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1 Introduction

A two-player stochastic game is played in stages. At every stage the game is in
one of finitely many states. Each of the players chooses independently of his
opponent an action in his action space. The pair of actions, together with the
current state, determine the daily payoff for the players and the probability
distribution according to which a new state of the game is chosen.

An equilibrium payoff is a vector of payoffs g = (gis) (where s is a state
and i is a player), such that for every ε > 0 there is a strategy profile (which
is called an ε-equilibrium profile), that satisfies for every initial state s:

• If the players follow this strategy profile, then the expected lim inf of
the average payoffs of each player i in the infinite game, as well as the
expected average payoff in any finite game which is sufficiently long, is
at least gis − ε.

• If any player i deviates to another strategy, then the expected lim sup of
his average payoffs in the infinite game, as well as his expected average
payoff in any finite game which is sufficiently long, is at most gis + ε.

If the game is zero-sum, then the unique equilibrium payoff is the value of
the game. Mertens and Neyman (1981) proved that every zero-sum stochas-
tic game has a value. Vrieze and Thuijsman (1989) proved that every non
zero-sum stochastic game, in which only one state is non-absorbing has an
equilibrium payoff (a state is absorbing if the probability to leave it, what-
ever the players play, is 0. Otherwise it is non-absorbing).

Vieille (1994, 1997a) proved that in order to prove existence of equilibrium
payoffs in general stochastic games it is sufficient to prove the existence for
the class of positive recursive games with the absorbing property.
In these games the daily payoff for the players is 0 in every non-absorbing
state whatever actions they play, the payoff for player 2 in absorbing states is
positive, and if player 2 plays a fully mixed stationary strategy then the game
eventually reaches an absorbing state with probability 1, whatever player 1
plays.

Following closely Vieille’s reduction reveals that he proves even more.
Vieille proves that if every positive recursive game with the absorbing prop-
erty and at most n non-absorbing states has an equilibrium payoff, then every
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stochastic game with at most n non-absorbing states has an equilibrium pay-
off.

In the present paper we give two sufficient conditions for existence of an
equilibrium payoff in positive recursive games with the absorbing property.
Furthermore, we prove that every positive recursive game with the absorbing
property, which has at most two non-absorbing states, satisfies at least one of
these conditions. By the reduction of Vieille we conclude that every stochas-
tic game which has at most two non-absorbing states has an equilibrium
payoff.

The basic difficulty with undiscounted stochastic games is that the undis-
counted payoff is not continuous over the strategy space. To overcome this
difficulty we note that since player 2 can force absorption, and his absorbing
payoff is always positive, it follows that his min-max value is positive. Since
the payoff in non-absorbing states is 0, every ε-equilibrium strategy profile (if
it exists) must be absorbing with high probability (for ε sufficiently small).

We define ε-approximating games, where player 2 is restricted to fully
mixed stationary strategies, and player 1 is not restricted. As ε→ 0, the
restrictions on player 2 become weaker. Since the game satisfies the ab-
sorbing property, the undiscounted payoff is continuous over the restricted
strategy space, and using a standard fixed point theorem one can prove that
there exists a stationary equilibrium profile in the ε-approximating game.
By studying the asymptotic behavior of a sequence of equilibria in the ε-
approximating games we construct different types of equilibrium payoffs in
the original undiscounted game.

Unfortunately, the equilibrium payoff needs not be equal to the limit of
the equilibrium payoffs of the ε-approximating games, hence, as in Vrieze and
Thuijsman (1989), we cannot generalize the approach for games with more
than 2 non-absorbing states. We hope that an approach similar to ours can
prove that an equilibrium payoff exists in any positive recursive game with
the absorbing property.

The method of studying asymptotic behavior of equilibria in approximat-
ing games was used by Vrieze and Thuijsman (1989) to prove existence of
equilibrium payoff in stochastic games with a single non-absorbing state. In
their case the approximating game was the discounted stochastic game. Re-
stricting one of the players to play a fully mixed stationary strategy in order
to make the undiscounted payoff continuous, appeared already in Evangelista
et al. (1996).
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Independently, Vieille (1997b) has proved the existence of an equilibrium
payoff in general positive recursive games with the absorbing property. In
Vieille’s proof, as in our approach, player 1 is not restricted, while player
2 is restricted in his choice of a strategy. Vieille defines for every ε > 0 a
correspondence (set-valued function) that assigns for each pair of stationary
strategies of the two players (i) the set of best reply stationary strategies of
player 1 against the strategy used by player 2, and (ii) a collection of fully
mixed stationary strategies of player 2 which are almost optimal against
the strategy of player 1. Using standard arguments Vieille proves that for
every ε > 0 this correspondence admits a fixed point, and, by studying the
asymptotic behavior of a sequence of fixed points he is able to construct
ε-equilibrium strategy profiles.

The main difference between the two approaches is, that while we define
an approximating game and study equilibria in this game, Vieille defines an
approximating best reply correspondence, and studies fixed points of this
correspondence. Furthermore, Vieille’s definition of the approximating best
reply correspondence is more sophisticated than our definition of the ap-
proximating games. Vieille’s technique was applied successfully to prove the
existence of stationary extensive form correlated equilibria in n-player posi-
tive recursive games (see Solan and Vieille (1998)).

The paper is arranged as follows. In section 2 we give an example of a
recursive game with the absorbing property, and show some of the equilibrium
payoffs in this game. In section 3 we give the model of stochastic games and
state the main result. In section 4 we state and prove two sufficient conditions
for existence of an equilibrium payoff.

Sections 5-7 are devoted to prove that in every positive recursive game
with the absorbing property, which has at most two non-absorbing states,
at least one of the sufficient conditions hold. In section 5 we give some
preliminary results, in section 6 we introduce the ε-approximating games and
in section 7 the main result is proven. In section 8 we give an example of a
game with more than two non-absorbing states, and show why our approach
fails in this game.
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2 An Example

Consider the following positive recursive game:

B

T

L C R

B

T

L R

state 1 state 2

1

1

4, 11/3

22/3
∗

1

1

3, 01/2

21/2
∗

1

0, 0 ∗

0, 0 ∗
1

Player 1 is the row player, while player 2 is the column player. An as-
terisked entry means that if this entry is reached then the game moves with
probability 1 to an absorbing state which yields the players a payoff as in-
dicated in the entry, while a non-asterisked entry means that if this entry is
reached then the game moves to the state that is indicated by the entry (and
the players receive no daily payoff). An entry of the form

3, 01/2

21/2
∗

means that with probability 1/2 the game moves to an absorbing state, where
the payoff for the players is (3, 0), and with probability 1/2 the game moves
to state 2.

Note that if player 2 plays a fully mixed stationary strategy then the
game is bound to be eventually absorbed, whatever player 1 plays, hence the
game satisfies the absorbing property.

One equilibrium payoff is ((2, 0), (1, 0)). An ε-equilibrium strategy profile
(for every ε > 0) is:

• In state 1 the players play the mixed actions (T, (1− ε)L+ εR).

• In state 2 both players play the mixed actions (1
2
, 1

2
).

• If any player plays an action which has probability 0 to be played, then
both players play the pure actions (T, L) in both states forever (this
part of the strategy serves as a punishment strategy).
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It is easy to verify that no player can profit more than ε by any deviation,
and that this strategy profile yields the players the desired payoff.

