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1. Introduction. The existence of an equilibrium payoff in multiplayer stochastic
games is still an open problem. The classical approach to proving the existence is by using
the limit of stationary discounted equilibria. Namely, one takes for every discount factor a
stationary discounted equilibrium, and considers the stationary profile, which is the limit of
the stationary discounted equilibria, as the discount factor goes to zero. Depending on the
exact class of games that is studied, one constructs a nonstationary �-equilibrium in which
players play mainly the limit stationary strategy profile, and perturb to other actions with
small probability, while monitoring the actions of their opponents to detect deviations.
This approach, which was initiated by Mertens and Neyman [12] to prove the existence of

the uniform value in two-player zero-sum stochastic games, was later exploited in numerous
studies (see, e.g., Vrieze and Thuijsman [30]; Flesch et al. [5]; Thuijsman and Raghavan
[26]; Solan [20]; Vieille [28, 29]; Rosenberg and Vieille [14]; Rosenberg et al. [15, 16];
Solan and Vohra [24]).
The limit of this approach was exhibited by Solan and Vieille [22], who constructed

a four-player quitting game in which the simplest equilibrium strategy profile is periodic
with period two.1 Moreover, for � sufficiently small, there is no �-equilibrium in which
players play mainly some stationary strategy profile, and perturb to other actions with small
probability.
Once the classical approach fails, a need for new approaches arises. Solan and Vieille [21]

studied equilibrium payoffs in quitting games. Motivated by dynamical systems, they defined
a set-valued function, and proved that every infinite orbit of this function corresponds to an
�-equilibrium.
Simon [19] introduced tools from topology to the study of stochastic games. He showed

that if a certain topological conjecture holds, then every quitting game admits an equilibrium
payoff. However, it is yet not known whether his conjecture holds or not.

1 Quitting games are sequential games in which at every stage each player chooses whether to continue or to quit.
The game terminates when at least one player quits, and the terminal payoff vector depends on the subset of
players that choose to quit at the terminal stage. If everyone always continues, the payoff is 0 to all players.
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Shmaya et al. [18] and Shmaya and Solan [17] used Ramsey’s theorem2 and a stochastic
variation of this theorem to prove the existence of an equilibrium payoff in two-player
nonzero-sum stopping games.
Here, we present a new approach to study equilibrium payoffs in multiplayer stochastic

games: a differential equations approach.
The class of games we study is quitting games with perfect information: at every stage,

one of n players is chosen at random, independently of past play; each player i is chosen
with probability 1/n.3 The chosen player i may decide either (i) to quit, in which case the
game terminates, and the terminal payoff is some vector ai ∈ Rn, which depends only on
the identity of the chosen player or (ii) to continue, in which case the game continues to
the next stage. If no player ever quits, the payoff is some vector a∗ ∈Rn. Observe that this
game is a simple multiplayer Dynkin game (see Dynkin [3]).
Because players do not play simultaneously, this game is a game with perfect information.

It is well known that games with perfect information admit �-equilibria in pure strategy pro-
files (see Mertens [11] for a general argument in Borel games or Thuijsman and Raghavan
[26], where this argument is adapted to stochastic games). Unfortunately, the �-equilibrium
strategy profiles Mertens [11] and Thuijsman and Raghavan [26] constructed use threats of
punishment, which might be noncredible.
We study subgame-perfect �-equilibria; namely, strategy profiles that are an �-equilibrium

after any history.
Roughly speaking, our approach is as follows. Let W ⊂Rn be the compact set that con-

tains all the vectors w in the convex hull of �a1	 
 
 
 	 an� such that w
i ≤ ai

i for at least
one player i. We define a certain set-valued function F  W → Rn, characterize the set of
equilibrium payoffs that are supported by stationary strategies in terms of F , and prove that
the differential inclusion ẇ ∈ F �w� has a solution; namely, there is a continuous function
w R→W such that ẇ�t� ∈ F �w�t�� for almost every t. We then prove that any vector on a
solution of the differential inclusion is a subgame-perfect equilibrium payoff. In particular,
we deduce that every quitting game with perfect information admits either an equilib-
rium payoff that is supported by stationary strategies or (a continuum of) subgame-perfect
0-equilibrium payoffs.
The origin of the set-valued function F is in the version of the game in continuous time.

That is, consider a version of the game in continuous time, where at every time instance t,
each player i is chosen with probability dt. If player i is chosen at time t, he should decide
whether to continue or to quit, in which case the game terminates with terminal payoff ai.
Roughly speaking, the set of subgame-perfect 0-equilibria of the game in continuous time
coincides with the set of solutions of the differential inclusion ẇ ∈ F �w�. Thus, we relate
the subgame-perfect equilibrium payoffs of the game in continuous time to those of the
game in discrete time.
There are several motivations for our study. First, we try to find new approaches to study

equilibrium payoffs in multiplayer stochastic games and multiplayer Dynkin games. Second,
subgame-perfect equilibria are more useful than (Nash) equilibria in applications. Third,
there are games, like quitting games and stopping games, in which, conditioned on the stage
of the game, there is only one possible history, so that deviations from a completely mixed
strategy cannot be detected immediately. The study of subgame-perfect equilibria in our
model may help us understand (Nash) equilibria in those models.
The use of games in continuous time to study zero-sum stochastic games in discrete time

was initiated by Sorin [25] to study zero-sum stochastic games with lack of information
on one side. This approach was later exploited by Vieille [27] and Laraki [10] who used

2 Ramsey [13] proved that for every coloring of a complete infinite graph by finitely many colors there is an
infinite complete monochromatic subgraph.
3 The case where the choice is not uniform is discussed in §5.
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differential games to study repeated games with vector payoffs and repeated games with
incomplete information on one side, respectively. The dynamics of the differential game
Vieille [27] and Laraki [10] used is ż�t�=−x�t�Ay�t�, where x�t� is the control vector at
time t of player 1, y�t� is the control vector at time t of player 2, A is a payoff matrix,
and z�t� is the parameter at time t. Because in multiplayer games there is multiplicity of
equilibria, the dynamics we study is a differential inclusion.
The main difference between our approach and the one used in the literature is the

interpretation of the time variable. Sorin [25], Vieille [27], and Laraki [10] considered the
n-stage game in discrete time as a game that is played over the time interval �0	1�, where
stage k corresponds to the time interval ��k−1�/n	k/n�. As n goes to infinity, one obtains
a game in continuous time. Here, on the other hand, we study the infinite-stage game, and
divide each stage into n substages: substage k of stage m corresponds to the time interval
�m+ �k− 1�/n	m+ k/n�. We then consider the game in continuous time that is obtained
when n goes to infinity.
Differential inclusions were already used in the context of game theory by Kannai and

Tennenbaum [7] in the study of dynamical systems that lead to the Nash point in bargaining
problems.
This paper is organized as follows. In §2, we present the model, several examples, the

differential inclusion that we study, and the main results. In §3, we prove that the differential
inclusion we have defined has at least one solution and in §4, we relate solutions of the
differential inclusion to subgame-perfect equilibrium payoffs of the game. Extensions and
open problems are discussed in §5.

2. The model and the main results. In this section, we will present the model (§2.1),
provide a few examples to illustrate the definitions (§2.2), define the concept of dummy
players, who essentially do not participate in the game (§2.3), define the differential inclu-
sion that will play a major role in this paper (§2.4), and finally state our main results
(§2.5).

2.1. The model. A quitting game with perfect information � is given by
• a finite set I = �1	 
 
 
 	 n� of players;
• n+ 1 vectors a1	 
 
 
 	 an	 a∗ in Rn.
The game is played as follows. At every stage k ≥ 1, one of the players is chosen at

random; each player is chosen with probability 1/n, independent of past choices. The chosen
player i decides whether to quit, in which case the game terminates and the terminal payoff
vector is ai, or whether to continue, in which case the game continues to the next stage. If
no player ever quits, the payoff is a∗.
We assume throughout that a∗ ≤ 1,4 and for every i ∈ I , ai ≤ 1 and ai

i = 0.
For technical reasons, it will be more convenient to assume that players choose actions

even if the game has already terminated. Setting B = �Continue	Quit�, the set of histories
of length k is Hk = �I ×B�k, the set of finite histories is H =⋃

k≥0Hk, and the set of plays
is H� = �I × B�N. The space H�, equipped with the �-algebra spanned by the cylinder
sets, is a measurable space. We denote by �k the sub-�-algebra induced by the cylinder
sets defined by Hk.
A (behavior) strategy of player i is a function �i H → �0	1�; for every h ∈Hk, �

i�h�
is the probability that player i quits if the history h occurs and player i is chosen at stage
k+ 1.
A stationary strategy is a strategy in which �i�h� is independent of h; namely, a strategy

in which player i quits whenever he is chosen with some fixed probability. We denote by 1i

4 The norm we use throughout the paper is the maximum norm: a =maxi∈I �ai�.
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(respectively, 0i) the strategy of player i in which he quits with probability 1 (respectively,
with probability 0) whenever he is chosen.
A strategy profile, or simply a profile, is a vector � = ��i�i∈I of strategies; one for each

player. A stationary profile, which is a vector of stationary strategies, is identified with a
vector � ∈ �0	1�n; �i is the probability that player i quits whenever he is chosen.
We denote by ik and bk the player chosen at stage k and the action he chooses, respec-

tively. Those are random variables.
Let  =min�k ∈ N � bk = Quit� be the first stage in which the chosen player decides to

quit. If no player ever quits,  =+�. Every profile � induces a probability distribution P�

over H�. We denote by E� the corresponding expectation operator.
A strategy profile � is terminating if P�� <+��= 1; that is, under � the game termi-

nates a.s. Observe that a stationary profile � is terminating if and only if
∑

i∈I �i > 0.
The expected payoff that corresponds to a profile � is

#���=E� �1� <+��ai 
+ 1� =+��a∗�$

Definition 2.1. Let �≥ 0. A profile � is an �-equilibrium if for every player i ∈ I and
every strategy � ′i of player i,

