 is concave as well.

Proof. By monotonicity of T1, item 2 follows from item 1. Since cav ũ(p, ω) is
constant on every communicating set, so is T1φ(p, ω) for every φ ∈ B. Since Iω = I
for every ω ∈ Ω0, T1φ(p, ω) = cav ũ(p, ω) for every φ ∈ B, every ω ∈ Ω0, and every
p ∈ ∆(K). Thus, item 3 will follow from item 1. We now prove item 1. By Ascoli’s
characterization, B is a compact metric space when endowed with the L∞-norm. By
Lemma 9, T1 is nonexpansive, so that it is continuous on B. Hence T1 has a fixed
point.

We prove uniqueness by contradiction. Let φ1 and φ2 be two distinct fixed points
of T1, and assume w.l.o.g. that δ := max(p,ω)∈∆(K)×Ω(φ1(p, ω) − φ2(p, ω)) > 0. Let

D = {ω ∈ Ω, φ1(p, ω) − φ2(p, ω) = δ for some p ∈ ∆(K)}

contain those states where the difference is maximal. Since both φ1(p, ·) and φ2(p, ·)
are constant on each communicating set, Cω ⊆ D whenever ω ∈ D.

Since φ1 = φ2 on Ω0, D ⊆ Ω \ Ω0. Let ω ∈ D be given, and let p0 ∈ ∆(K) be
an extreme point of the convex hull of the set {p ∈ ∆(K) : φ1(p, ω) − φ2(p, ω) = δ}.
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Thus, φ1(p0, ω) − φ2(p0, ω) = δ > 0. Since φ1(·, ω) and φ2(·, ω) are concave, it
also follows that (p0, φ1(p0, ω)) is an extreme point of the hypograph of the concave
function φ1(·, ω). This implies

φ1(p0, ω) = max

{
cav ũ, max

ω′∈Cω,i/∈Iω
E [φ1|ω′, i]

}
(p0, ω).

Since φ1(p0, ω) > φ2(p0, ω) ≥ cav ũ(p0, ω), one has φ1(p0, ω) = E [φ1(p0, ·) | ω′, i]
for some ω′ ∈ Cω and i /∈ Iω′ . Since T1φ2 = φ2, φ2(p0, ω) ≥ E [φ2(p0, ·) | ω′, i], and
therefore

δ = φ1(p0, ω) − φ2(p0, ω) ≤ E [φ1(p0, ·) − φ2(p0, ·) | ω′, i] .

By the definition of D, this implies that q(D | ω′, i) = 1.
Thus, for every ω ∈ D there exists ω′ ∈ Cω and i �∈ Iω′ that satisfy q(D | ω′, i) = 1.

This implies the existence of ω1, ω2 ∈ D such that Cω1 �= Cω2 and ω1 ↔ ω2, a
contradiction. This proves 1.

To prove 4, we assume that δ = max(p,ω)∈∆(K)×Ω (f(p, ω) − φ(p, ω)) > 0, and
repeat the second part of the proof of 1 to obtain a contradiction.

4. Incomplete information on one side.

4.1. Preliminaries. We here single out a useful lemma. The lemma concerns a
standard two-player zero-sum stochastic game G and its version GR in which player
1 is restricted to stay actions. Thus, K is a singleton.

Lemma 24. Let G be a two-player zero-sum stochastic game with transitions
controlled by player 1, and let ω ∈ Ω. If player 2 can guarantee that α ∈ R in GR(ω)
and he can guarantee that φ : Ω → R in G, then he can also guarantee max{α,
maxω′∈Cω,i/∈Iω′ E[φ|ω′, i]} in G(ω).

Proof. By Lemma 20 player 2 can guarantee α in GR(ω′) for every ω′ ∈ Cω. Let
τ1 be a strategy that guarantees α + ε in GR(ω′) for every ω′ ∈ Cω, and let τ2 be
a strategy that guarantees φ + ε in G. Let N ∈ N be such that for every n ≥ N ,
every ω′ ∈ Cω, and every σ in GR(ω), γn(ω′, σ, τ1) ≤ α + ε, and for every σ in G,
γn(ω′, σ, τ2) ≤ φ(ω′) + ε.

Define ν = 1 + inf {n ≥ 1, in /∈ Iωn
}. Define a strategy τ for player 2 as follows.

• Until stage ν, τ plays in blocks of size N (the last block may be shorter). In
block l ≥ 0, where lN < ν, τ forgets past play and follows τ1(ωlN+1) for N
stages.

• At stage ν, τ forgets past play and starts following τ2.
Let σ be an arbitrary pure strategy. We will compute an upper bound on

Eω,σ,τ [gn] for n sufficiently large. Set L∗ = � ln ε
ln(1−ε)�5 and take n ≥ N1 := �L∗N/ε2�.