Another equilibrium payoff is ((2, 4/17), (1, 2/17). An ε-equilibrium strat-
egy profile for this payoff is more complex. Let n1 ∈ N and ε1 < ε such that
(1− ε1)n1 = 1/2. Define the following strategy profile:

• In state 2, the players play the mixed actions (1
2
, 1

2
).

• Assume the game moves to state 1. The players play as follows:

– The players play the mixed actions ((1−ε1)T+ε1B, (1−ε1)L+ε1C).
The players play these mixed actions until player 2 played the
action C for n1 times, or until both players played (B,C) at the
same stage (and the game leaves state 1).

– If player 2 played the action C for n times, then the players play
the mixed actions (T, (1−ε)L+εR) until player 2 plays the action
R (and the game leaves state 1).

– If any player plays an action which has probability 0 to be played,
the players play the pure actions (T, L) in both states forever.

Note that if the players follow this strategy profile, then the game is bound
to be eventually absorbed.

Assume that the players follow the above strategy profile, and let g = (gis)
be the payoff that the players receive. Clearly no player can deviate and gain
in state 2, and gi2 = gi1/2 for i = 1, 2.

Moreover, we have:

g1 =
1

2

(
1

3
(4, 1) +

2

3
g2

)
+

1

2

(
1

2
(3, 0) +

1

2
g2

)
and therefore g1 = (2, 4/17).

If player 2 deviates in state 1, then he cannot gain more than ε, since
after the punishment begins, his expected payoff is 0. The expected payoff
of player 1 is 2, whether the game leaves state 1 through the entry (B,C)
or through (T,R). Hence player 1 cannot profit by any deviation. Therefore
this strategy profile is an ε-equilibrium, as desired.

6



3 The Model and the Main Result

A stochastic game is a 5-tuple G = (S,A,B, u, w) where

• S is a finite set of states.

• A and B are finite sets of actions available for players 1 and 2 respec-
tively in every state.

• u: S × A × B → R2 is the daily payoff function, ui(s, a, b) being the
payoff for player i in state s when the two players play the actions a
and b. We assume w.l.o.g. that |u| is bounded by 1.

• w: S × A × B → ∆(S) is the transition function, where ∆(S) is the
space of all probability distributions over S.

The game is played as follows. Let s1 ∈ S be the initial state. At
every stage n, the players are informed of past play including the current
state (s1, a1, b1, s2, a2, b2, . . . , sn), and player 1 (resp. player 2) chooses an
action an ∈ A (resp. bn ∈ B). Then each player i receives a daily payoff
rin = ui(sn, an, bn), and a new state sn+1 is chosen according to w(sn, an, bn).

Let Hn = S × (A × B × S)n be the space of all histories of length n,
H0 = ∪n∈NHn be the space of all finite histories and H = S× (A×B × S)N

be the space of all infinite histories. H is measurable with the σ-algebra
generated by all the finite cylinders.

Definition 3.1 A behavioral strategy of player 1 (resp. player 2) is a
function σ: H0 → ∆(A) (resp. τ : H0 → ∆(B)). A strategy σ is stationary if
σ(h0) depends only on the last state of h0. It is fully mixed if supp(σ(h0)) =
A for every h0 ∈ H0. Symmetric definitions hold for player 2.

A strategy profile (or simply a profile) is a pair of strategies, one for each
player. Any profile (σ, τ) and initial state s induce a probability measure over
H. We denote this probability measure by Prs,σ,τ and expectation according
to this measure by Es,σ,τ .

Definition 3.2 A vector g = (gis)
i=1,2
s∈S ∈ R2|S| is an ε-equilibrium payoff

if there exists a profile (σ, τ) and a positive integer N ∈ N such that for every
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initial state s, every strategy σ′ of player 1 and every n ≥ N ,

Es,σ,τ

(
r1

1 + · · ·+ r1
n

n

)
≥ g1

s − ε ≥ Es,σ′,τ

(
r1

1 + · · ·+ r1
n

n

)
− 2ε, (1)

Es,σ,τ

(
lim inf
n→∞

r1
1 + · · ·+ r1

n

n

)
≥ g1

s−ε ≥ Es,σ′,τ

(
lim sup
n→∞

r1
1 + · · ·+ r1

n

n

)
, (2)

and analogous inequalities hold for player 2, for every strategy τ ′. The profile
(σ, τ) is an ε-equilibrium profile for g. The payoff vector g is an equilib-
rium payoff if it is an ε-equilibrium payoff for every ε > 0.

Definition 3.3 A state s ∈ S is absorbing if ws(s, a, b) = 1 for every pair
of actions (a, b) ∈ A×B. Otherwise it is non-absorbing.

The main result of the paper is the following.

Theorem 3.4 Every stochastic game with at most two non-absorbing states
admits an equilibrium payoff.

Let T ⊂ S be the set of all absorbing states and R = S \ T . Let θ =
min{t ≥ 1, st ∈ T} be the absorption stage (the minimum of an empty set is
+∞); that is, the first stage in which the play reaches an absorbing state.

Definition 3.5 The game is positive if u2(s, a, b) > 0 for every s ∈ T ,
and every (a, b) ∈ A×B. It is recursive if ui(s, a, b) = 0 for every s 6∈ T ,
every (a, b) ∈ A×B and every player i = 1, 2. It satisfies the absorbing
property if for every fully mixed stationary strategy y of player 2, every
strategy σ of player 1 and every state s ∈ S,

Prs,σ,y(θ < +∞) = 1.

The following theorem follows from Vieille (1994, 1997a):

Theorem 3.6 If every positive recursive game with the absorbing property
and at most n non-absorbing states admits an equilibrium payoff, then every
stochastic game with at most n non-absorbing states admits an equilibrium
payoff.
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Since existence of equilibrium payoffs in stochastic games with one non-
absorbing state was solved by Vrieze and Thuijsman (1989), to prove Theo-
rem 3.4 it is sufficient to prove the following.

Proposition 3.7 Every positive recursive game with the absorbing property
and two non-absorbing states admits an equilibrium payoff.

The rest of the paper is devoted to prove this result.
From now on we fix a positive recursive game that satisfies the absorbing

property. Note that any absorbing state is equivalent to a repeated game,
in which equilibrium payoffs are known to exist. Since we are interested in
the existence of equilibrium payoffs, we can assume w.l.o.g. that u(s, ·, ·) is
constant over each s ∈ S, and we denote this constant value by us. More-
over, for this reason, the assumption that the available sets of actions are
independent of the state is not restrictive (one can add to each player, if
necessary, actions that lead to absorbing states with low absorbing payoff for
that player, and high absorbing payoff for his opponent.)

Since the game is recursive, limn→∞(ri1 + · · · + rin)/n exists. Moreover,
for recursive games, for every fixed pair of strategies (σ, τ) and every initial
state s,

Es,σ,τ

(
lim
n→∞

r1
1 + · · ·+ r1

n

n

)
= lim

n→∞
Es,σ,τ

(
r1

1 + · · ·+ r1
n

n

)
.

In particular, condition (1) in Definition 3.2 implies condition (2).
Let c1 = (c1

s)s∈S be the min-max value of player 1. This is the first
coordinate of the (unique) equilibrium payoff of the zero-sum game that has
the payoff function (u1,−u1). The min-max value of player 2, c2 = (c2

s)s∈S,
is the second coordinate of the (unique) equilibrium payoff of the zero-sum
game that has the payoff function (−u2, u2). By Everett (1957) or Mertens
and Neyman (1981) c1 and c2 exist.