#i���≥ #i��−i	 � ′i�− �$

The expected payoff that corresponds to an �-equilibrium is an �-equilibrium payoff, and
any accumulation point of �-equilibrium payoffs, as � goes to 0, is an equilibrium payoff.
Because payoffs are bounded, an equilibrium payoff exists as soon as an �-equilibrium
exists for every � > 0.
By Thuijsman and Raghavan [26], every quitting game with perfect information admits

a 0-equilibrium. Unfortunately, the 0-equilibrium strategies that Thuijsman and Raghavan
[26] construct use threats of punishment.
Given a strategy �i of player i and a finite history h ∈H , the strategy �i

h is given by

�i
h�h

′�= �i�h%h′�

for every finite history h′, where �h%h′� is the concatenation of h and h′. This is the
continuation strategy given the history h occurs.
Given a profile � and a finite history h ∈H , we denote �h = ��i

h�i∈I .
Definition 2.2. Let �≥ 0. A profile � is a subgame-perfect �-equilibrium if for every

finite history h ∈H , the profile �h is an �-equilibrium.
Clearly, any �-equilibrium in stationary strategies is a subgame-perfect �-equilibrium.
The payoff that corresponds to a subgame-perfect �-equilibrium is a subgame-perfect

�-equilibrium payoff, and any accumulation point of subgame-perfect �-equilibrium payoffs,
as � goes to 0, is a subgame-perfect equilibrium payoff.

2.2. Examples. We provide here a few examples that illustrate some features of the
model. In the first two examples, a∗ may be arbitrary.

Example 2.1. Take n = 4, a1 = �0	3	−1	−1�, a2 = �3	0	−1	−1�, a3 =
�−1	−1	0	3�, and a4 = �−1	−1	3	0�. This is an adaptation of the game studied by Solan
and Vieille [22].
This game admits a 0-equilibrium in pure stationary strategies: players 1 and 3 quit when-

ever chosen, and players 2 and 4 continue whenever chosen. The corresponding equilibrium
payoff is �1/2��0	3	−1	−1�+ �1/2��−1	−1	0	3� = �−1/2	1	−1/2	1�, so indeed only
players 1 and 3 have incentive to quit.
Example 2.2. Take n = 3, a1 = �0	2	−1�, a2 = �−1	0	2�, and a3 = �2	−1	0�. This

is an adaptation of the game studied by Flesch et al. [6] to our setup. As in the analysis of
Flesch et al. [6], it is not clear how one can define a subgame-perfect 0-equilibrium using
a limit of discounted stationary equilibria as the discount factor goes to 0.
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Table 1. Two subgame-perfect 0-equilibria in Markovian strategies.

Stage Profile Payoffs (approximate) Profile Payoffs

1 1	0	1 −0$178	1$381	−0$202 1	0	0 0	
1
2
	
1
2

2 1	0	0 −0$267	1$072	0$196 3
4
	0	0 0	0	1

3 1	0	0 −0$401	0$607	0$794 0	1	0
1
2
	0	

1
2

4 1	1	0 −0$202	−0$178	1$381 0	
3
4
	0 1	0	0

5 0	1	0 0$196	−0$267	1$072 0	0	1
1
2
	
1
2
	0

6 0	1	0 0$794	−0$401	0$607 0	0	
3
4

0	1	0

7 0	1	1 1$381	−0$202	−0$178
8 0	0	1 1$072	0$196	−0$267
9 0	0	1 0$607	0$794	−0$401

Table 1 presents two subgame-perfect 0-equilibria in Markovian strategies.5 The two
equilibria are periodic;6 one is pure with period 9 and the other is mixed with period 6.7

In every row appear the probabilities by which the players quit if they are chosen, and
the continuation payoff. For example, in the first equilibrium, the equilibrium payoff is
(approximately) �0$607	0$794	−0$401� (the payoff at the end of the period). The continu-
ation payoff (= expected payoff if Stage 2 is reached) is �−0$178	1$381	−0$202�, so that
players 1 and 3 want to quit at Stage 1. Indeed,

�0$607	0$794	−0$401�= 1
3
�0	2	−1�+ 1

3
�−0$178	1$381	−0$202�+ 1

3
�2	−1	0�$

Similarly, the expected payoff if Stage 3 is reached is �−0$267	1$072	0$196�, so that at
Stage 2, only player 1 wants to quit. And indeed,

�−0$178	1$381	−0$202�= 1
3
�0	2	−1�+ 2

3
�−0$267	1$072	0$196�$

The second equilibrium corresponds to the one identified by Flesch et al. [6] for their
example. Indeed, in every period, the probability that player 1 quits is 1/3× 1+ 2/3×
1/3× 3/4= 1/2. Similarly, the probability that player 2 quits in a given period provided
player 1 did not quit in that period is 1/2, and the probability that player 3 quits in a given
period provided players 1 and 2 did not quit is 1/2.
Observe that one can construct more equilibria. Because �0	0	1� (and by symmetry

�0	1	0� and �1	0	0�) is an equilibrium payoff (see the second equilibrium), �1/3	1/3	1/3�
is an equilibrium payoff as well: in the first stage, the chosen player continues, while from
the second stage on, the players implement the equilibrium that corresponds to �0	0	1�
(respectively, �0	1	0�, �1	0	0�) if player 1 (respectively, 2, 3) was chosen in the first stage.
In fact, one can show that for this example, every feasible and individually rational payoff

vector (that is, every vector in the set conv�a1	 a2	 a3� ∩ �x ∈ R3 � xi ≥ −1/2 ∀ i�) is a
subgame-perfect 0-equilibrium payoff. This observation does not hold in general.
We end this example by describing another subgame-perfect 0-equilibrium in Markovian

strategies, which gives the basic idea of the equilibria we construct in the general case. In
this equilibrium, the players use a parameter, which is the expected continuation payoff;

5 A strategy of a player is Markovian if the mixed action it prescribes to play at each stage t depends only on t,
and not on past play.
6 A Markovian strategy of a player is periodic with period T if the mixed actions prescribed by the strategy at
stages t and t+ T coincide, for every t ≥ 1.
7 A strategy �i of player i is pure if �i�h� ∈ B for every finite history h, and is mixed otherwise.
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each player’s mixed action depends solely on the expected continuation payoff of all play-
ers. There are six possible continuation payoffs: �1	0	0�, �0	1	0�, �0	0	1�, �0	1/2	1/2�,
�1/2	0	1/2�, and �1/2	1/2	0�. We will use the following identities:

�0	1	0� = 1
3

(
1×�0	2	−1�+0×

(
0	
1
2
	
1
2

))
+ 1
3

(
0×�−1	0	2�+1×

(
0	
1
2
	
1
2

))

+ 1
3

(
0×�2	−1	0�+1×

(
0	
1
2
	
1
2

))
(1)

and (
0	
1
2
	
1
2

)
= 1
3

(
3
4
×�0	2	−1�+ 1

4
×�0	0	1�

)
+ 1
3
�1×�−1	0	2�+0×�0	0	1��

+ 1
3
�0×�2	−1	0�+1×�1	0	0��$ (2)

We describe the subgame-perfect 0-equilibrium when the continuation payoff is �0	1	0� and
�0	1/2	1/2�. The behavior when the continuation payoff is one of the other four vectors
is symmetric.
Assume that the continuation payoff is �0	1	0�. If player 1 (respectively, 2, 3) is chosen,

he quits with probability 1 (respectively, 0, 0). If the chosen player does not quit, the
continuation payoff is �0	1/2	1/2�.
Assume that the continuation payoff is �0	1/2	1/2�. If player 1 (respectively, 2, 3) is

chosen, he quits with probability 3/4 (respectively, 1, 0). If he does not quit, the continuation
payoff is �0	0	1� (respectively, �0	0	1�, �1	0	0�).
Equations (1) and (2) imply that this is indeed a subgame-perfect 0-equilibrium.
In the following example, there is no subgame-perfect 0-equilibrium.
Example 2.3. Take n = 2, a1 = �0	1�, a2 = �−1	0�, and a∗ = �1	−1�. This is an

adaptation of Solan and Vieille [23, Example 3]
Here, there is a subgame-perfect �-equilibrium in mixed stationary strategies: player 1

quits whenever chosen with probability 1, and player 2 quits whenever chosen with proba-
bility �. The expected payoff is

1
1+ �

�0	1�+ �

1+ �
�−1	0�=

(
− �

1+ �
	

1
1+ �

)
$

One can verify that player 1 cannot profit by deviating, while player 2 cannot profit more
than �/�1+ �� by deviating.
The same analysis that was performed by Solan and Vieille [23, Example 3] shows

that this game admits no subgame-perfect 0-equilibrium. The basic idea is the following.
Consider the three events: A = �the game is terminated by player 1�, B = �the game is
terminated by player 2�, and C = �the game continues indefinitely�. Player 1 prefers C to A
and A to B, while player 2 prefers A to B and B to C. To achieve event A, which is
controlled by player 1, player 2 must threaten player 1 by event B, which is suboptimal for
both players. However, because player 1 prefers event C, without such a threat event C will
be realized, but event C is worse than B to player 2, so a suboptimal threat is necessary.