Denote by gm1→m2
the average payoff from stage m1 to stage m2. With θ∗ := N×� ν

N �,
since payoffs are nonnegative one has

gn ≤ θ∗

n
gθ∗ +

n + 1 − ν

n
gν→n.(11)

On the event ν ≤ n−N , one has

Eω,σ,τ [gν→n|Hν ] = Eων ,σν ,τ2

[
gn−ν+1

]
≤ φ(ων) + ε,(12)

5For every real c, �c� is the smallest integer larger than or equal to c.
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where σν is the strategy induced by σ after ν. Since σ is pure, ν − 1 is a stopping
time and, using (12),

Eω,σ,τ [gν→n|Hν−1] ≤ E [φ|ων−1, iν−1] + ε
≤ maxω′∈Cω,i/∈Iω′ E [φ|ω′, i] + ε.

(13)

On the other hand, on the event ν > n−N ,

n + 1 − ν

n
≤ ε.(14)

We now proceed to the first term in the decomposition (11) of gn. For each l, we
let πl = Pω,σ,τ (ν ≤ (l + 1)N | HlN+1). By the choice of N ,

Eω,σ,τ

[
glN+1→(l+1)N |HlN+1

]
≤ α + ε + Pω,σ,τ (ν ≤ (l + 1)N | HlN+1)

on the event lN + 1 < ν. By taking expectations, this yields

Eω,σ,τ

[
glN+1→(l+1)N1lN+1<ν

]
≤ (α + ε)Pω,σ,τ (lN + 1 < ν) + Pω,σ,τ ((l + 1)N ≥ ν).

By summation over l, and using the definition of θ∗, this yields

Eω,σ,τ

[
θ∗−1∑
l=0

glN+1→(l+1)N

]
≤ (α + ε)Eω,σ,τ [θ∗] + 1,

hence

Eω,σ,τ

[
Nθ∗

n
gNθ∗

]
≤ (α + ε)Eω,σ,τ

[
Nθ∗

n

]
+

N

n
.(15)

The result follows by (11), (13), (14), and (15).
We shall need a variant of the previous result whose proof is identical to the

previous proof. Consider the stochastic game with incomplete information Γ(p, ω)
where ω is a nonnull state and assume that transitions are controlled by player 2.
Assume that player 1 can guarantee a function φ. Then player 1 can also guarantee
min

{
ũ,minω′∈Cω,j /∈Jω′ E [φ|ω′, j]

}
(p, ω) in Γ(p, ω).

4.2. Transitions controlled by player 1. In this section we assume that tran-
sitions are controlled by player 1.

4.2.1. Existence of the value.
Proposition 25. The unique fixed point of T1 is the value of Γ.
Proof. Let φ be the unique fixed point of T1, and fix ε > 0 once and for all.
Step 1. Player 1 can guarantee φ in Γ. By Lemma 22 player 1 can guarantee

cav ũ. Set φ0
0 = 0, and, for n ≥ 0, define φ0

n+1 = T1φ
0
n. Assume that player 1 can

guarantee φ0
n for some n ∈ N. Let p ∈ ∆(K) and ω ∈ Ω be given. Plainly, for every

ω′ ∈ Cω and every i /∈ Iω, player 1 can guarantee E
[
φ0
n | ω′, i

]
(p, ω) in Γ(p, ω′); first

he plays the action i at ω′, and then a strategy that guarantees φ0
n(p, ·) (up to ε).

By Lemma 20, he can guarantee E
[
φ0
n | ω′, i

]
(p, ω) in Γ(p, ω). By Lemmas 3 and 10

he can guarantee T1φ
0
n = φ0

n+1 in Γ. Since player 1 can guarantee φ0
0 = 0, and since

limn→∞ φ0
n = φ, the result follows.

We now prove that player 2 can guarantee φ.
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Step 2. Definition of approachable sets. For ω ∈ Ω, let Bω be the set of vectors
approachable in ΓV by player 2 at ω. We also define

Aω =
{
a ∈ RK : 〈a, p〉 ≥ cav ũ(p, ω) for every p

}
.

By Proposition 14 and Lemma 22, Aω is the set of vectors approachable by player 2 at
ω in the stochastic game with vector payoffs ΓV

R . Both sets Aω and Bω are nonempty,
closed, convex, and upwards comprehensive.

For every ω ∈ Ω define

Dω =

{
d = max

{
a, max

ω′∈Cω,i/∈Iω′
E [b(·) | ω′, i]

}
: a ∈ Aω, b(ω

′′) ∈ Bω′′ for every ω′′ ∈ Ω

}
.