Note that since the game is positive and satisfies the absorbing property,
c2
s > 0 for every s ∈ S (player 2, by playing some fully mixed stationary

strategy, can guarantee a positive payoff, whatever player 1 plays).
We identify each a ∈ A (resp. b ∈ B) with the probability distribution in

∆(A) (resp. ∆(B)) that gives weight 1 to a (resp. b).
Let X = (∆(A))S and Y = (∆(B))S. Every x ∈ X and y ∈ Y can be

interpreted as a stationary strategy. We view each stationary strategy of
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player 1 as a vector in R|S|·|A| and each stationary strategy of player 2 as a
vector in R|S|·|B|. Whenever we use a norm, it is the maximum norm.

For every subset C ⊆ S and every (s, a, b) ∈ S × A×B we denote
wC(s, a, b) =

∑
s′∈C ws′(s, a, b). The multi-linear extension of w is denoted by

w.
For every (α, β) ∈ ∆(A)×∆(B) and every function g: S → R2 we define

ψg(s, α, β) =
∑
s′∈S

ws′(s, α, β)g(s′). (3)

ψg(s, α, β) is the expected payoff for the players if the game is in state s,
they play the mixed actions (α, β), and the continuation payoff is given by
g. Note that for every fixed s, the function ψ·(s, ·, ·) is multi-linear over
∆(A)×∆(B)×R2|S|, and therefore continuous.

4 Sufficient Conditions for Existence of Equi-

librium Payoff

In this section we provide two sets of sufficient conditions for existence of an
equilibrium payoff in positive recursive games with the absorbing property.

Definition 4.1 Let (x, y) be a stationary profile. A set C ⊆ S is stable
under (x, y) if wC(s, x, y) = 1 for every s ∈ C.

Definition 4.2 Let (x, y) be a stationary profile. The stationary profile
(x′, y′) is a perturbation of (x, y), if supp(x′s) ⊇ supp(xs) and supp(y′s) ⊇
supp(ys). It is an ε-perturbation of (x, y) if it is a perturbation of (x, y),
‖ x− x′ ‖< ε and ‖ y − y′ ‖< ε.

Definition 4.3 Let (x, y) be a stationary profile. A set C ⊆ R is commu-
nicating w.r.t. (x, y) if for every s ∈ C there exists a stationary perturbation
(x′, y′) of (x, y) such that C is stable under (x, y) and

Prs′,x′,y′(∃n ∈ N s.t. sn = s) = 1 ∀s′ ∈ C.

A set C is communicating if the players, by changing their stationary strate-
gies a little, can reach from any state in C any other state in C, without
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leaving the set. Note that if there exists a perturbation (x′, y′) that satisfies
Definition 4.3, then there also exists an ε-perturbation that satisfies it.

We denote by C(x, y) the collection of all communicating sets w.r.t. (x, y).
Define for every communicating set C ∈ C(x, y) and every state s ∈ C

A1
s(C, y) = {a ∈ A | wC(s, a, ys) < 1} and (4)

B1
s (C, x) = {b ∈ B | wC(s, xs, b) < 1}.

Those are all actions at s that cause the game to leave C with positive
probability, when the opponent plays xs or ys.

Definition 4.4 Let (x, y) be a stationary profile and C ∈ C(x, y). Every
triplet (s, x′s, ys), where s ∈ C and x′s ∈ ∆(A1

s(C, y)) is an exit of player
1 from C. Every triplet (s, xs, y

′
s), where s ∈ C and y′s ∈ ∆(B1

s (C, x)) is an
exit of player 2 from C. Every triplet (s, x′s, y

′
s) ∈ C ×∆(A)×∆(B) such

that supp(xs) ∩ supp(x′s) = supp(ys) ∩ supp(y′s) = ∅ is a joint exit from C
if wC(s, x′s, y

′
s) < 1 while wC(s, xs, y

′
s) = wC(s, x′s, ys) = 1.

A joint exit (s, x′s, y
′
s) is pure if |supp(x′s)| = |supp(y′s)| = 1. An exit

(s, x′s, ys) of player 1 is pure if |supp(x′s)| = 1. An exit (s, xs, y
′
s) of player 2

is pure if |supp(y′s)| = 1.
We denote by D1

C(x, y), D2
C(x, y) and D3

C(x, y) the sets of exits of player
1, player 2 and the joint exits from C respectively. Let

EC(x, y) = D1
C(x, y) ∪D2

C(x, y) ∪D3
C(x, y)

be the set of all exits from C and E0
C(x, y) be the set of all pure exits from

C. We denote by s(e), x(e) and y(e) the three coordinates of each exit e.
For simplicity we write s ∈ C(x, y) whenever {s} ∈ C(x, y). In this case

we write Es(x, y) instead of E{s}(x, y).
Recall that R is the set of non-absorbing states, and T is the set of

absorbing states.

Lemma 4.5 Let (x, y) be a stationary profile such that R ∈ C(x, y). Assume
there exist an exit e ∈ ER(x, y) and a vector g = (gs)s∈S ∈ R2|S| such that

1. gs = us for every s ∈ T , and gs = ψg(e) for each s ∈ R. In particular,
gs is a constant over R.
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2. g1
s ≥ ψ1

c (s, a, ys) for every s ∈ R and a ∈ A.

3. g2
s ≥ ψ2

c (s, xs, b) for every s ∈ R and b ∈ B.

4. If e ∈ D1
R(x, y) then g1 = ψ1

g(s(e), a, ys(e)) for every a ∈ supp(x(e)).

5. If e ∈ D2
R(x, y) then g2 = ψ2

g(s(e), xs(e), b) for every b ∈ supp(y(e)).

Then g is an equilibrium payoff.

Note that condition 2 implies that g1
s ≥ c1

s for every s ∈ S, and condition
3 implies that g2

s ≥ c2
s for every s ∈ S.

The intuition is the following. Our goal is to construct an ε-equilibrium
profile where the game leaves R (and is absorbed) through the exit e. By
condition 1, the expected payoff for the players is ψg(e). Since R is com-
municating, the players can play in such a way so that s(e) is eventually
reached with probability 1. By conditions 2 and 3 no player can profit by a
detectable deviation. It might be the case that e is an exit of player 1, and
that |supp(x(e))| > 1. In this case, if the expected absorbing payoff of player
1 is different if he uses different actions in supp(x(e)), he will prefer using
some actions in supp(x(e)) over others. Condition 4 asserts that this is not
the case, and player 1 is indifferent between all the actions in the support of
x(e). Condition 5 is the analogous condition for player 2.

An analogous result was proved in Solan (1999, Lemma 5.3) in the context
of n-player absorbing games.

Proof: Let ε > 0 and δ ∈ (0, ε) be sufficiently small, and let (x′, y′) be
an ε-perturbation of (x, y) such that

Prs′,x′,y′(∃n ∈ N s.t. sn = s(e)) = 1 ∀s′ ∈ R.

Since R ∈ C(x, y), such a perturbation exists.
Define a profile σ as follows:

• Whenever the game is in state s(e) the players play the mixed action
combination ((1− δ)xs(e) + δx(e), (1− δ)ys(e) + δy(e)).

• Whenever the game is in a state s 6= s(e) the players play the mixed
action combination (x′s, y

′
s).
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If the players follow σ then the game is bound to exit R through e, and
to be absorbed. Hence, by condition 1, the expected payoff for the players is
gs, where s is the initial state.