2.3. Dummy players. In this section, we define the notion of dummy players, and we
see that dummy players essentially never participate in the game—they never quit. One can
then eliminate those players from the game. Recall that ai

i = 0 for every i ∈ I .
Definition 2.3. A player i is dummy if (i) ai

∗ > 0 and (ii) ai
j > 0 for every j �= i.

A dummy player never wants to quit: whether the game is going to continue indefinitely,
or whether some other player is going to quit, he himself does not want to quit. It is no
surprise then that one can eliminate dummy players.
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Lemma 2.1. Let i ∈ I be a dummy player in � and let � > 0. Let � ′ be the �n−1�-player
game in which we eliminate player i. Then, any �-equilibrium in � ′ can be extended to an
�-equilibrium in � by instructing player i to continue whenever he is chosen. Moreover, in
every �-equilibrium in � , the overall probability that the game is terminated by player i is
at most �/A where A=min�ai

∗	 a
i
j 	 j �= i�.

In particular, every �-equilibrium in � can be turned into a �1+ 1/A� �-equilibrium in
which player i never quits, simply by modifying the profile so that player i never quits.
The proof of Lemma 2.1 is straightforward and omitted.
From now on, we assume that the game contains no dummy players.
Observe that if a dummy player is eliminated from the game, some other player, who

was not initially a dummy player, may become a dummy player in the �n−1�-player game.

2.4. A differential inclusion. An (autonomous) differential inclusion is an equation of
the form ẇ ∈G�w�, where G is a set-valued function. This is a generalization of standard
differential equations. A solution of a differential inclusion is an absolutely continuous
function w such that ẇ�t� ∈G�w�t�� for almost every t. Differential inclusions have been
extensively studied (see, e.g., Aubin and Cellina [1] or Filippov [4]).
In this section, we construct a certain set-valued function F from the data of the game.

Our goal is to relate solutions of the differential inclusion ẇ ∈ F �w� to subgame-perfect
equilibrium payoffs of the game.
Set

W = �w ∈ conv�a1	 
 
 
 	 an� �wi ≤ 0 for some i ∈ I�$

The set W is nonempty as it contains ai, i ∈ I . It is also compact, but not necessarily convex
or even connected (e.g., if n= 2, a1 = �0	1�, and a2 = �1	0�, then W = ��0	1�	 �1	0��).
For every w ∈W , define

IN �w� = �i ∈ I �wi < 0�	

IZ�w� = �i ∈ I �wi = 0�	 and

IP �w� = �i ∈ I �wi > 0�$

Observe that for every w ∈W , IN �w�∪ IZ�w� �= �.
Set8

-�w�=
{
� ∈ �0	1�n

∣∣∣ i ∈ IP �w�⇒ �i = 0	 i ∈ IN �w�⇒ �i = 1	
∑
i∈I

�i ≥ 1
}
$

This definition captures the following idea. If w is the continuation payoff and player i is
chosen, i will quit with probability 1 if wi < 0 and with probability 0 if wi > 0. Thus, any
� ∈-�w� is a possible description of the behavior of rational players at a given stage, when
the continuation payoff is w.
Because IN �w�∪ IZ�w� �= � for every w ∈W , - has nonempty values.
Define

F �w�=
{∑

i∈I
�i�w− ai�

∣∣∣ � ∈-�w�

}
⊂Rn$

We are interested in solutions of the equation

ẇ ∈ F �w�$ (3)

The reader may wonder why the differential inclusion (3) is of interest.

8 In the definition of -�w�, one can take
∑

i∈I �
i ≥ c for any fixed 0< c ≤ 1.
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Consider a version of the game that is played in continuous time. At every time instance t,
each player is chosen with probability dt and with probability 1−ndt, no player is chosen. If
player i is chosen, he can decide whether to quit, in which case the game terminates and the
payoff is ai or to continue. We allow players to use Markovian strategies, so that a strategy
of player i is a measurable function �i �0	��→ �0	1�; �i�t� is the probability that player i
quits at time t if he is chosen at that time, and the game was not terminated before.
Every strategy profile � = ��i�i∈I induces a payoff function w �0	��→ Rn; wi

t is the
expected continuation payoff to player i under � from time t onward. One can verify that
the payoff function w must satisfy ẇ�t�=∑

i∈I �i�t��w�t�− ai�.
For � to be a subgame-perfect 0-equilibrium, we need �i�t�= 1 if wi�t� < 0 and �i�t�= 0

if wi�t� > 0. Thus, modulo the condition that
∑

i∈I �i�t�≥ 1 for every t, a strategy profile �
is a subgame-perfect 0-equilibrium in the game in continuous time if and only if it defines a
solution of the differential inclusion ẇ ∈ F �w� via the equation ẇ�t�=∑

i∈I �i�t��w�t�−ai�.
The condition

∑
i∈I �i ≥ 1 ensures that the game will eventually terminate, as at every

time instance, the probability that the game terminates is at least ndt.
To summarize, we relate subgame-perfect equilibria of the game in continuous time to

subgame-perfect equilibria of the game in discrete time.

2.5. The main results. Our results can be divided into three groups. First, we char-
acterize the set of equilibrium payoffs that are supported by stationary strategies (and, in
particular, are subgame perfect) by means of fixed points of the set-valued function F . Sec-
ond, we prove that the differential inclusion ẇ ∈ F �w� always has a solution. Third, we relate
solutions of the differential inclusion ẇ ∈ F �w� to subgame-perfect equilibrium payoffs.

2.5.1. Stationary equilibria. Because the payoff that a player receives when he quits
alone is ai

i = 0, if ai
∗ ≥ 0 for every i ∈ I , the strategy profile in which all players always

continue is a stationary equilibrium.
Our first goal is to characterize all equilibrium payoffs that are supported by terminating

stationary strategies in terms of the set-valued function F .
A fixed point of a differential inclusion ẇ ∈G�w� is any vector w0 such that �0 ∈G�w0�.

Proposition 2.1. Assume that there are no dummy players and let w ∈W . If �0 ∈ F �w�,
then w is an equilibrium payoff that is supported by terminating stationary profiles.

The converse of Proposition 2.1 is given by the following proposition.

Proposition 2.2. Let w ∈W . If w is an equilibrium payoff that is supported by termi-
nating stationary profiles, then �0 ∈ F �w�.

Lemma 2.2 gives two cases where we can point at specific vectors w0 such that �0 ∈ F �w0�.

Lemma 2.2. (1) If �0 ∈W , then �0 ∈ F ��0�.
(2) If for some i ∈ I , aj

i ≥ 0 for every j ∈ I , then �0 ∈ F �ai�.

Proof. We start with the first assertion. Assume that �0 ∈W . Then, there is � ∈ �0	1�n

that satisfies (i)
∑

i∈I �i = 1 and (ii)
∑

i∈I �iai = �0. Because IZ��0� = I , it follows that � ∈
-��0�, and therefore �0 ∈ F ��0�.
We continue with the second assertion. Under the assumptions, the vector � that is defined

by �i = 1 and �j = 0 for every j �= i is in -�ai�, so that �0 ∈ F �ai�. �

2.5.2. Existence of a solution to the differential inclusion ẇ ∈ F �w�.
Definition 2.4. A function g R → Rn is absolutely continuous if for every � > 0,

there is 0> 0 such that for every m ∈N and every collection �xi	 yi�
m
i=1 of real numbers, if∑m

i=1 �xi − yi�<0, then
∑m

i=1 g�xi�− g�yi�< �.
Observe that if g is absolutely continuous, it is, in particular, uniformly continuous.9

9 A function g is uniformly continuous if the condition in Definition 2.4 holds for m= 1.
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Definition 2.5. A solution of a differential inclusion ẇ ∈G�w� is an absolutely con-
tinuous function w R→W that satisfies ẇ�t� ∈G�w�t�� for almost every t ∈R.10

The following proposition asserts that the differential inclusion ẇ ∈ F �w� has a solution.

Proposition 2.3. The differential inclusion ẇ ∈ F �w� has at least one solution.

2.5.3. Solutions of ẇ ∈ F �w� and equilibrium payoffs. For every solution w of ẇ ∈
F �w�, denote the range of w by

Yw = �w�t� � t ∈R�⊆W$

For every set Y ⊆Rn, �Y is the closure of Y .
Definition 2.6. A solution w of ẇ ∈ F �w� has type 0 if �0 ∈ F �y� for some y ∈ �Yw. It

has type 1 otherwise.
By Proposition 2.1, if w is a solution of type 0 and there are no dummy players, then the

game admits an equilibrium payoff that is supported by terminating stationary strategies.
The following two propositions relate solutions of the differential inclusion ẇ ∈ F �w� to

subgame-perfect equilibrium payoffs.

Proposition 2.4. Assume that there are no dummy players and let w be a solution of
ẇ ∈ F �w� of type 1. Then, every y ∈ �Yw is a subgame-perfect 0-equilibrium payoff.

More generally, our arguments show that if there are no solutions of type 0, then
every vector in the closure of the range of all solutions of type 1 is a subgame-perfect
0-equilibrium payoff.