Step 3. Dω ⊆ Bω. Fix d ∈ Dω. Let τ1 be a strategy that approaches a + ε at ω,
and let τ2 be a strategy that approaches b(ω′′) + ε at each state ω′′. For each k the
strategy τ1 guarantees ak + ε in the game Γ(k, ω), and τ2 has a similar property. By
Lemma 24, applied independently to each Gk, the strategy obtained by concatenation
of τ1 and τ2 guarantees max

{
ak,maxω′∈Cω,i/∈Iω′ E

[
bk(·) | ω′, i

]}
+ 3ε = dk + 3ε in

Gk. Lemma 13 implies that d ∈ Bω.
Step 4. Player 2 can guarantee φ. Let f(p, ω) = infa∈Bω

〈a, p〉 and h(p, ω) =
infa∈Dω

〈a, p〉, so that by Step 3 f ≤ h. By Lemma 13 player 2 can guarantee 〈a, p〉
in Γ(p, ω) for every a ∈ Bω. Therefore he can guarantee f(p, ω) as well. By Lemma
11, the definition of Dω may be rephrased as

h = cav max

{
cav ũ, max

ω′∈Cω,i �∈Iω′
E [f | ω′, i]

}
= T1f.

Thus, f ≤ T1f . By item 4 in Proposition 23, f ≤ φ. Therefore, player 2 can guarantee
φ.

4.2.2. Optimal strategies. The proof of Proposition 25 yields no information
on ε-optimal strategies for player 1. We argue here that player 1 has an optimal
strategy σ of a simple type. In effect, σ has the following structure. Whenever the
play enters a communicating set, say at stage n ≥ 0, σ randomly selects a nonrevealing
stationary strategy that is used until the play moves to a new communicating set, if
ever. The random choice of the stationary strategy may itself be revealing, in that
the distribution used at stage n to select a stationary strategy depends both on pn
and on k. We describe below such a strategy in more detail.

Let v be the value of the game. Let (p, ω) ∈ ∆(K) × Ω be given. Upon enter-
ing a communicating set at stage n ≥ 0, player 1 computes v(pn) = cav max{ũ,
maxω′∈Cωn ,i/∈Iω′ E[v | ω′, i]}(pn, ωn), and performs a state-dependent lottery, as de-
scribed in the proof of Lemma 10. To be specific, one determines p̃e ∈ ∆(K), αe ∈
[0, 1], for e = 1, . . . , |K| + 1, such that

∑
e αe = 1,

∑
e αep̃e = pn, and

v(pn) =
∑
e

αe max

{
ũ, max

ω′∈Cωn ,i/∈Iω′
E [v | ω′, i]

}
(p̃e, ωn).

If Gk is the actual game that is played, player 1 chooses e according to a state-
dependent lottery µk, where µk(e) = αep̃

k
e/p

k
n.

If max
{
ũ,maxω′∈Cωn ,i/∈Iω′ E [v | ω′, i]

}
(pe, ωn) = ũ(pe, ωn), player 1 plays a sta-

tionary (nonrevealing) strategy which guarantees ũ(pe, ωn) in the restricted game

Γ̃R(pe, ωn). Recall that there are finite-stage algorithms that compute this strategy.
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Fig. 1. The value of the restricted games Γ̃R(p, ωi).

If, on the other hand, max
{
ũ,maxω′∈Cωn ,i/∈Iω′ E [v | ω′, i]

}
(pe, ωn) = E[v(pe, ·)

| ω′, i] for some ω′ ∈ Cωn and i /∈ Iω′ , player 1 plays the stationary strategy xCωn

until the play reaches ω′, and at ω′ he plays the action i. He then recursively switches
to a strategy that guarantees v(pe, ·).

Under σ, player 1 will end up in finite time playing an optimal stationary strategy
in some restricted game Γ̃R(p′, ω′), with p′ ∈ ∆(K) and ω′ ∈ Ω. It can be checked
that σ guarantees v(p, ω) − ε for every ε > 0. In that sense, σ is optimal. The proof
is standard and therefore omitted.

4.2.3. An example. We here provide a simple example that illustrates the ba-
sic issues of splitting and information revelation. In particular, in this example the
informed player will perform two state-dependent lotteries and therefore reveal infor-
mation in two different stages of the game, unlike what happens in standard repeated
games with incomplete information. The game has three states Ω = {ω1, ω2, ω3},
where ω2 and ω3 are absorbing. There are two possible payoff functions, so that
K = {1, 2}. A distribution over K is identified with the probability p ∈ [0, 1] assigned
to k = 2.

We first describe the main features of the example before providing the payoff
and transition matrices of the game.

All actions of player 1 at state ω1 are stay actions, except one, which leads to
either state ω2 and ω3 with equal probability.