In order to prevent the players from deviating, we choose t1 ∈ N suffi-
ciently large and add the following statistical tests at each stage t:

1. Both players check whether the realized action of their opponent is
compatible with σ.

2. If e ∈ D2
R(x, y) and the game visited the state s(e) at least t1 times,

then player 2 checks whether the distribution of the realized actions of
player 1, whenever the game is in s(e), is ε-close to xs(e). If e ∈ D1

R(x, y),
then player 1 employs a symmetric test.

3. If e ∈ D3
R(x, y) and the game visited the state s(e) at least t1 times,

then player 1 checks whether the realized actions of player 2 whenever
the game is in s(e), restricted to supp(y(e)), is ε-close to y(e). Player
2 employs a symmetric test.

If a player fails one of these tests, this player is punished by his opponent
with an ε-min-max strategy forever.

Since player 1 may profit by causing the game never to be absorbed (if
e ∈ D1

R(x, y) and ψ1
g(e) < 0), we add one more test. Let t2 ∈ N be sufficiently

large such that if no deviation is detected then absorption occurs before stage
t2 with probability greater than 1− ε. We add the following test to σ:

4. At stage t2 both players switch to an ε-min-max strategy.

The constants δ and t1 are chosen in the following way. If e ∈ D2
R(x, y)

then t1 is chosen sufficiently large such that the probability of false detection
of deviation in the second test is bounded by ε; that is

Pr
(
‖ X̄t − x(e) ‖ ∀t > t1

)
> 1− ε/2

where X̄t = 1
t

∑t
j=1 Xj and {Xj} are i.i.d. r.v. with distribution x(e). If

e ∈ D1
R(x, y) then t1 is defined analogously.

The constant δ is chosen sufficiently small such that the probability of ab-
sorption in t1 visits to s(e) (i.e., before the second statistical test is employed)
is at most ε; that is

(1− δ)t1 > 1− ε.
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If e ∈ D3
R(x, y) then δ and t1 are chosen in such a way that the probability

of false detection of deviation in the third test, as well as the probability of
absorption before this test is employed, given only one player deviates, is
at most ε. Since, whenever the game is in state s(e), absorption occurs
with probability O(δ2), while perturbations occur with probability δ, if δ is
sufficiently small then such t1 exists. For a detailed analysis of this choice,
one can refer to Solan (1999).

Let n be sufficiently large. By conditions 2 and 3, the players cannot
increase their expected average payoff in the first n stages by more than ε,
using any detectable deviation. If ε is sufficiently small, then using a non-
detectable deviation cannot increase the expected average payoff in the first
n stages by more than 2ε. Hence g is an equilibrium payoff.

Lemma 4.6 Let (x, y) be a stationary profile, and g = (gs)s∈S ∈ R2|S|. As-
sume the following conditions hold:

1. gs = us for every s ∈ T .

2. g1
s ≥ ψ1

c (s, a, ys) for every s ∈ R and a ∈ A.

3. g2
s ≥ ψ2

c (s, xs, b) for every s ∈ R and b ∈ B.

4. For every s ∈ R one of the following two conditions hold:

(a) either s 6∈ C(x, y) and

i. g1
s = ψ1

g(s, a, ys) for every a ∈ supp(xs).

ii. g2
s = ψ2

g(s, xs, b) for every b ∈ supp(ys).

(b) or s ∈ C(x, y) and there exist two exits e1, e2 ∈ Es(x, y) and α ∈
[0, 1] that satisfy the following:

i. ψ1
g(ej) = g1

s for each j = 1, 2, and g2
s = αψ2

g(e1) + (1 −
α)ψ2

g(e2).

ii. If ej ∈ D1
s(x, y) then g1

s = ψ1
g(s, a, ys) for every a ∈ supp(x(ej)).

iii. If ej ∈ D2
s(x, y) then g2

s ≥ ψ2
g(s, xs, b1) = ψ2

g(s, xs, b2) ≥
ψ2
c (s, xs, b3) for every b1, b2 ∈ supp(y(ej)) and b3 ∈ B.

iv. At most one of e1 and e2 is an exit of player 2.
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5. The Markov chain over S whose transition law is induced by (xs, ys)
for every s 6∈ C(x, y) and by αe1 + (1 − α)e2 for every s ∈ C(x, y) is
absorbing (i.e. an absorbing state is reached with probability 1).

Then g is an equilibrium payoff.

Note that condition 4(b).iv is redundant, since, if e1, e2 ∈ D2
s(x, y), then,

by 4(b).i and 4(b).iii, ψ2
g(e1) = ψ2

g(e2), one can define (with abuse of nota-
tions) e′1 = αe1 + (1− α)e2, and then condition 4(b) is satisfied with e′1 and
α′ = 1.

The intuition here is as follows. By condition 4, every non-absorbing
state is either transient under (x, y), or there exist two exits that satisfy
various conditions. We will devise a profile under which, in transient states
the players follow (x, y), whereas in non-transient states, the play leaves the
state through these two exits.

By condition 5 the game eventually reaches an absorbing states, and
by conditions 1, 4(a) and 4(b).i, the expetced payoff for the players is g.
By conditions 2 and 3 no player can profit by playing an action he is not
supposed to play. By condition 4(a) no player can profit by any deviation
in transient states. As we will see, condition 4(b) implies the same in non-
transient states.

Proof: Let ε > 0 and δ ∈ (0, ε) be sufficiently small. For every s ∈ C(x, y)
we consider the two exits e1, e2 of condition 4(b). We assume w.l.o.g. that
ψ2
g(e1) ≥ ψ2

g(e2). In particular, by condition 4(b).i, ψ2
g(e1) ≥ g2

s ≥ ψ2
g(e2),

and by condition 4(b).iii it follows that e1 6∈ D2
s(x, y).

Define a profile σ as follows:

a) Whenever the game is in a state s ∈ R such that s 6∈ C(x, y) the players
play (xs, ys).

b) Whenever the game is in a state s ∈ R such that s ∈ C(x, y), the
players play as follows:

• Play ((1 − δ)xs + δx(e1), (1 − δ)ys + δy(e1)) for n stages or until
an action combination in the support of (x(e1), y(e1)) is played,
where n satisfies:

– (1− δ)n = 1− α if e1 is a unilateral exit.

– (1− δ2)n = 1− α if e1 is a joint exit.

15



• Play ((1− δ)xs + δx(e2), (1− δ)ys + δy(e2)) until an action com-
bination in the support of (x(e2), y(e2)) is played.

If an action combination in the support of (x(ej), y(ej)) is played, but
the game remains in s, the players repeat step (b).

By condition 5, if the players follow σ then the game is bound to be eventually
absorbed, and by conditions 1, 4(a) and 4(b).i the expected payoff for the
players is gs, where s is the initial state.

In order to prevent the players from playing actions which are not com-
patible with σ, the players check, as in Lemma 4.5, that the realized action
combination that is played is compatible with σ.

In order to prevent other deviations, we add the following statistical tests.
Assume that the game moves to a state s ∈ C(x, y) at stage t0. Let t1, t2 ∈ N
be sufficiently large, and let e1, e2 be the two exits from {s} of condition
4(b). Each player checks his opponent behavior as follows at every stage t
such that t0 < t < t0 + n:

1. If e1 ∈ D1
s(x, y) and the game has visited s for at least t1 times, then

player 1 checks whether the distribution of the realized actions of player
2 at stages t0, t0 + 1, . . . , t− 1, is ε-close to xs.