Proposition 2.5. Assume that there are no dummy players and let w be a solution of
ẇ ∈ F �w� of type 0. Then, every y ∈ �Yw is a subgame-perfect �-equilibrium payoff for every
� > 0.

Remark 2.1. The range of all solutions of ẇ ∈ F �w� does not necessarily coincide
with the set of subgame-perfect equilibrium payoffs. Indeed, the former set is a subset of
W , whereas there are subgame-perfect 0-equilibrium payoffs that are not in W (see, e.g.,
Example 2.2).
Remark 2.2. By Proposition 2.3, the differential inclusion ẇ ∈ F �w� has at least one

solution. If it has a solution of type 0, then by Proposition 2.1, there is a stationary
�-equilibrium for every � > 0. If, on the other hand, it has a solution of type 1, then there is
continuum of vectors in the range of this solution, and thus by Proposition 2.4, a continuum
of subgame-perfect 0-equilibrium payoffs.

3. Existence of a solution to ẇ ∈ F �w�. In this section, we prove Proposition 2.3,
which states that a solution to the differential inclusion ẇ ∈ F �w� always exists.

Lemma 3.1. The set-valued functions w �→-�w� and w �→ F �w� are upper semicontin-
uous; that is, their graphs are closed sets in R2n. Moreover, they have nonempty and convex
values.

Proof. The fact that both - and F have nonempty and convex values easily follows
from the definitions.
We now prove that w �→ -�w� is upper semicontinuous. Let �wk�k∈N be a sequence of

elements in W that converges to w, and let ��k�k∈N be a sequence of elements in �0	1�n

that converges to � such that �k ∈-�wk� for every k ∈N. We show that � ∈-�w�.
As �k ∈-�wk� for every k ∈N,

∑
i∈I �i

k ≥ 1 for every k ∈N. Hence,
∑

i∈I �i ≥ 1.
10 In the literature on differential equations, a solution w is usually defined over the interval �0	�� and not over
the whole real line. For our purposes, a solution should be defined over �−�	0�, so we find the present definition
more convenient.
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Fix i ∈ I . If i ∈ IN �w�, then wi < 0. Hence, i ∈ IN �wk� for every k sufficiently large. In
particular, �i

k = 1 for every k sufficiently large, so that �i = 1. If i ∈ IP �w�, then wi > 0.
Hence, i ∈ IP �wk� for every k sufficiently large. In particular, �i

k = 0 for every k sufficiently
large, so that �i = 0. It follows that � ∈-�w� as desired.
As F is the composition of a continuous function with an upper semicontinuous set-

valued function, it is upper semicontinuous. �

Lemma 3.2. For every w ∈W , there is y ∈ F �w� such that w−2y ∈W for every 2> 0
sufficiently small.

Geometrically, Lemma 3.2 asserts that for every vector w ∈W , there is a vector y ∈ F �w�
such that at w the direction −y “points into W .”

Proof. Fix w ∈ W and y ∈ F �w�. Then, y = �
∑

i∈I �i�w −∑
i∈I �iai for some vector

� ∈ �0	1�n. In particular, w−2y = �1−∑
i∈I 2�i�w+∑

i∈I 2�iai. Because w is in the convex
hull of �a1	 
 
 
 	 an�, so is w−2y, provided 2≤ 1/n.
It remains to show that there is y ∈ F �w� such that wi −2yi ≤ 0 for some i ∈ I .
If IN �w� �= �, then wi < 0 for some i ∈ I , and any y ∈ F �w� satisfies this requirement. If

IN �w�=�, then because w ∈W , we have IZ�w� �= �. Then, for every i ∈ IZ�w�, we have
wi = 0 so that y =w− ai ∈ F �w�. Moreover, wi −2yi = �1−2�wi +2ai

i = 0. �

Proposition 2.3 follows from the following general result.

Theorem 3.1. Let W ⊆Rn be a compact set and let F  W →Rn be an upper semicon-
tinuous set-valued function with nonempty and convex values such that for every w ∈W ,
there is y ∈ F �w� satisfying w−2y ∈W for every 2> 0 sufficiently small. Then, the differ-
ential inclusion ẇ ∈ F �w� has a solution.

Proof. The differential inclusion ẇ ∈ −F �w� satisfies the conditions of Deimling [2,
Theorem 1] or Kunze [8, Theorem 2.2.1] so that for every w0 ∈W , there is an absolutely
continuous function w �0	+��→W that satisfies (i) w�0�=w0 and (ii) ẇ�t� ∈−F �w�t��
for almost every t ∈ �0	+��.
By reversing the direction of time, for every k ∈ N, there is an absolutely continuous

function wk �−�	 k�→W that satisfies ẇk�t� ∈ F �wk�t�� for almost every t ∈ �−�	 k�.
Because W is compact, Ascoli-Arzela’s Theorem (see Aubin and Cellina [1,

Theorem 0.3.4]) implies that the sequence �wk� has a convergent subsequence: there is a
subsequence �kj�j∈N and a function w R →W such that limj→�wkj

�t� = w�t� for every
t ∈R. Indeed, the functions wk are uniformly bounded (as their values are in the compact
set W ), and their derivatives are also uniformly bounded (as the derivatives are a.e. in the
compact set F �W�).
By Filippov [4, Lemma 2.7.1] w is absolutely continuous over every open and bounded

interval and ẇ�t� ∈ F �w�t�� for almost every t in this interval. It follows that w satisfies
these two properties over R as well. �

The following lemma asserts that for every solution of ẇ ∈ F �w�, one can find a mea-
surable function � such that � ∈-�w� and ẇ=∑

i �
i�w− ai�.

Lemma 3.3. For every solution w of the differential inclusion ẇ ∈ F �w�, there is a
measurable function � R→ �0	1�n such that for almost every t ∈R,
(1) ��t� ∈-�w�t�� and
(2) ẇ�t�=∑

i∈I �i�t��w�t�− ai�.

Proof. Set R�t�= �� ∈ -�w�t�� ẇ�t�=∑
i∈I �i�w�t�− ai��. Because ẇ�t� ∈ F �w�t��

for almost every t, R�t� has nonempty values for almost every t, and it can be easily
verified that it has closed values. Because w and F are measurable, R is a measurable set-
valued function. By Kuratowski and Ryll-Nardzewski [9], the set-valued function R has a
measurable selector �, which plainly satisfies the requirements. �
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4. From solutions of ẇ ∈ F �w� to equilibria. In this section, we relate solutions of
the differential inclusion ẇ ∈ F �w� to subgame-perfect equilibrium payoffs.
We first provide in §4.1, a sufficient condition for the existence of a subgame-perfect

equilibrium payoff. We use this sufficient condition in §4.2 to characterize stationary equi-
libria in terms of the set-valued function F . In §4.3, we provide two representations of a
solution of ẇ ∈ F �w� that are used in §4.4 to show that any point on a solution of this
differential inclusion is a subgame-perfect equilibrium payoff.

4.1. Conditions for existence of subgame-perfect equilibria. Recall that �Y is the
closure of Y . Lemma 4.1 provides a condition that ensures that any payoff vector in a given
set Y is a subgame-perfect equilibrium payoff.

Lemma 4.1. Let Y ⊆W and 4 > 0 be given. Assume that for every y ∈ Y , there exist
� ∈ �0	1�n and y1	 
 
 
 	 yn ∈ Y that satisfy the following conditions:
(C.1) y = �1/n�

∑
i∈I ��iai + �1−�i�yi�,

(C.2) yii > 0 implies that �i = 0,
(C.3) yii < 0 implies that �i = 1, and
(C.4) max��1	 
 
 
 	 �n�≥ 4.

Then, the following two assertions hold:
(a) If there are no dummy players, then every y ∈ �Y is a subgame-perfect �-equilibrium

payoff for every � > 0.
(b) Suppose that for every i ∈ I , if ai ∈ �Y , then a

j
i < 0 for some j ∈ I . Then, every y ∈ Y

is a subgame-perfect 0-equilibrium payoff.

Note that each of the three subgame-perfect equilibria we presented for Example 2.2
defines a set Y that satisfies the conditions in the lemma.
Proof. Choose an arbitrary y ∈ Y . We show that y is a subgame-perfect equilibrium

payoff.
Step 1. Definition of a strategy � . We simultaneously define a profile � and a function

u H → Y .
Set u���= y, where � is the history at the beginning of the game. Assume that we have

already defined u�h� ∈ Y for some finite history h. By assumption, there exist � ∈ �0	1�n

and y1	 
 
 
 	 yn ∈ Y that satisfy u�h�= �1/n�
∑

i∈I ��iai + �1−�i�yi� and (C.2)–(C.4).
Thus, if yi is the continuation payoff if player i is chosen, then by (C.2) and (C.3),

�i is an optimal response of player i and u�h� is the expected payoff conditioned that h is
realized.
Set �i�h�= �i and u�h% i	Quit�= u�h% i	Continue�= yi for every i ∈ I .
(C.4) implies that under � , the probability of termination at every stage is at least 4/n.