The value ui(p) of the restricted game Γ̃R(p, ωi) is given by (see Figure 1)

u1(p) = 2/3,

u2(p) = max{1 − 2p, 2p− 1},

u3(p) =

⎧⎪⎪⎨⎪⎪⎩
4p 0 ≤ p ≤ 1/4,
2 − 4p 1/4 ≤ p ≤ 1/2,
4p− 2 1/2 ≤ p ≤ 3/4,
4 − 4p 3/4 ≤ p ≤ 1.
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Note that 1/2(cav u2 + cav u3) is given by (see Figure 2)

1/2(cav u2 + cav u3)(p) =

⎧⎨⎩
2p + 1/2 0 ≤ p ≤ 1/4,
1 1/4 ≤ p ≤ 3/4,
5/2 − 2p 3/4 ≤ p ≤ 1.

It is the payoff that is guaranteed by player 1, when starting at (p, ω1), and exiting
from ω1 without revealing any information. Indeed, once in ω2 or in ω3, the game
will stay there and therefore the value is given by cav u2 and cav u3, respectively.

By section 4.2, the value v(p, ω1) = cav max
{

2
3 ,

1
2 (cav u2 + cav u3)

}
is given by

(see Figure 2)

v(p, ω1) =

⎧⎨⎩
(2 + 4p)/3 0 ≤ p ≤ 1/4,
1 1/4 ≤ p ≤ 3/4,
2 − 4p/3 3/4 ≤ p ≤ 1.

Assume that the game starts in state ω1, with p = 1/8. Note that v(1/8, ω1) =
1
2u1(0)+ 1

2 (cav u2(1/4)+cav u3(1/4)), and that cav u3(1/4) = 3
4u3(0)+ 1

4u3(1), while
cav u2(1/4) = u2(1/4).

The optimal strategy described in section 4.2.2 is as follows. Player 1 starts by
tossing a state-dependent coin. If the coin comes up heads, player 1 plays forever
an optimal stationary strategy in the game k = 1. If the coin comes up tails, player
1 first plays the nonstay action. The game then moves with equal probability to
states ω2 and ω3. In the former case, player 1 continues with an optimal nonrevealing
stationary strategy in the average game Γ̃R(1/4, ω2). In the latter case, player 2 again
tosses a (degenerate) state-dependent coin. If k = 1 (resp., k = 2), player 1 continues
with an optimal strategy in the game Γ̃R(0, ω3) (resp., Γ̃R(1, ω3)).

Note that the amount of information revealed by player 1 depends on the actual
play.

To complete the example, we provide in Figure 3 payoff matrices that satisfy the
required specifications. The vertical arrows that appear in the bottom row of the two
top matrices stand for the random transition to either ω2 or ω3.

In both states ω1 and ω2, player 2 is a dummy. The incomplete information game
that corresponds to the game of state ω3 coincides with example 1.3 in Zamir [24].

4.3. Transitions controlled by player 2. In this section we assume that tran-
sitions are controlled by player 2. We prove that both the min-max value and the
max-min value exist, but that they may differ.

4.3.1. The max-min value.
Lemma 26. The unique fixed point of T2 is the max-min value of Γ .
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Fig. 3. The payoff matrices.

Proof. Let φ be the unique fixed point of T2, and fix ε > 0.
Step 1. Player 1 can guarantee φ. Set φ0

0 and, for m ≥ 0, set φ0
m+1 = T2φ

0
m.

Assume that player 1 can guarantee φ0
m for some m ∈ N. By the remark follow-

ing Lemma 24, player 1 can guarantee min
{
ũ,minω′∈Cω,j �∈Jω′ E

[
φ0
m | ω′, j

]}
. Hence

player 1 can also guarantee cav min
{
ũ,minω′∈Cω,j �∈Jω′ E

[
φ0
m | ω′, j

]}
= φ0

m+1. Since
player 1 can guarantee φ0

0 ≡ 0, and since φ = limm→∞ φ0
m, the result follows.

We now prove that player 2 can defend φ. Assume that player 2 can defend φ1
m

for some m ∈ N, and let σ be an arbitrary strategy of player 1. We prove in Steps 2
and 3 below that in this case player 2 can defend φ1

m+1. Since φ = limm→∞ φ1
m, and

since player 2 can defend φ1
0 ≡ 1, he can defend φ as well.

Step 2. Definition of a reply. Given (p, ω), we let τ1(p, ω) be a (stationary) strategy

that guarantees ũ(p, ω)+ε in Γ̃R(p, ω). Choose N1 ∈ N such that γn(p, ω, σ̃, τ1(p, ω)) ≤
ũ(p, ω) + 2ε for every n ≥ N1 and every nonrevealing strategy σ̃ of player 1.

By the remark that follows Definition 1, N1 can be chosen independently of (p, ω).