2. If e1 ∈ D2
s(x, y), a symmetric test is done by player 2.

3. If e1 ∈ D3
s(x, y) and the game has visited s for at least t2 times, then

both players check whether the realized actions of their opponent at
stages t0, t0 + 1, . . . , t− 1, restricted to supp(x(e1)) and supp(y(e1)), is
ε-close to x(e1) and y(e1) respectively.

If a player fails this test at a stage t0 ≤ t ≤ t0 + n, this player is punished
with an ε-min-max strategy forever.

If no deviation is detected before stage t0 + n, then each player begins to
check, in a similar way, if his opponent continues to follow σ, until the game
leaves the state s (i.e. replace e1 by e2 in the statistical tests).

Since it might be the case that both exits are unilateral exits of player
1, and that g1

s < 0, so that player 1 gains if the game is never absorbed, we
add the following test. Let t3 be sufficiently large such that if no deviation
is detected then leaving s occurs in t3 stages with probability greater than

16



1− ε. As in the proof of Lemma 4.5, at stage t0 + t3 both players switch to
an ε-min-max strategy.

The constants t1, t2 and δ are chosen, as in the proof of Lemma 4.5, in
such a way that no player can profit more than ε by any non-detectable
deviation, and the probability of false detection of deviation is bounded by
ε.

Let mn = #{t < n: st 6= st−1} be the number of times the state process
changes values until stage n. Recall that θ is the stage of absorption. By
condition 5 the induced Markov chain is absorbing, hence, if no deviation
is detected, there is some K > 0 such that Pr(θ < +∞,mθ < K) > 1 − ε.
By condition 4(b), in any visit to a state s ∈ C(x, y) the players may profit
at most ε, while by conditions 2 and 3 no player can profit more than ε by
deviating in a detectable way. It follows that if n is sufficiently large, no
player can increase his expected average payoff by more than (K + 1)ε using
any deviation. In particular, g is an equilibrium payoff.

5 Preliminary Results

A stationary profile (x, y) is absorbing if Prs,x,y(θ < +∞) = 1 for every s ∈
S; that is, the game eventually reaches an absorbing state with probability
1.

For every state s ∈ S, let vis(x, y) be the expected undiscounted payoff
for player i if the initial state is s and the players play the profile (x, y):

vis(x, y) = E (1θ<+∞usθ) .

The function v(x, y) = (vs(x, y))s∈S ∈ R2|S| is harmonic over S w.r.t. the
transition ps,s′ = ws′(s, xs, ys). If (x, y) is absorbing then v(x, y) is the unique
solution of the following system of linear equations:

ξs = us ∀s ∈ T
ξs = ψξ(s, xs, ys) ∀s ∈ R (5)

Lemma 5.1 Let (x, y) be an absorbing stationary profile. Let g: S → R2 be
such that ψ2

g(s, xs, ys) ≤ g2
s for every s ∈ R and g2

s = u2
s for every s ∈ T .

Then v2
s(x, y) ≤ g2

s for every s ∈ S

17



Proof: v2(x, y) is an harmonic function and g2 is a sub-harmonic function
over S that have the same values over T . Hence v2(x, y) − g2 is a super-
harmonic function that vanishes over T . Since (x, y) is absorbing, v2(x, y)−g2

is non-positive.

Corollary 5.2 Let x be a stationary strategy of player 1. Let g: S → R2

satisfy for every stationary strategy y of player 2, g2
s ≥ ψ2

g(s, xs, ys) for every
s ∈ R and g2

s = u2
s for every s ∈ T . Then c2

s ≤ g2
s for every s ∈ S.

Proof: Since the game is a positive recursive game with the absorbing
property, the best reply of player 2 against the stationary strategy x is a
stationary strategy y such that (x, y) is absorbing. By Lemma 5.1, v2

s(x, y) ≤
g2
s for every stationary strategy y such that (x, y) is absorbing and s ∈ S.

Hence c2
s ≤ g2

s .

A symmetric proof proves the following lemma:

Lemma 5.3 Let y be a fully mixed stationary strategy of player 2. Let g: S →
R2 satisfy for every stationary strategy x of player 1, ψ1

g(s, xs, ys) ≤ g1
s for

every s ∈ R and g1
s = u1

s for every s ∈ T . Then c1
s ≤ g1

s for every s ∈ S.

6 The ε-Approximating Game

6.1 The Game

Let ε? = 1/|B|. For every ε ∈ (0, ε?) define the set

Ys(ε) =

ys ∈ ∆(B) |
∑
b∈J

ybs ≥ ε|B|−|J | ∀J ⊆ B

 . (6)

Let Y (ε) = ×s∈SYs(ε). Every stationary strategy y ∈ Y (ε) is fully mixed.
Since the game satisfies the absorbing property, the payoff function v(x, y) is
continuous over X × Y (ε).

Define the ε-approximating game G′(ε) as a positive recursive game with
the absorbing property (S,A,B,w, u), where player 2 is restricted to strate-
gies τ such that τ(h) ∈ Ys(ε), for every finite history h (s is the last state of
h), and player 1 is not restricted.
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6.2 Existence of a Stationary Equilibrium

Note that X and Y (ε) (for every ε ∈ (0, ε?)) are non-empty, convex and
compact sets. Define the correspondence φ1

s,ε: X × Y (ε)→ ∆(A) by:

φ1
s,ε(x, y) = argmaxx′s∈∆(A)ψ

1
v(x,y)(s, x

′
s, ys); (7)

that is, player 1 maximizes his payoff locally — in every state s he chooses
a mixed action that maximizes his expected payoff if the initial state is s,
player 2 plays the mixed action ys, and the continuation payoff is given by
v(x, y). Let φ1

ε = ×s∈Sφ1
s,ε.

Lemma 6.1 The correspondence φ1
ε has non-empty convex values, and it is

upper semi-continuous.

Proof: Since ψ1
v(x,y)(s, x

′
s, ys) is linear in x′s for every fixed (s, x, y), φ1

ε

has non-empty and convex values. By the continuity of v1 over the compact
set X × Y (ε) it follows that φ1

ε is upper semi-continuous.

Define the correspondence φ2
s,ε: X × Y (ε)→ Ys(ε) by:

φ2
s,ε(x, y) = argmaxy′s∈Ys(ε)ψ

2
v(x,y)(s, xs, y

′
s). (8)

Let φ2
ε = ×s∈Sφ2

s,ε. As in Lemma 6.1, since Ys(ε) is not empty and convex
whenever ε ∈ (0, ε?), we have:

Lemma 6.2 The correspondence φ2
ε has non-empty convex values, and it is

upper semi-continuous.

Define the correspondence φε: X × Y (ε)→ X × Y (ε) by

φε(x, y) = φ1
ε(y)× φ2

ε(x).

By Lemmas 6.1, 6.2 and by Kakutani’s fixed point Theorem we get:

Lemma 6.3 For every ε ∈ (0, ε?) there exist (x(ε), y(ε)) ∈ X × Y (ε) that is
a fixed point of the correspondence φε.
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6.3 The Behavior as ε→ 0

Since the state and action spaces are finite, there exist sequences {εn}n∈N of
positive real numbers and {(x(n), y(n))}n∈N of stationary profiles such that:

C.1. εn → 0, and (x(n), y(n)) ∈ X × Y (εn) is a fixed point of φεn for every
n ∈ N.