Hence, under � the game eventually terminates, and (C.1) implies that u�h� is the expected
payoff under �h,

#��h�= u�h� ∀h ∈H$

Step 2. Assertion (b): ��−i	0i� is terminating for every player i. In Steps 2 and 3, we
assume that the condition in assertion (b) holds. We argue that for every player i ∈ I , the
profile ��−i	0i� in which all players but i follow � and player i never quits, is terminating
with probability 1.
Indeed, otherwise, for every 0 > 0, there is a finite history h and a player i such that

the probability the game terminates under ��−i
h 	0i� is at most 0. But then for every j ∈ I ,

the probability the game terminates under ��−i
�h%j	Continue�	0

i� is at most n0. Because under
��h%j	Continue� termination occurs with probability 1, we deduce that under ��h%j	Continue� the
probability that player i terminates is at least 1−n0 so that u�h% j	Continue�, the expected
payoff under ��h%j	Continue�, is within n0 of ai.
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If ai is not in the closure of Y , then there is 0
′ > 0 such that the distance between ai

and the closure of Y is at least 0′. Because u�h% j	Continue�= #���h%j	Continue�� is in Y , this
leads to a contradiction when 0< 0′/n.
Otherwise, ai ∈ �Y , so that there is j ∈ I satisfying a

j
i < 0. Suppose that 0 is suffi-

ciently small such that aj
i < −n0. Because u�h% j	Continue�− ai < n0, it follows that

the expected payoff for player j under ��h%j	Continue� is negative. By (C.3), this implies that
�j�h�= 1. Therefore, the probability of termination under ��−i

h 	0i� is at least 1/n, which
leads to a contradiction if 0< 1/n.
Step 3. Assertion (b): � is a subgame-perfect 0-equilibrium. We now prove that no

player i ∈ I can profit by deviating from � . The same proof holds for any subgame and,
hence, � is a subgame-perfect 0-equilibrium. Fix a player i ∈ I and a strategy � ′i of player i.
For every k≥ 0, define a r.v. Xk as follows: Xk = ai

i 
if  < k and Xk = #i��k� otherwise,

where �k is the random strategy induced from stage k on (that is, �k is a strategy-valued
r.v.).
By (C.2)–(C.3) and the definition of � ,

E�−i 	 � ′i �Xk+1 ��k�≤Xk ∀k≥ 0$ (4)

Because the profile ��−i	0i� is terminating, so is the profile ��−i	 � ′i�. Thus, �Xk� is a
supermartingale under ��−i	 � ′i�, so that by the monotone convergence theorem,

#i��−i	 � ′i�=E�−i 	 � ′i �ai
i 
1� <+���= lim

k→+�
E�−i 	 � ′i �Xk�≤X0 = #i���	

as desired.
We now prove assertion (a). It is no longer true that ��−i	0i� is terminating for every

player i. To fix this, we will define a proper augmentation 7 of � and prove that it is a
4�-equilibrium.
Step 4. Definition of an augmentation 7 . For the rest of the proof, we assume that the

condition in assertion (a) holds. Because there are no dummy players, for every player i ∈ I
either ai

∗ ≤ 0 or there is ji �= i such that ai
ji
≤ 0 (ji is a “punisher” of i), or both. For every

j ∈ I , set Ij = �i ∈ I  j = ji�, the set of players that j punishes. Because for every player we
choose at most one punisher, �Ij�j∈I are disjoint sets (some of these sets may be empty).
Define a profile 7 as follows:

7j�h�=min
{
�j�h�+ �

n

∑
i∈Ij

� i�h�	1
}
$

In words, for every player i that j punishes, the probability that j quits is increased by �
times the probability that i quits. This implies, in particular, that for every k≥ 1,

P�−i 	0i � = k+ 1 ��k�≤ P7−i 	0i � = k+ 1 ��k�≤ �1+ ��P�−i 	0i � = k+ 1 ��k�$ (5)

Step 5. #���−#�7�< �. We argue here, using a coupling argument, that

#���−#�7�< �$ (6)

Consider the probability space 8= �I× �0	1��N, equipped with the product topology and
the infinite product of the uniform distribution over I × �0	1�. Each point in 8 is a vector
�i1	 91	 i2	 92	 
 
 
 �, where ik is the identity of the chosen player at stage k and 9k is the
outcome of the coin toss the chosen player uses at stage k.
Given a point �i1	 91	 i2	 92	 
 
 
 � ∈8 and a profile � ′, one can easily determine the stage

in which the game is terminated: if the game has not terminated by stage k, player ik stops
at stage k if and only if 9k ≤ � ′ik �h�, where h= �i1	Continue	 
 
 
 	 ik−1	Continue	 ik� is the
history up to stage k.
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By the definition of 7 , for every �i1	 91	 i2	 92	 
 
 
 �, the game will terminate under 7 no
later than it terminates under � . Moreover, if after the history h the game terminates under 7 ,
while it continues under � , then we must have

�ik�h� < 9k ≤ 7ik �h�$

By the definition of 7 , the probability that this happens at stage k is at most �P�� = k ��k�.
Therefore, the overall probability that the play under 7 is different from the play under

� is at most
∑

k∈N �P�� = k ��k�≤ � and the desired result follows.
Step 6. 7 is a subgame-perfect 4�-equilibrium. Fix a player i and a strategy 7 ′i of player i.

We will prove that #i�7−i	 7 ′i�≤ #i�7�+ 4�. The same proof holds for every subgame and
hence the result follows.
Define the sequence �Xk�k∈N as in Step 3: Xk = ai

i 
if  < k, and Xk = #i��k� otherwise.

By the triangle inequality, (5) and (4), one obtains

E7−i 	 7 ′i �Xk+1 ��k�−Xk ≤ E�−i 	 7 ′i �Xk+1 ��k�−Xk + �P�−i 	 7 ′i � = k+ 1 ��k�

≤ �P7−i 	 7 ′i � = k+ 1 ��k�$ (7)

This implies that the process �Yk� that is defined by

Yk =Xk − �
k−1∑
j=0

P7−i 	 7 ′i � = j + 1 ��j �

is a supermartingale.
By the monotone convergence theorem,

#i�7−i	 7 ′i�= lim
k→�

E7−i 	 7 ′i �1 <kXk + 1 ≥ka
i
∗�$ (8)

If �7−i	 7 ′i� is terminating, limk→� P� < k�= 1, and the right-hand side in (8) is reduced
to limk→�E7−i 	 7 ′i �Xk�.
If, on the other hand, �7−i	 7 ′i� is not terminating, then the definition of 7 implies that i

has no punisher. Because i is not a dummy player, ai
∗ ≤ 0. Moreover, as � is terminating,

termination in the last stages is done by player i, and in this case, player i’s payoff is 0. In
particular, limk→� 1 ≥kXk = 0.
In both cases, we get that

#i�7−i	 7 ′i�≤ lim
k→�

E7−i 	 7 ′i �Xk�$

By the definition of �Yk� and because this process is a supermartingale,

#i�7−i	 7 ′i� ≤ lim
k→�

E7−i 	 7 ′i �Xk�

≤ lim
k→�

E7−i 	 7 ′i �Yk�+ �
�∑
k=0

P7−i 	 7 ′i � = k+ 1�

≤ E7−i 	 7 ′i �Y0�+ �

= E7−i 	 7 ′i �X0�+ �

= #i���+ �	

as desired. �

Remark 4.1. Actually, in assertion (b), every y in �Y , the closure of Y , is a subgame-
perfect 0-equilibrium payoff. Indeed, if a set Y satisfies the conditions of Lemma 4.1, then
by a limiting argument, the set �Y satisfies these conditions as well.
Remark 4.2. One can weaken condition (C.4) in Lemma 4.1. All that is needed is that

for every h ∈H , the profile �h that is defined in the proof of Lemma 4.1 is terminating.
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4.2. Characterization of stationary equilibrium payoffs. In this section, we prove
Propositions 2.1 and 2.2, which characterize stationary equilibrium payoffs in terms of the
differential inclusion F .
Proof of Proposition 2.1. If �0 ∈ F �w�, then �0=∑

i∈I �i�w− ai� for some � ∈-�w�.
But then, w = ∑

i∈I �iai/
∑

i∈I �i, which implies that w = �1/n�
∑

i∈I ��iai + �1 − �i�w�.
The set Y = �w�, together with 4 = max��1	 
 
 
 	 �n� ≥ 1/n, satisfies the conditions of
Lemma 4.1. �

Proof of Proposition 2.2. Assume that w is an equilibrium payoff that is supported
by terminating stationary profiles. That is, for every � > 0, there is a terminating sta-
tionary �-equilibrium �� with expected payoff w� such that lim�→0w� = w. In partic-
ular,

∑
i∈I �i

�ai/
∑

i∈I �i
� = w�. Because by multiplying all the coordinates of �� by a

constant larger than 1 one still obtains an �-equilibrium, we can assume w.l.o.g. that
max��1�	 
 
 
 	 �

n
��= 1 for every � > 0.

By taking a subsequence, we assume w.l.o.g. that the support of �����>0, that is, the set
of players that quit under �� with positive probability whenever chosen, is independent of �.
We will show that any accumulation point � of the sequence �����>0 as � goes

to 0 is in -�w�. Observe that any such accumulation point satisfies
∑

i∈I �i ≥ 1 and∑
i∈I �iai/

∑
i∈I �i =w, so that one would have �0 ∈ F �w�, as desired.

Case 1. The support of �� contains a single player i for every � > 0.
For every � > 0, max��1�	 
 
 
 	 �

n
�� = 1 and, hence, �i

� = 1 and �j
� = 0 for every j �= i.