Let T̃ be the set of strategies of player 2 in Γ̃R(p, ω), and let τ̃ ∈ T̃ be an ε2/32N2
1 -

exhausting information strategy given σ and (p, ω). Choose N ∈ N such that

Ep,ω,σ,τ̃

[
+∞∑
n=N

‖pn − pn+1‖2
2

]
≤ ε2

32N2
1

.

By Lemma 16,

Ep,ω,σ,τ̃

[
+∞∑
n=N

‖pn − pn+1‖1

]
≤ ε√

32N1

≤ ε

4
.(16)

We define τ as follows.
• Play τ̃ up to stage N .
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• At stage N compute βN := min
{
ũ,minω′∈Cω,j �∈Jω′ E

[
φ1
m | ω′, j

]}
(pN , ωN ).

– If βN = ũ(pN , ωN ), play by successive blocks of length N1: in the b+1th
block play the strategy τ1(pN+bN1

, ωN+bN1
).

– Otherwise, switch to a strategy that defends the quantity minω′∈Cω,j �∈Jω′

E
[
φ1
m | ω′, j

]
(pN , ωN )+ε against σN , where σN is the strategy induced

by σ after stage N .
Step 3. The computation. We here prove that τ defends φ1

m+1(p, ω) + 8
√
ε in

Γ(p, ω). We abbreviate Ep,ω,σ,τ to E. First, we provide an upper bound on the
average payoff E

[
gN→N+n−1|HN

]
between stages N and N + n on the event

A := {βN = ũ(pN , ωN )} .(17)

First take n = N1. By definition,

E
[
gN→N+N1−1|HN

]
= EpN ,ωN ,σN ,τ1(pN ,ωN )

[
gN1

]
.

By the choice of N1,

EpN ,ωN ,σ
pN
N ,τ1(pN ,ωN )

[
gN1

]
≤ ũ(pN , ωN ) + 2ε.(18)

On the other hand, by Lemma 17,∣∣∣EpN ,ωN ,σ
pN
N ,τ1(pN ,ωN )

[
gN1

]
− EpN ,ωN ,σN ,τ1(pN ,ωN )

[
gN1

]∣∣∣
≤ 4EpN ,ωN ,σN ,τ1(pN ,ωN )

[
N1∑
m=1

‖pm − pm+1‖1

]
.

Thus, using (18),

E
[
gN→N+N1−1|HN

]
≤ ũ(pN , ωN ) + 2ε + 4E

[
N+N1−1∑
m=N

‖pm − pm+1‖1 |HN

]
.

The same computation applies to any block of N1 stages. Specifically, for each b ≥ 0,

E
[
gN+bN1→N+(b+1)N1−1|HN+bN1

]
≤ ũ(pN+bN1 , ωN+bN1) + 2ε

+ 4E

⎡⎣N+(b+1)N1−1∑
m=N+bN1

‖pm − pm+1‖1 |HN+bN1

⎤⎦ .

Since ũ(p, ·) is constant on every communicating set, and since ũ(·, ω) is 1-Lipshitz,
ũ(pN+bN1

, ωN+bN1
) ≤ ũ(pN , ωN ) + ‖pN+bN1

− pN‖1. By taking expectations on the
event A (defined by (17)), one gets, by Lemma 16, (16), and since ‖·‖1 ≤ ‖·‖2,

E
[
1AgN+bN1→N+(b+1)N1−1

]
≤ E [1Aũ(pN , ωN )] + 2ε + E [1A ‖pN+bN1 − pN‖2]

+ 4E

⎡⎣1A

N+(b+1)N1−1∑
m=N+bN1

‖pm − pm+1‖2

⎤⎦
≤ E [1Aũ(pN , ωN )] + 5

√
ε.
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By averaging over blocks, one obtains for every n ≥ 2
ε (N + N1)

E [1Agn] ≤ E [1Aũ(pN , ωN )] + 6
√
ε.(19)

On the other hand, there is N2 ∈ N such that for every n ≥ N2,

E [gn|HN ] ≤ min
ω′∈Cω,j �∈Jω′

E
[
φ1
m | ω′, j

]
(pN , ωN ) + 2ε on the event A.(20)

By taking expectations, (19) and (20) yield

E [gn] ≤ E

[
min

{
ũ, min

ω′∈Cω,j �∈Jω′
E
[
φ1
m | ω′, j

]}
(pN , ωN )

]
+ 8

√
ε

≤ cav min

{
ũ, min

ω′∈Cω,j �∈Jω′
E
[
φ1
m | ω′, j

]}
(p, ω) + 8

√
ε

for every n ≥ max{N2,
2
ε (N + N1)}.

Let v denote the max-min of the game, and let (p, ω) be given. Similar to the
discussion in section 4.2.2, it can be checked that there is a simple strategy for player
1 that guarantees v(p, ω) − ε for each ε > 0. Under this strategy, player 1 chooses at
random a nonrevealing stationary strategy whenever the play enters a communicating
set, and uses it until the play moves to a new communicating set.