C.2. For every s ∈ S, supp(xs(n)) and supp(ys(n)) are independent of n.

In the sequel, we need that various sequences that depend on {x(n)} and
{y(n)} have a limit. The number of those sequences is finite, hence, by
taking a subsequence we will assume that the limits exist.

Remark: Using the method of Bewley and Kohlberg (1976), it can be
proven that we can choose for every ε > 0 a fixed point (x(ε), y(ε)) of φε
such that x and y, as functions of ε, are semi-algebraic functions (they have
a Taylor expansion in fractional powers of ε), hence C.1-C.2 hold for every
ε sufficiently small (and not only for a sequence {εn}). In particular, all the
limits that we use in the sequel exist.

We denote for every n ∈ N and s ∈ S, ds(n) = vs(x(n), y(n)). Denote
ds(∞) = limn→∞ ds(n), xs(∞) = limn→∞ xs(n) and ys(∞) = limn→∞ ys(n).

Lemma 6.4 Let s1 ∈ S and b1, b2 ∈ B. If limn→∞ y
b1
s1

(n)/yb2s1(n) < ∞ then
for every n sufficiently large

ψ2
v(x(n),y(n))(s1, xs1(n), b1) ≤ ψ2

v(x(n),y(n))(s1, xs1(n), b2).

Proof: Assume that the lemma is not true. Then, by taking a subse-
quence, ψ2

v(x(n),y(n))(s1, xs1(n), b1) > ψ2
v(x(n),y(n))(s1, xs1(n), b2) for every n ∈

N. Define for every n the stationary strategy y′(n) for player 2 as follows:

y′bs (n) =


yb2s (n)/2 (s, b) = (s1, b2)
yb1s (n) + yb2s (n)/2 (s, b) = (s1, b1)
ybs(n) otherwise

Let us verify that y′s(n) ∈ Ys(εn) for every n sufficiently large. Otherwise,
by taking a subsequence, there exists a set J ⊆ B such that b2 ∈ J , b1 6∈ J
and ∑

b∈J
y′bs (n) < ε|B|−|J |n ∀n ∈ N. (9)
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In particular, lim yb2s (n)/ε|B|−|J |n <∞. By the assumption, lim yb1s (n)/ε|B|−|J |n <
∞ as well. Since

∑
b∈J y

b
s(n) + yb1s (n) ≥ ε|B|−|J |−1

n it follows that there exists
b ∈ J \ {b2} such that lim ybs(n)/ε|B|−|J |−1

n > 0 — a contradiction to (9).
However

ψ2
d(n)(s, xs(n), y′s(n))− ψ2

d(n)(s, xs(n), ys(n)) =

=
(
ψ2
d(n)(s, xs(n), b1)− ψ2

d(n)(s, xs(n), b2)
)
yb2s1(n)/2 > 0,

a contradiction to C.1.

By applying Lemma 6.4 in both directions, and taking the limit as n→∞
we conclude that if player 2 plays two actions with approximately the same
frequencies then the corresponding limits of his continuation payoffs are
equal:

Corollary 6.5 Let b1, b2 ∈ B and s ∈ S. If limn→∞ y
b1
s (n)/yb2s (n) ∈ (0,∞)

then
ψ2
d(∞)(s, xs(∞), b1) = ψ2

d(∞)(s, xs(∞), b2).

Corollary 6.6 For every b ∈ supp(ys(∞))

ψ2
d(∞)(s, xs(∞), b) = d2

s(∞).

Proof:

d2
s(∞) = lim

n→∞
d2
s(n)

= lim
n→∞

ψ2
d(n)(s, xs(n), ys(n))

= ψ2
d(∞)(s, xs(∞), ys(∞))

=
∑

b∈supp(ys(∞))

ybs(∞)ψ2
d(∞)(s, xs(∞), b).

The result now follows from Corollary 6.5.

By Lemma 6.4, Corollary 6.6 and the continuity of ψ it follows that

ψ2
d(∞)(s, xs(∞), b) ≤ d2

s(∞) ∀(s, b) ∈ S ×B. (10)
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By Corollary 5.2 and (10) it follows that

c2
s ≤ d2

s(∞) ∀s ∈ S. (11)

In particular, (10) and (11) yield

ψ2
c (s, xs(∞), b) ≤ d2

s(∞) ∀(s, b) ∈ S ×B. (12)

By C.1 we get that for every n

ψ1
d(n)(s, a, ys(n)) ≤ d1

s(n) ∀(s, a) ∈ S × A, (13)

and equality holds whenever a ∈ supp(xs(n)) (which is independent of n by
C.2). Taking a limit in (13) as n→∞ we get

ψ1
d(∞)(s, a, ys(∞)) ≤ d1

s(∞) ∀(s, a) ∈ S × A, (14)

and equality holds whenever a ∈ supp(xs(n)).
By Lemma 5.3 and (13), c1

s ≤ d1
s(n) for every s ∈ S and every n ∈ N,

and by taking the limit as n→∞,

c1
s ≤ d1

s(∞) ∀s ∈ S. (15)

Therefore,

ψ1
c (s, a, ys(∞)) ≤ d1

s(∞) ∀(s, a) ∈ S × A. (16)

To summarize, we have asserted that dis(∞) is greater than the min-max
value of player i (Eqs. (11) and (15)), and that no player can receive more
than ds(∞) by playing any action in any state s and then be punished with
his min-max value (Eqs. (12) and (16)).

7 Existence of an Equilibrium Payoff

In this section we prove Proposition 3.7. This is done by showing that the
conditions of either Lemma 4.5 or Lemma 4.6 hold. Denote the two non-
absorbing states by R = {s1, s2}.
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7.1 Exits from a State

Fix a state s ∈ S such that ws(s, xs(∞), ys(∞)) = 1. In particular, s ∈
C(x(∞), y(∞)). Since the game satisfies the absorbing property, Es(x(∞),y(∞))6=
∅.

Let ρsn be the probability distribution over E0
s (x(∞), y(∞)) that is in-

duced by (x(n), y(n)). Formally, we define for every e ∈ E0
s (x(∞), y(∞))

ρ̄sn(e) =


xas(n) e = (s, a, y(∞)) ∈ D1

s(x(∞), y(∞))
ybs(n) e = (s, x(∞), b) ∈ D2

s(x(∞), y(∞))
xas(n)× ybs(n) e = (s, a, b) ∈ D3

s(x(∞), y(∞))
,

and ρsn(e) = ρ̄sn(e)/
∑
e∈E0

s (x(∞),y(∞)) ρ̄
s
n(e).

Since y(n) is fully mixed and the game satisfies the absorbing property,

ρsn is a well defined probability distribution. Define ρs∞
def
= limn→∞ ρ

s
n.