Therefore, w� = ai for every � > 0, so that w = ai. Because �� is an �-equilibrium, if
player k �= i quits with probability 1 whenever he is chosen, he gains at most �. Because
ak
k = 0, one obtains

1
2
ak
i = #k��−k

� 	1k�≤ #k����≤wk
� + �= ak

i + �	

which implies that ak
i ≥−2�. Because � is arbitrary, we get ak

i ≥ 0 for every k �= i, and by
assumption ai

i = 0. This means that the vector � that is defined by �i = 1 and �k = 0 for
every k �= i is in -�ai�=-�w�, as desired.
Case 2. The support of �� contains at least two players for every � > 0.
Fix � > 0. Because aj

j = 0, one has for every j ∈ I ,∑
i∈I

�i
�w

j
� =

∑
i∈I

�i
�a

j
i =

∑
i �=j

�i
�a

j
i $ (9)

Because �� is an �-equilibrium, if j quits with probability 1 whenever he is chosen, he
gains at most �: ∑

i �=j �
i
�a

j
i

1+∑
i �=j �

i
�

= a
j
j +

∑
i �=j �

i
�a

j
i

1+∑
i �=j �

i
�

= #j��−j
� 	1j �≤wj

� + �$

Incorporating (9) and because 1+∑
i �=j �

i
� ≤ n for every i ∈ I , this yields −�n≤wj

��1−�j
��,

so that
wj < 0⇒wj

� < 0 for every � sufficiently small ⇒ �j = 1$ (10)

Similarly, player j cannot gain more than � if he continues whenever he is chosen:∑
i �=j �

i
�a

j
i∑

i �=j �
i
�

= #j��−j
� 	0j �≤wj

� + �$ (11)

Because the support of �� contains at least two players,
∑

i �=j �
i
� > 0 for every � > 0, so that

the denominator in (11) is positive. Incorporating (9) and because
∑

i �=j �
i
� ≤ n−1 for every

i ∈ I , this yields �j
�w

j
� ≤ ��n− 1�, so that

wj > 0⇒wj
� > 0 for every � sufficiently small⇒ �j = 0$ (12)

Because max��1�	 
 
 
 	 �
n
�� = 1, we have max��1	 
 
 
 	 �n� = 1 and � ∈ -�w�, as

desired. �
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4.3. Two representation results. Our goal is to prove that every point on a solution w
of ẇ ∈ F �w� is a subgame-perfect equilibrium payoff. To be able to apply Lemma 4.1, it is
sufficient to show that for every t0 ∈R, one can find s1	 
 
 
 	 sn ∈R and ;1	 
 
 
 	;n ∈ �0	1�
that satisfy
• w�t0�= 1

n

∑
i∈I �;iai + �1−;i�w�si��,

• ;i = 0 if w�si� > 0 and ;i = 1 if w�si� < 0, and
• min�;1	 
 
 
 	;n� > 4, where 4 is independent of t0.
In this section, we use differential equations to represent w�t0� as a convex combination

of �ai� and �w�si�� that satisfies the desired properties. This representation is used in the
next section to find the proper �si�s for any given t0.
We will need the following simple observation.

Lemma 4.2. Let f  �0	��→ R be a measurable function such that
∫ t

0 f �u�du exists
for every t ≥ 0. Then, the unique solution of the differential equation{

x�0�= 0	

ẋ�t�= f �t�× �1− x�t��	

is x�t�= 1− exp�− ∫ t

0 f �u�du�.

Proof. The fact that x�t� = 1 − exp�− ∫ t

0 f �u�du� is a solution can be verified by
substitution. Uniqueness follows, e.g., by Filippov [4, Theorem 1.1.2]. �

We fix throughout this section a solution w of ẇ ∈ F �w� and t0 ∈ R. By Lemma 3.3,
there is a measurable function � R→ �0	1�n such that for almost every t,
• ��t� ∈-�w�t�� and
• ẇ�t�=∑

i∈I �i�t��w�t�− ai�.

4.3.1. First representation. Let �0i�i∈I be the unique solution of the following system
of differential equations:


0i�t0�= 0 ∀ i ∈ I	

0̇i�t�=
(
1−∑

j∈I
0j�t�

)
�i�t� ∀ i ∈ I	 t > 0$

(13)

The existence of a unique solution follows from Lemma 4.2. Indeed, summing up (13) over
i ∈ I , we conclude that

∑
i∈I 0̇i�t� is a solution of the differential equation


x�0�= 0	

ẋ�t�= �1− x�t��
∑
i∈I

�i�t�	
(14)

so that

∑
i∈I

0i�t�= 1− exp
(∫ t

0

∑
i∈I

�i�u�du

)
	 (15)

and therefore

0i�t�=
∫ t

0
�i�v� exp

(
−∑

i∈I

∫ v

0
�i�u�du

)
dv$

The interpretation of the functions �0i� is the following. Consider the game in continuous
time, in which each player i uses the strategy �i. Then, 0i�t� is the overall probability that
player i quits in the time interval �t0	 t�, provided no player quits before time t0.
The following lemma lists some properties of the functions �0i�.



Solan: Quitting Games with Perfect Information and Differential Equations
66 Mathematics of Operations Research 30(1), pp. 51–72, © 2005 INFORMS

Lemma 4.3. For every i ∈ I , the function 0i �t0	+��→ �0	1� is nondecreasing. More-
over, for every t ≥ t0, we have the following assertions:
(A.1) 1− exp�−�t− t0��≤

∑
i∈I 0i�t�≤ 1− exp�−n�t− t0��,

(A.2) w�t0�=
∑

i∈I 0i�t�ai + �1−∑
i∈I 0i�t��w�t�,

(A.3) if �i�s�≥ �j�s� for every s ∈ �t0	 t�, then 0i�t�≥ 0j�t�, and
(A.4) if �i�s�= 0 for every s ∈ �t0	 t�, then 0i�t�= 0.

(A.1) merely says that one can bound (from below and above) the growth rate of the
function

∑
i∈I 0i�t�. (A.2) represents w�t0� as a convex combination of �ai�i∈I and w�t� with

weights that are given by the functions �0i�. (A.3) and (A.4) say that if ��i� satisfy certain
inequalities, so do �0i�.
Proof. Assume w.l.o.g. that t0 = 0.
Because 1≤∑

i∈I �i�t�≤ n for every t ≥ 0 and by (15), we have

1− exp�−t�≤∑
i∈I

0i�t�≤ 1− exp�−nt� ∀ t ≥ 0$

Therefore, (A.1) holds. This implies by (13) that for every i ∈ I , 0̇i�t�≥ 0 for every t ≥ 0
and, hence, 0i is nondecreasing.
We now prove that (A.2) holds; that is, w�0� =∑

i∈I 0i�t�ai + �1−∑
i∈I 0i�t��w�t� for

every t ≥ 0. It is enough to show that the derivative of the right-hand side vanishes a.e. This
derivative is equal to

∑
i∈I

0̇i�t�ai −
(∑

i∈I
0̇i�t�

)
w�t�+

(
1−∑

i∈I
0i�t�

)
ẇ�t�$

Because ẇ�t�=∑
i∈I �i�t��w�t�− ai�, this derivative is equal a.e. to

∑
i∈I

0̇i�t�ai −
(∑

i∈I
0̇i
t

)
w�t�+

(
1−∑

i∈I
0i�t�

)(∑
i∈I

�i�t�

)
w�t�−

(
1−∑

i∈I
0i�t�

)∑
i∈I

�i�t�ai$

Reordering the terms, the derivative is equal a.e. to

∑
i∈I

ai

(
0̇i�t�−

(
1−∑

j∈I
0j�t�

)
�i�t�

)
−w�t�

(∑
i∈I

0̇i�t�−
(
1−∑

j∈I
0j�t�

)(∑
i∈I

�i�t�

))
$

The two terms vanish by (13) and (14).
Finally, we show that (A.3) and (A.4) hold as well. If �i�s�≥ �j�s� for every s ∈ �0	 t�,

then by (13) 0̇i�s�≥ 0̇j �s� for every s ∈ �0	 t�, so that 0i�t�≥ 0j�t�. If �i�s�= 0 for every
s ∈ �0	 t�, then by (13) 0̇i�s�= 0 for every s ∈ �0	 t�, so that 0i�t�= 0. �

4.3.2. Second representation. Here, we develop a second representation of w�t0� as a
convex combination of �ai�i∈I and �w�si��i∈I that will be used in the next section to prove
that a representation of the form w�t0�= �1/n�

∑
i∈I �;iai + �1−;i�w�si�� is possible.

Fix s1	 s2	 
 
 
 	 sn ∈ �t0	+�� (some of the sis may be equal to +�). For every t ≥ t0, set
Jt = �i ∈ I � si ≤ t� and Kt = �i ∈ I � si > t�. Then, t �→ Jt and t �→Kt are piecewise constant
and Jt ∪Kt = I for every t ≥ 0.
For every i ∈ I , applying Lemma 4.3 to t0 = si, one obtains nondecreasing functions

0i	 j  �si	��→ �0	1�, j ∈ I , that satisfy for every t ≥ 0,

w�si�=
∑
j∈I

0i	 j �t�aj +
(
1−∑

j∈I
0i	 j �t�

)
w�t� and

∑
j∈I

0i	 j �t� < 1$ (16)
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Let �;i�i∈I be the unique solution of the following system of differential equations:

;i�t0�= 0 ∀ i ∈ I	

;̇i�t�= �i�t�
∑
k∈Kt

�1−;k�t��+∑
j∈Jt

;̇j �t�0i	 j �t� ∀ i ∈ I	 t > 0$ (17)

The following lemma establishes the existence of a unique solution.