4.4. The min-max value.
Lemma 27. The unique fixed point of T3 is the min-max value of Γ.
Proof. Let φ be the unique fixed point of T3, and fix ε > 0.
We first prove by induction that player 2 can guarantee φ. Set φ1

0 ≡ 1 and, for
m ≥ 0, set φ1

m+1 = T3φ
1
m. Assume that player 2 can guarantee φ1

m for some m ∈ N,
and let (p, ω) be given. Plainly, for each ω′ ∈ Cω, j /∈ Jω′ , player 2 can guarantee
E
[
φ1
m | ω′, j

]
in Γ(p, ω′) by first playing j at ω′, and then a strategy that guarantees

φ1
m (up to ε). By Lemma 20, he can guarantee E

[
φ1
m | ω′, j

]
in Γ(p, ω) as well. By

Lemma 22, player 2 can guarantee cav ũ. Thus, he can guarantee T3φ
1
m = φ1

m+1.
Since he can guarantee φ1

0, and since φ = limm→∞ φ1
m, the result follows.

We now prove that player 1 can defend φ0
m for each m ∈ N. Clearly, player 1 can

defend φ0
0 ≡ 0. Assume that player 1 can defend φ0

m for some m ∈ N. Let a strategy
τ of player 2 and (p, ω) ∈ ∆(K)×Ω be given. Set ν = 1 + inf {n ≥ 1, jn /∈ Jωn}. The
supremum of Pp,ω,σ,τ (ν < ∞) over all strategies σ coincides with the supremum over
all nonrevealing strategies σ.6 Denote by σ∗ a nonrevealing strategy that achieves
the supremum up to ε. We choose N such that Pp,ω,σ∗,τ (ν > N) ≤ ε. The strategy
σ∗ thus exhausts the probability of leaving the initial communicating set. Denote by
τmin{ν,N} the strategy induced by τ after stage min{ν,N}.

On the event ν > N , there is a strategy τ̃ in ΓR(p, ω) such that ‖Pp,ωN ,σ,τ̃

−Pp,ωN ,σ,τN ‖ ≤ Pp,ωN ,σ,τN (ν < +∞) for every nonrevealing strategy σ in ΓR(p, ω).
This strategy depends on the history up to stage N .

We now define the reply σ of player 1 to τ as follows: play σ∗ up to stage
min{ν,N}.

• If ν > N , switch to a strategy that defends cav ũ(p, ω) + ε in ΓR(p, ωN )
against τ̃ .

6Indeed, for every strategy σ = (σk)k, one has Pp,ω,(σk)k,τ
(ν < +∞) =

∑
k pkPk,ω,σk,τ (ν <

+∞) ≤ maxk Pk,ω,σk,τ (ν < +∞). Let k0 achieve the maximum, and let σ′ be the nonrevealing

strategy that plays σk0
irrespective of k. Since transitions are independent of k, one has Pp,ω,σ,τ (ν <

+∞) ≤ Pp,ω,σ′,τ (ν < +∞).
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Fig. 4. The payoff matrices.

• If ν ≤ N , switch to a strategy that defends φ0
m(p, ων) + ε against τν .

Since there are finitely many histories of length N , the set of strategies (τmin{ν,N})
is finite. It is straightforward to check that σ defends

min

{
cav ũ, min

ω′∈Cω,j �∈Jω′
E
[
φ0
m | ω′, i

]}
(p, ω) + 2ε = φ0

m+1(p, ω) + 2ε

against τ .

4.5. An example. Here we provide an example where min{cav f, g} is strictly
larger than cav min{f, g}, so that the max-min value and the min-max value differ.

Consider the game depicted in Figure 4, where player 2 controls the transitions,
and |Ω| = |K| = 2, |I| = 2, and |J | = 5. The initial state is ω1 (bottom two matrices).
If in ω1 player 2 chooses j5, the game moves to ω2, which is absorbing. If player 2
chooses another action in ω1, the game remains in ω1. Payoffs are as depicted in
Figure 4 (the definition of gk(ω1, ·, j5) is irrelevant).

Note that Iω1
= {j1, j2, j3, j4}, Ω0 = {ω2}, and Cω1

= {ω1}.
The game ΓR(p, ω1) is similar to Example 3.3 in Aumann and Maschler [2]. As

calculated in Aumann and Maschler,

f(p) = ũ(p, ω1) =

⎧⎨⎩
3p 0 ≤ p ≤ 2 −

√
3,

1 − p(1 − p) 2 −
√

3 ≤ p ≤
√

3 − 1,

3(1 − p)
√

3 − 1 ≤ p ≤ 1

(see Figure 5). Note that cav f �= f .
The game ΓR(p, ω2) is similar to the game presented in Aumann and Maschler

[2, I.2], with all payoffs multiplied by 4.7 As calculated in Aumann and Maschler,

g(p) = ũ(p, ω2) = 4p(1 − p).