Every pair of actions (a, b) ∈ A×B such that ws(s, a, b) < 1 is ei-
ther in the support of some exit in E0

s (x(∞), y(∞)), or there exists a pair
(a0, b0) which is in the support of some exit in E0

s (x(∞), y(∞)) such that

limn→∞
xas (n)ybs(n)

x
a0
s (n)y

b0
s (n)

= 0. Since ds(n) = ψd(n)(s, xs(n), ys(n)), by taking the

limit as n→∞ we have:

ds(∞) =
∑

e∈E0
s (x(∞),y(∞))

ρs∞(e)ψd(∞)(e). (17)

That is, the average continuation payoff over the exits is equal to ds(∞).
Since d1

s(n) = ψ1
d(n)(s, a, ys(n)), by summing over all a ∈ supp(xs(∞))

and taking the limit as n→∞ we have ∑
b : (s,xs(∞),b)∈D2

s(x(∞),y(∞))

ρs∞(s, xs(∞), b)

 d1
s(∞) =

∑
b : (s,xs(∞),b)∈D2

s(x(∞),y(∞))

ρs∞(s, xs(∞), b)ψ1
d(∞)(s, xs(∞), b).(18)

Let a 6∈ supp(xs(∞)) such that xas(n) > 0 for every n > 0. Then, as in (18), ∑
b : (s,a,b)∈D3

s(x(∞),y(∞))

ρs∞(s, a, b)

 d1
s(∞) =

∑
b : (s,a,b)∈D3

s(x(∞),y(∞))

ρs∞(s, a, b)ψ1
d(∞)(s, a, b). (19)
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Eq. (18) means that the average continuation payoff of player 1 over the
unilateral exits of player 2 is equal to d1

s(∞), whereas Eq. (19) means that
for every action a 6∈ supp(xs(∞)), the average continuation payoff of player
1, restricted to pure joint exits e with x(e) = a, is equal to d1

s(∞). Together,
these lemmas imply some indifference property from the point of view of
player 1. This should not surprise us, since player 1 is not restricted in the
approximating game.

Lemma 7.1 There exist two exits e1, e2 ∈ Es(x(∞), y(∞)) and α ∈ [0, 1]
such that

1. d1
s(∞) = ψ1

d(∞)(ej) for j = 1, 2.

2. d2
s(∞) = αψ2

d(∞)(e1) + (1− α)ψ2
d(∞)(e2).

3. At most one of e1, e2 is an exit of player 2.

4. If there exists e ∈ supp(ρs∞) such that wT (e) > 0, then wT (e1) +
wT (e2) > 0.

5. If ej ∈ D1
s(x(∞), y(∞)) then d1

s(∞) = ψ1
d(∞)(s, a, ys(∞)) for every

a ∈ supp(xs(ej)).

6. If ej ∈ D2
s(x(∞), y(∞)) then ψ2

d(∞)(s, xs(∞), b) = ψ2
d(∞)(s, xs(∞), b′)

for every b, b′ ∈ supp(ys(ej)).

Proof: For every a ∈ A such that ws(s, a, ys(∞)) > 0, define ỹs(a) =
ys(∞). By (14), ψ1

g(s, a, ỹs(a)) = d1
s(∞) for every such a.

For every a ∈ A such that ws(s, a, ys(∞)) = 0 < ws(s, a, ys(n)) for every
n ∈ N, define ỹs(a) ∈ ∆(B) by

ỹbs(a) =

{
0 ws(s, a, b) = 1
ρs∞(s, a, b)/

∑
b: ws(s,a,b)<1 ρ

s
∞(s, a, b) otherwise

By (19), ψ1
g(s, a, ỹs(a)) = d1

s(∞) for every such a.
If there exist a1, a2 6∈ supp(xs(∞)) for which ỹs(a1) and ỹs(a2) is defined

such that ψ2
g(s, a1, ỹs(a1)) ≥ d2

s(∞) ≥ ψ2
g(s, a2, ỹs(a2)) we are done. Indeed,

define ej = (s, aj, ỹs(aj)) for j = 1, 2 and choose α ∈ [0, 1] that satisfies 2.
Note that in this case, one can choose such a1 and a2 so that (4) holds.
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Otherwise, either for every a 6∈ supp(xs(∞)), ws(s, a, ys(n)) = 1 for every
n, or for every a 6∈ supp(xs(∞)), ψ2

g(s, a1, ỹs(a1)) > d2
s(∞). In both cases,

(17) implies that ws(s, xs(∞), ys(n)) < 1 for every n. Hence one can define
a probability distribution ỹs ∈ ∆(B) by

ỹbs =

{
0 ws(s, xs(∞), b) = 1
ρs∞(s, xs(∞), b)/

∑
b: ws(s,xs(∞),b)<1 ρ

s
∞(s, xs(∞), b) otherwise

By (10), ψ2
g(s, xs(∞), ỹs) ≤ d2

s(∞).
If ψ2

g(s, xs(∞), ỹs) = d2
s(∞), then by (18), e1 = (s, xs(∞), ỹs) and α = 1

satisfy the conclusion.
If ψ2

g(s, xs(∞), ỹs) < d2
s(∞) then by (17), there exists a1 6∈ supp(xs(∞))

such that ỹs(a1) is defined. In particular, ψ2
g(s, a1, ỹs(a1)) > d2

s(∞). More-
over, if there is a 6∈ supp(xs(∞)) with wT (s, a, ỹs(a)) > 0, we can assume
it is a1. By defining e1 = (s, a1, ỹs(a1)), e2 = (s, xs(∞), ỹs) and α ∈ [0, 1]
properly, the result follows, where conditions 1 and 5 follow from (18) and
(19).

In both cases, condition 6 follows from Corollary 6.5.

7.2 Proof of Proposition 3.7

In this section we prove Proposition 3.7. Consider the following two condi-
tions:

A.1. R is communicating under (x(∞), y(∞)).

A.2. For every s ∈ R such that s ∈ C(x(∞), y(∞)), and every e ∈ E0
s (x(∞), y(∞))

such that ρs∞(e) > 0, we have wT (e) = 0.

We will prove that if conditions A hold then the conditions of Lemma 4.5
hold, while if they do not hold then the conditions of Lemma 4.6 hold.

Lemma 7.2 If conditions A do not hold then the conditions of Lemma 4.6
hold w.r.t. (x(∞), y(∞)).

Proof: Define g = d(∞). We prove that the conditions of Lemma 4.6
hold w.r.t. (x(∞), y(∞)) and g. Condition 1 holds since ds(n) = us for every
s ∈ T and every n ∈ N. Condition 2 follows from (16) while condition 3
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follow from (12). Condition 4(a) follows from (14) and Corollary 6.6, whereas
condition 4(b) follows from Lemma 7.1. Since conditions A do not hold, it
follows by Lemma 7.1 that condition 5 of Lemma 4.6 holds.

Lemma 7.3 If conditions A hold then the conditions of Lemma 4.5 hold
w.r.t. (x(∞), y(∞)).

Proof: To prove that the conditions of Lemma 4.5 hold, we need to find
an exit e from R that satisfies various conditions. In particular, it should
give high payoff for both players.

As in section 7.1, (x(n), y(n)) induce a probability distribution over the
exits in ER(x(∞), y(∞)), and we could have looked for some exit whose limit
probability is positive.

We choose a different path. We first identify the state where the payoff
for player 2 is higher: d2

s1
(n) ≥ d2

s2
(n) for every n. We then look for the

actions of player 2 that cause the game to be absorbed from s1 with positive
probability, and player 2 plays as often as he can. Since player 2 is restricted,
and since in s1 the payoff of player 2 is higher, if absorption occurs through
those actions player 2 gets at least d2

s1
(∞). Since player 1 is indifferent

between his various actions, it will follow that the exit that corresponds to
those actions of player 2 is the desired one. The limit probability of this exit
might vanish.

We now turn to the formal proof.