Lemma 4.4. The system of differential Equations (17) has a unique solution �;i�i∈I
over �t0	��. Moreover, if ;i�t� < 1 for every i ∈ I , then ;̇i�t�≥ 0 for every i ∈ I .

Proof. Assume w.l.o.g. that 0≤ s1 ≤ s2 ≤ · · · . Suppose by induction that the functions
�;i� were already defined on the interval �0	 sl�. We here define these functions on the
interval �sl	 sl+1�.
Observe that the sets Jt and Kt are constant over t ∈ �sl	 sl+1�.
For every t in the interval �sl	 sl+1�, let At be the n× n matrix

At =




1− 01	1�t�11∈Jt −01	2�t�11∈Jt · · · −01	 n�t�11∈Jt
−02	1�t�12∈Jt 1− 02	2�t�12∈Jt · · · −02	 n�t�12∈Jt
· · ·
−0n	1�t�1n∈Jt −0n	2�t�1n∈Jt · · · 1− 0n	n�t�1n∈Jt


 $

Because 0i	 j is nondecreasing and by (A.1), 0 ≤ 0i	 j �t� < 1, and therefore the matrix At

is regular. Because At has the form I −B, where all the entries of B are nonnegative and
because �I −B�−1 =∑�

k=0 B
k, all the entries of the inverse matrix A−1

t are nonnegative.
The system of differential Equations (17) can be written as

At;̇�t�= ��t�
∑
k∈Kt

�1−;k�t��	

or equivalently,
;̇�t�=A−1

t ��t�
∑
k∈Kt

�1−;k�t��$

Because all the entries of the matrix A−1
t are nonnegative, ;̇i�t�≥ 0 whenever ;k�t�≤ 1 for

every k ∈Kt .
Also,

∑
k∈Kt

;k�t� is the unique solution of the differential equation

x�0� = ∑
k∈Kt

;k�sl�	

ẋ�t� = f �t��1− x�t��	

where f is some measurable function that satisfies
∫ t

sl
f �u�du < +�. The result follows

from Lemma 4.2. �

The following lemma lists several properties of the function ;. We set

T =min
{
max�s1	 
 
 
 	 sn�	min�t ≥ t0 ;

1�T �≥ 1	 
 
 
 	;n�T �≥ 1�}$
Lemma 4.5. Over the interval �t0	 T �, the functions �;

i�i∈I are nondecreasing and satisfy
the following properties:
(B.1) ;i�t0�= 0 and ;i�T �≤ 1 for every i ∈ I .
(B.2) w�t0�= 1

n
�
∑

i∈I ;i�t�ai + �1−;i�t���1si≤tw�si�+ 1si>tw�t��� for every t ∈ �t0	 T �,
t <+�.
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(B.3)
∑

i∈I ;i�t� ≥ 1 − exp�−�t − t0�� for every t ≥ t0, as well as
∑

i∈I ;i�t� ≤ n −
exp�−2n�t− t0�� provided 0≤ t− t0 ≤−n/ ln�1− 1/2n�.
Moreover, for every i	 j ∈ I and every t ∈ �t0	 T �,
(B.4) If �i�s�≥ �j�s� for every s ∈ �t0	 t�, then ;i�t�≥ ;j�t�.
(B.5) If �i�s�= 0 for every s ∈ �t0	 t�, then ;i�t�= 0.
(B.6) If wi�t� > 0 for every t ∈ �t0	 T �, then ;i

T = 0.
(B.7) If wi�t� < 0 for every t ∈ �t0	 T � and si > T , then ;i

T = 1.
(B.8) If wi�t� < 0 for every t ∈ �t0	 T � and si = T =+�, then limt→�;i�t�= 1.

The lemma will be used to show that the conditions of Lemma 4.1 hold for Yw, the range
of w. (B.2) will imply that (C.1) in Lemma 4.1 holds, (B.3) will imply that (C.4) holds,
while (B.4)–(B.8) will imply that (C.2) and (C.3) hold.
Proof. Summing (17) over i ∈ I gives us

∑
i∈I

;̇i�t�=
(∑

i∈I
�i�t�

)(∑
i∈Kt

�1−;i�t��

)
+∑

i∈I

∑
j∈Jt

;̇j �t�0i	 j �t�$ (18)

Because
∑

i∈I �i�t� ≥ 1 for almost every t, Equation (18) implies that
∑

i∈I ;̇i�t� ≥ 1 −∑
i∈I ;i�t�. Because the solution of the equation ẋ= 1−x with initial condition x�0�= 0 is

x= 1− exp�−t�, the first claim in (B.3) follows.
Fix 0 ≤ t ≤ −n/ ln�1 − 1/2n�. Then, n�1 − exp�−nt�� ≤ 1/2. By Lemma 4.3(A.1),∑
j∈I 0j	 i�t�≤ 1/2. Moreover, ∑i∈I �i�t�≤ n. Therefore, by (18),

1
2

∑
i∈I

;̇i�t� ≤ ∑
i∈Jt

;̇i�t�

(
1−∑

j∈I
0i	 j �t�

)
+∑

i �∈Jt
;̇i�t�

=
(∑

i∈I
�i�t�

)(∑
i∈Kt

�1−;i�t��

)

≤ n
∑
i∈Kt

�1−;i�t��

≤ n
∑
i∈I

�1−;i�t��$

Because the solution of the equation ẋ = 2n2 − 2nx with the initial condition x0 = 0 is
x= n− exp�−2nt�, the second claim in (B.3) follows.
For (B.2) to be satisfied, we need the derivative of the right-hand side in (B.2) to vanish

for almost every t ≥ 0. We show that the derivative vanishes for every t such that t �∈
�s1	 
 
 
 	 sn�. The derivative of the right-hand side in (B.2), multiplied by n, is

∑
i∈I

;̇i�t�ai −
∑
i∈Jt

;̇i�t�w�si�−
∑
i∈Kt

;̇i�t�w�t�+
(∑

i∈Kt

�1−;i�t��

)
ẇ�t�$

Because ẇt =
∑

i∈I �i
t�wt−ai�, by (16), and because Jt ∪Kt = I , reordering the terms yields

∑
i∈I

ai

(
;̇i�t�−∑

j∈I
;̇i�t�0i	 j �t�− ∑

j∈Kt

�1−;j
t ��

i�t�

)

−w�t�

(∑
i∈I

;̇i�t�−∑
j∈I

∑
i∈Jt

;̇i�t�0i	 j �t�−
(∑

i∈Kt

�1−;i�t��

)(∑
i∈I

�i�t�

))
$

This sum is zero by (17) and (18).
We now show that (B.4) and (B.5) hold as well. If �i�s�≥ �j�s� for every s ∈ �0	 t�, then

by Lemma 4.3, 0k	 i�s�≥ 0k	 j �s� for every j ∈ I and every s ∈ �sj 	 t�. By (17), ;̇
i�s�≥ ;̇j �s�

for every s ∈ �0	 t�, so that ;i�t�≥ ;j�t�.
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If �i�s�= 0 for every s ∈ �0	 t�, then by Lemma 4.3, 0j	 i�s�= 0 for every j ∈ I and every
s ∈ �sj 	 t�. By (17), ;̇

i�s�= 0 for every s ∈ �0	 t�, so that ;i�t�= 0.
Finally, we show that (B.6)–(B.8) hold. If wi�t� > 0 for every t ∈ �0	 T �, then �i�t�= 0

in this range, and (B.6) follows from (B.5).
Fix i ∈ I . If wi�t� < 0 for every t ∈ �0	 T �, then i ∈Kt and �

i�t�= 1 in this range. If si > T ,
then by the definition of T , there is j ∈ I such that ;j�T �= 1. Because �i�t�= 1≥ �j�t�
for every t ∈ �0	 T �, (B.4) implies that ;i�T �= 1, so that (B.7) holds. If si = T =+�, then
by (17), ;̇i�t�≥ 1−;i�t�, so that ;i�t�≥ 1− exp�−t�, and (B.8) holds. �

4.4. From solutions of ẇ ∈ F �w� to subgame-perfect equilibria. Here, we prove
Propositions 2.4 and 2.5. Our goal is to apply Lemma 4.1 to the set Y = Yw = �w�t� t ∈R�.
To this end, we should choose for every t ∈ R, real numbers s1�t�	 
 
 
 	 sn�t� > t and
;1�t�	 
 
 
 	;n�t� ∈ �0	1� such that ;i�t�= 1 if wi�si�t�� < 0, ;i�t�= 0 if wi�si�t�� > 0, and

w�t�= 1
n

∑
i∈I

�;i�t�ai + �1−;i�t��w�s
i�t���$

Moreover, the quantity max�;1�t�	 
 
 
 	;n�t�� should be bounded away from 0, uniformly
over t ∈R.
The difficult issue is to ensure that max�;1�t�	 
 
 
 	;n�t�� is uniformly bounded away

from 0. Indeed, by Lemma 4.5, for any choice of s1�t�	 
 
 
 	 sn�t�, there are �;i�t��i∈I such
that the other conditions are satisfied (with the additional caveat that we will set si�t� to T
if it happens to be larger than T ).
By (B.3), to ensure that max�;1�t�	 
 