As proved above, the max-min value when the initial state is ω1 is (cav min{f, g})
(p), while the min-max value is min{cav f, g}(p). A straightforward calculation shows
that min{cav f, g}(1/2) = 3(2 −

√
3) while cav min{f, g}(1/2) = 4/5, so the two

functions differ. The graphs of the two functions appear in Figure 6.

7We added the actions j3, j4, j5, which do not change the calculation of the value. For our
purposes, we could have multiplied all payoffs by any α, 3 < α < 3/(

√
3 − 1).
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5. Incomplete information on both sides.

5.1. The model. We now extend our model to the case of incomplete informa-
tion on both sides; that is, each player has some private information on the game that
is to be played. Formally the model is extended as follows. For more details we refer
to Mertens, Sorin, and Zamir [10] or Sorin [22].

A two-player zero-sum stochastic game with incomplete information on both sides
is described by a finite collection (Gk,l)k∈K,l∈L of stochastic games, together with a
distribution p ∈ ∆(K) and a distribution s ∈ ∆(L). We assume that the games Gk,l

differ only through their reward functions gk,l, but they all have the same sets of
states Ω and actions I and J , and the same transition rule q.

The game is played in stages. At the outset of the game a pair (k, l) ∈ K × L
is chosen according to p ⊗ s. Player 1 is informed of k, and player 2 of l. At every
stage n, the two players choose simultaneously actions in ∈ I and jn ∈ J , and ωn+1

is drawn according to q(· | ωn, in, jn). Both players are informed of (in, jn, ωn+1).
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W.l.o.g. we assume throughout this section that transitions are controlled by
player 1. We will only sketch the proofs, since none of them involves any new idea.

5.2. Related literature. The main results in this framework are related to
the case |Ω| = 1 (repeated games with incomplete information) and are due to Au-
mann, Maschler, and Stearns [3] (see also Aumann and Maschler [2]) and Mertens
and Zamir [11, 12]. As in the case of incomplete information on one side, we denote
by u(p, s) the value of the matrix game with action sets I and J and matrix payoff
(
∑

k∈K,l∈L pkslgk,l(i, j))i,j . Given f : ∆(K) × ∆(L) → R, we let cavpf denote the
smallest function that is above f and concave in p, and vexsf denotes the largest
function that is below f and convex in s.

The min-max value of a repeated game with incomplete information exists and is
equal to vexscavpu(p, s). The max-min value exists and is equal to cavpvexsu(p, s).

5.3. Partitioning the states and the average restricted game. Since player
1 controls transitions, the partition defined in section 4 extends to this case, as well as
the definition of the average restricted game Γ̃R(p, s, ω) in which none of the players

has any information. Denote by ũ(p, s, ω) the value of Γ̃R(p, s, ω). In addition, we

define the average restricted game Γ̃1
R(p, s, ω) (resp., Γ̃2

R(p, s, ω)) in which player 1
(resp., player 2) is informed of k (resp., l) while his opponent gets no information.
Our first goal is to extend Proposition 21.

Proposition 28. For every (ω, p, s) ∈ Ω0 ×∆(K)×∆(L), the min-max value of
Γ(p, s, ω) exists and is equal to vexscavpũ(p, s, ω). Similarly the max-min value exists
and is equal to cavpvexsũ(p, s, ω).

Proof. The proof follows the proof for repeated games with incomplete informa-
tion, using the tools developed in the previous sections. We shall only sketch the
arguments for the min-max value, and refer for details to Zamir [24].

First, we explain how player 2 can guarantee vexscavpũ(p, s, ω). When player 2
ignores his information, he faces a game with incomplete information on one side with
parameter set K and payoffs

∑
l∈L slgk,l. By Proposition 21, player 2 can guarantee

cavpũ(p, s, ω) in this game. Therefore by Lemma 10 (with the roles of the two players
exchanged) he can also guarantee vexscavpũ(p, s, ω).

To prove that player 1 can defend vexscavpũ(p, s, ω), we adapt Zamir [24, The-
orem 4.1]. Let τ be a given strategy of player 2. As in Step 2 of the proof of
Lemma 26, we let player 1 play first an ε-exhausting strategy σ̃ given τ . This strat-
egy may be chosen to be nonrevealing (see, e.g., Sorin [22, Lemma IV.4.1]). Player
1 switches at some stage N to a strategy that defends cavpũ(p, sN , ωN ) (up to ε) in
Γ(p, sN , ωN ) against the continuation strategy τN (see Step 3 of Lemma 26). Since
ũ(·, ·, ω) = ũ(·, ·, ωN ), cavpũ(p, sN , ωN ) = cavpũ(p, sN , ω). Therefore player 1 defends
Ep,s,ω,σ̃,τ [cavpũ(p, sN , ω)] ≥ vexscavpũ(p, s, ω).

5.4. The max-min value and the min-max value. Let B denote the set of
all functions φ : ∆(K) × ∆(L) × Ω → [0, 1] that are 1-Lipshitz with respect to p and
s. Denote by T4 and T5 the operators on B defined by

T4φ(p, s, ω) = cavp max

{
cavpvexsũ, max

ω′∈Cω,i/∈Iω′
E[φ | ω′, i]

}
(p, s, ω)(21)

and

T5φ(p, s, ω) = vexscavp max

{
cavpũ, max

ω′∈Cω,i/∈Iω′
E[φ | ω′, i]

}
(p, s, ω).(22)
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Our main result is the following.

Theorem 29.

1. The mappings T4 and T5 have unique fixed points, denoted respectively by v
and v.

2. The function v is the max-min value of the game.
3. The function v is the min-max value of the game.

Note that if player 2 has no information, there is no vex operator in (21) and
(22), and both T4 and T5 reduce to T1. If player 1 has no information, there is no cav
operator in (21) and (22), and T4 and T5 reduce respectively to T3 and T2 with the
roles of the players reversed.

Proof. The first assertion follows the same lines as the proof of Proposition 23.

We now prove the second assertion. For j = 0, 1, we define the sequence (φj
n)n≥0

by φj
0 = j and φj

n+1 = T4φ
j
n. We follow the inductive proof of Proposition 25, Step 1,

or the first part of Lemma 27.

The sequence (φ0
n) is increasing and converges uniformly to v. It is clear that

player 1 can guarantee φ0
0. Assuming player 1 can guarantee φ0

n, we prove that he
can guarantee φ0

n+1. By Lemma 10 it is sufficient to show that he can guarantee both
cavpvexsũ(p, s, ω) and maxω′∈Cω,i/∈Iω′ E[φ0

n | ω′, i], which is true by Proposition 28
and by Step 1 of Proposition 25.

To prove that player 2 can defend v, we combine several ideas from the preceding
sections. Let σ be given, and let T̃ be the set of nonrevealing strategies of player 2.
We let τσ be a nonrevealing strategy that ε-exhausts the information contained in σ,
and choose N as in Step 2 of Lemma 26. Denote by ν = 1 + min{n ≥ 1, in /∈ Iωn

}.
Player 2 plays according to τσ up to stage min{ν,N}.

• If ν ≤ N , from stage ν on he defends φ1
n(pν , s, ων).

• If ν > N , we first use the idea of Lemma 27, with the roles of the two players
exchanged. Specifically, we define a nonrevealing strategy τσN that exhausts
the probability of leaving the initial communicating set, given the strategy σN

induced by σ after stage N . Choose N ′ such that PpN ,s,ωN ,σN ,τσ
N

(ν > N ′) ≤ ε.
Player 2 plays τσN up to stage min{ν,N + N ′}.

– If ν ≤ N+N ′, player 2 switches to a strategy that defends φn(pν , s, ων)+
ε.

– If ν > N + N ′, following Steps 2 and 3 of Lemma 26, player 2 starts
to play in blocks of length N1. In the bth block he forgets past play
and follows a strategy that defends vexsũ(pN+N ′+bN1 , s, ωN+N ′+bN1) in

the restricted game Γ̃2
R(pN+N ′+bN1 , s, ωN+N ′+bN1) against the average

continuation strategy σ
pN+N′+bN1

N+N ′+bN1
of player 1.

We now turn to the third assertion. We first prove that player 2 can guarantee
v. By following Steps 2, 3, and 4 of Lemma 25, one proves that player 2 guar-
antees cavp max{cavpũ, maxω′∈Cω,i/∈Iω′ E[v | ω′, i]}(p, s, ω). Hence, by Lemma 10
(with the roles of the two players exchanged), he can guarantee vexscavp max{cavpũ,
maxω′∈Cω,i/∈Iω′ E[v | ω′, i]} = v.

We now prove that player 1 can defend v. We first follow Step 2 of Lemma
26. Given τ , we let στ be a strategy in Γ̃2

R(p, s, ω) that exhausts the information

contained in τ , and we choose N such that Ep,s,ω,στ ,τ [
∑∞

n=N ‖pn − pn+1‖2
1] ≤ ε.

Player 1 plays στ up to stage N . He then switches to a strategy that guarantees
cavp max

{
cavpũ(·, sN , ω),maxω′∈Cω,i/∈Iω′ E[v | ω′, i]

}
(p, sN ) in Γ̃1

R(p, sN , ωN ), as in
the proof of Proposition 25. The result follows.
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