 
 	;n�t�� is uniformly bounded away from 0, it is

sufficient to ensure that max�s1�t�− t	 
 
 
 	 sn�t�− t� is uniformly bounded away from 0.11

One can show that if w is a solution of type 1, with the naïve definition

si�t�=min�t′ > t wi�t′�= 0�	

we indeed get a uniform boundedness away from 0. Because this is not the case for solutions
of type 0, our definition is more complicated.
Choose once and for all, two constants 0< 01 < 02 <−n/ ln�1− 1/2n� that satisfy the

following:
(D.1) n− n exp�1− exp�n02�� < 1, and
(D.2) 201 <02.
Fix for a moment, a solution w of ẇ ∈ F �w�. For every player i ∈ I , define

U i
w = �t ∈R �wi�t�= 0�⊆R$

Because t �→ w�t� is continuous, U i
w is closed. Because ai

i = 0, if t ∈ U i
w, then player i is

indifferent between quitting and continuing when the continuation payoff is wt .
Define for every i ∈ I , a function siw R→ �−�	�� by12

siw�t�=




min�U i
w ∩ �t	+���	 wi�t� �= 0	

min�U i
w ∩ �t+ 01	 t+ 02��	 wi�t�= 0	U i

w ∩ �t+ 01	 t+ 02� �= �	

max�U i
w ∩ �t	 t+ 01��	 wi�t�= 0	U i

w ∩ �t+ 01	 t+ 02�=�	
and U i

w ∩ �t	 t+ 01� �= �	

min�U i
w ∩ �t	+���	 wi�t�= 0	U i

w ∩ �t	 t+ 02�=�$

(19)

11 Actually, by Remark 4.2, a weaker condition will suffice.
12 By convention, the minimum of an empty set is +�.
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Observe that siw�t� > t and siw�t� < +� as soon as there is u > t such that wi�u� = 0.
Moreover, if siw�t� <+�, then wi�siw�t��= 0. Set

Mw�t�=max
i∈I

siw�t�− t > 0$

Lemma 4.6. Let w be a solution of ẇ ∈ F �w� of type 1. Then, inf t∈RMw�t� > 0.

Proof. Assume, to the contrary, that inf t∈RMw�t� = 0. Then, there is a sequence
�t�k��k∈N such that limk→�Mw�t�k��= 0. We will prove that w�t�k��→ �0, which implies
that �0 ∈ �Yw ⊆W . By Lemma 2.2, �0 ∈ F ��0�, so that w has type 0, a contradiction.
Fix � > 0. Because w is uniformly continuous, there is 0 < 01 such that �u − t� < 0

implies w�u�−w�t�< �. Let k be sufficiently large such that Mw�t�k�� < 0. For every
i ∈ I , wi�u�= 0 for some u ∈ �t�k�	 t�k�+Mw�t�k���. This implies that w�t�k��< �, and
the claim follows. �

Lemma 4.7. Let w be a solution of ẇ ∈ F �w� of type 0. For every 4 ∈ �0	 01� and every
t ∈R, at least one of the following statements holds:
(1) Mw�t�≥ 4,
(2) Mw�s

i
w�t��≥ 4 for some i ∈ I , or

(3) Mw�s
i
w�s

i
w�t���≥ 4 for every i ∈ I .

Proof. Assume that the first statement does not hold; that is, Mw�t� < 4 < 01.
We first assume that wi�t� = 0 for some i ∈ I . Because siw�t� ≤ t +Mw�t� < t + 01, it

follows by the definition of siw�t� that U
i
w ∩ �t + 01	 t + 02�=� and U i

w ∩ �t	 t + 01� �= �.
Because 201 < 02, U

i
w ∩ �t+ siw�t�	 t+ siw�t�+ 01�=�, so that siw�siw�t��≥ siw�t�+ 01, and

the second statement holds.
Assume now that wi�t� �= 0 for every i ∈ I . If the second statement does not hold, then

for every i ∈ I , siw�s
i
w�t�� < t+4, so that wi�siw�t��= 0. Applying the second paragraph to

siw�t� rather than to t, one deduces that the third statement holds. �

Proof of Proposition 2.4. Let w be a solution of ẇ ∈ F �w� of type 1. We show that
the set �Yw satisfies the conditions of assertion (b) in Lemma 4.1.
Because w has type 1, for every i with ai ∈ �Yw, there is j ∈ I such that aj

i < 0. Indeed,
otherwise, there is i ∈ I with ai ∈ �Yw such that aj

i ≥ 0 for every j ∈ I . By Lemma 2.2,
�0 ∈ F �ai�, so that w has type 0, a contradiction.
Let y ∈ Yw. Assume w.l.o.g. that y = w�0�. By Lemma 4.5, there are T > t and weakly

increasing functions ;1t 	 
 
 
 	;
n
t such that for every t ∈ �0	 T �, t <+�,

y =w�0�= 1
n

∑
i∈I

(
;i�t�ai + �1−;i

t�
(
1siw�0�≤tw�s

i
w�0��+ 1siw�0�>tw�t�

))
$

If T < +�, set yi = w�min�siw�t�	 T �� and �i = ;i�T � for every i ∈ I . If T = +�, take
a sequence �tk�k∈N that converges to infinity such that the sequence �w�tk�� converges to
w∗. Then, w∗ ∈ �Yw. Denote �i = limk→�;i�tk� for i ∈ I . The limits exist because each ;i is
weakly increasing and bounded by 1. (C.1) then holds.
We now show that (C.2) and (C.3) hold as well. Fix i ∈ I . Assume first that siw�t�≥ T .

By the definition of T , ;j = 1 for some j ∈ I . By (D.1), 02 < T , so that 02 < siw�t�. By the
definition of siw�t�, w

i
u �= 0 for every u ∈ �t	 siw�t��. By Lemma 4.5(B.6, B.7, B.8), one of the

following statements holds: (i) wi�u� > 0 for every u ∈ �t	 T �, in which case yii =wi�T � > 0
and ;i = 0; (ii) wi�u� < 0 for every u ∈ �t	 T �, in which case yii = wi�T � < 0 and ;i = 1;
(iii) T =+� and wi�u� < 0 for every u ∈ �t	+��, in which case yii =wi

∗ ≤ 0 and ;i = 1;
or (iv) T =+� and wi�u� > 0 for every u ∈ �t	+��, in which case yii =wi

∗ ≥ 0 and ;i = 0.
Assume now that siw�t�≤ T . Then, yii =wi�siw�t��= 0, and (C.2) and (C.3) trivially hold.
By Lemma 4.6, max�;1	 
 
 
 	;n� ≥ inf t∈RMw�t� > 0, which is independent of t, and

(C.4) follows from Lemma 4.5(B.3). �
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Proof of Proposition 2.5. The proof is similar to the proof of Proposition 2.4, but
instead of applying assertion (b) in Lemma 4.1, we apply assertion (a) in that lemma. Recall
that in the proof of Lemma 4.1, (C.4) followed from Lemma 4.6. Unfortunately, when w has
type 0, Lemma 4.7 does not give us (C.4). However, by Remark 4.2, to apply Lemma 4.1,
it is sufficient to prove that the profile � we constructed in the proof of Lemma 4.1 is
terminating. This fact follows from Lemma 4.7 and Lemma 4.5(B.3). �

Example 2.2 (Continued). A graphic representation of the differential inclusion ẇ ∈
F �w� shows that it has a unique periodic solution (up to time shifts), and the range of
this solution coincides with the edges of the triangle that is defined by ��1	0	0�	 �0	1	0�,
�0	0	1��. Observe that this set is the analog of the set of equilibrium payoffs in the game
studied by Flesch et al. [6].
One subgame-perfect 0-equilibrium that is generated by the procedure we used in the

proof is the last one we described in §2.2. In fact, all subgame-perfect 0-equilibria that
are generated by the procedure we used in the proof coincide with that equilibrium from
Stage 2 and on.
If one modifies the definition of siw�t� in the last case to t (rather than min�U

i
w∩�t	+���),

Lemma 4.6, and therefore Proposition 2.4, are still valid, and the generated subgame-perfect
0-equilibrium is the periodic profile with period 6 that was presented in §2.2.

5. Extensions and open problems. The proof we provided here is valid with minor
modifications when the probability distribution over I , according to which players are cho-
sen at every stage, is not the uniform distribution but any distribution p = �pi�i∈I . Indeed,
the definition of F becomes

F �w�=
{∑

i∈I
pi�i�w− ai�

∣∣∣ � ∈-�w�

}
	

and from that point on, every appearance of �i is changed to pi�i.
We have proven here the existence of a stationary �-equilibrium or a subgame-perfect

0-equilibrium. However, in all the examples the author analyzed in which there is a
subgame-perfect 0-equilibrium, there is one that is supported by a pure Markovian profile.
If this observation is true in general, this might have significant implications on the study
of stochastic games and Dynkin games.
It is also not clear whether there is a periodic solution w of the differential inclusion

ẇ ∈ F �w�, and whether for every solution w, the corresponding function � is piecewise
continuous or not.
The model we have studied is stationary, in the sense that the probability by which a

player is chosen and the terminal payoffs are fixed throughout the game. What happens
when this is not the case is not known. The simplest case, which we do not know how
to analyze is the following. The players are partitioned into two subsets. At odd stages, a
player from one subset is chosen according to the uniform distribution, while at even stages,
a player from the other subset is chosen according to the uniform distribution.
Another generalization of the model we studied is to allow players to quit simultaneously.

This class of games, termed quitting games, was studied by Solan and Vieille [21], where
partial results were reported.
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