By taking a subsequence and exchanging the names of s1 and s2 if nec-
essary, we can assume that exactly one of the following holds:

B.1. Either d2
s1

(n) > d2
s2

(n) for every n ∈ N.

B.2. Or, d2
s1

(n) = d2
s2

(n) and d1
s1

(n) > d1
s2

(n) for every n ∈ N.

B.3. Or, d2
s1

(n) = d2
s2

(n), d1
s1

(n) = d1
s2

(n) and wT (s1, xs1(n), ys1(n)) > 0 for
every n ∈ N.

Note that wT (s, xs(n), b) and wT (s, a, y(n)) are independent of n for every
a ∈ A and b ∈ B.
Step 1: Definition of e.
Note that wT (s1, xs1(n), ys1(n)) > 0 for every n ∈ N. Otherwise, it follows
that ds1(n) = ds2(n) for every n, which contradicts B.1, B.2 and B.3.
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Let B? be the set of all actions b ∈ B such that

• wT (s1, xs1(n), b) > 0 for every n.

• limn→∞ y
b
s1

(n)/yb
′
s1

(n) > 0 for every b′ such that wT (s1, xs1(n), b′) > 0.

B? contains all actions of player 2 that are absorbing, and played most often.
Since wT (s1, xs1(n), ys1(n)) > 0 for every n, it follows that B? 6= ∅. Let y?s1(n)
be the probability distribution induced by ys1(n) over B?, and let y?s1(∞) be
the limit distribution. By the definition of B?, supp(y?s1(∞)) = supp(ys1(n))
for every n.

LetA? be the set of all actions a ∈ supp(xs1(n)) such that wT (s1, a, y
?
s1

(∞)) >
0; that is, the actions of player 1 that are absorbing against y?s1(∞). Since
supp(y?s1(∞)) = supp(ys1(n)), A? is well defined.

Note that for any a ∈ A?, wT (s1, a, ys1(n)) > 0, hence wT (s1, a, y
?
s1

(∞)) >
0. Moreover, if a′ 6∈ A? then limn→∞wT (s1, a, ys1(n))/wT (s1, a

′, ys1(n)) =
+∞.

Let x?s1(n) be the probability distribution over A? induced by xs1(n).
Denote x?s1(∞) = limn→∞ x

?
s1

(n). Then wT (x?s1(∞), y?s1(∞)) > 0, hence e =
(s1, x

?
s1

(∞), y?s1(∞)) is an exit from R.

Step 2: d2
s1

(∞) ≤ ψ2
d(∞)(e).

Assume to the contrary that d2
s1

(∞) > ψ2
d(∞)(e). In particular, for n suffi-

ciently large, d2
s1

(n) > ψ2
d(n)(e). By the definition of A? and since d2

s1
(n) ≥

d2
s2

(n) it follows that d2
s1

(n) > ψ2
d(n)(s1, xs1(n), y?s1(n)) for n sufficiently large.

Since d2
s1

(n) = ψ2
d(n)(s1, xs1(n), ys1(n)), it follows that there exists an action

b0 ∈ B such that d2
s1

(n) < ψ2
d(n)(s1, xs1(n), b0) for n sufficiently large. By

Lemma 6.4, limn→∞ y
b0
s1

(n)/ybs1(n) = ∞ for every action b ∈ B?, and by the
definition of B?, b0 6∈ B?. In particular, wT (s1, xs1(n), b0) = 0, which implies
that for every n, d2

s1
(n) ≥ ψ2

d(n)(s1, xs1(n), b0) — a contradiction.

Step 3: d1
s1

(∞) ≤ ψ1
d(∞)(e).

Assume to the contrary that d1
s1

(∞) > ψ1
d(∞)(e). In particular, d1

s1
(n) >

ψ1
d(n)(e) for n sufficiently large. However, this implies that d1

s1
(n) < d1

s2
(n)

and there exist a ∈ A? and b0 ∈ B such that ws2(s1, a, b0) > 0 and limn→∞ y
b0
s1

(n)/ybs1(n) =
∞ for every b ∈ B?. Indeed, otherwise it follows by the definition of B? that
for every a ∈ A? and n sufficiently large, d1

s1
(n) > ψ1

d(n)(s1, a, y(n)), which
contradicts assumption C.1.
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Hence B.1 holds, and therefore d2
s1

(n) > d2
s2

(n) for every n ∈ N. For
every b ∈ B such that ws1(s1, xs1(n), b) = 1, d2

s1
(n) = ψ2

d(n)(s1, xs1(n), b). For
every b ∈ B such that wT (s1, xs1(n), b) = 0 and ws2(s1, xs1(n), b) > 0 (such
as b0), d2

s1
(n) > ψ2

d(n)(s1, xs1(n), b). By Lemma 6.4, for every b ∈ B such

that limn→∞ y
b0
s1

(n)/ybs1(n) = ∞, d2
s1

(n) > ψ2
d(n)(s1, xs1(n), b). It follows that

ψ2
d(n)(s1, xs1(n), ys1(n)) < d2

s1
(n) for n sufficiently large - a contradiction.

Step 4: Definition of the equilibrium payoff.
Define g = (gs)s∈S ∈ R2|S| by:

gs =

 us s ∈ T∑
s′∈T ws′ (e)us′

wT (e)
s ∈ R

Step 5: The conditions of Lemma 4.5 hold w.r.t. (x(∞), y(∞)) and g.
Condition 1 of Lemma 4.5 follows from the definition of z. Condition 2
follows from step 3 and (16) while condition 3 follows from step 2, (10) and
(11). Conditions 4 follows from (14) and condition 5 follows from Corollary
6.5.

8 More Than Two Non-Absorbing States

Why does our approach fail for games with more than two non-absorbing
states ? The reason is that if conditions A hold then the equilibrium payoff
that we construct need not be equal to d(∞) (see Lemma 7.3), and we run
into a similar problem as when trying to generalize the proof of Vrieze and
Thuijsman (1989) for more than one non-absorbing state.

As an example, consider the following game with four non-absorbing
states:
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state 3

1/2

1/2

1/2 1/2

1, 3 ∗
1

1

1, 3 ∗

state 4

1/2

1/2

1/2 1/2

−1, 3 ∗
2

2

−1, 3 ∗

state 1

1
n

1− 1
n

1− 1
n

1
n

0, 6 ∗
2

3

1, 1 ∗

state 2

1
n

1− 1
n

1− 1
n

1
n

0, 5 ∗
1

4

−1, 0 ∗

Figure 1

Let (x(n), y(n)) be the stationary profile indicated in Figure 1. It is easy
to verify that (x(n), y(n)) is a fixed point of the correspondence φ1/n defined
in section 6. Indeed, both players are indifferent between their actions in
states 3 and 4, and in states 1 and 2 player 2 must play each action with
a probability at least 1/n. Hence the strategy of player 2 is a best reply in
Y (1/n). The expected payoff for player 1 by this stationary strategy profile

is d1(n) = ( 1/n
2−1/n

, −1/n
2−1/n

, 1
2−1/n

, −1
2−1/n

). One can verify that player 1 is indif-
ferent between his actions in states 1 and 2, and therefore his strategy is a
best reply against y(n).

Let C = {s1, s2}. Note that C is communicating w.r.t. (x(∞), y(∞)), and
that the exits from C w.r.t. (x(∞), y(∞)) are (1, B, L), (1, T, R), (2, B, L)
and (2, T, R). It turns out that ρ∞ is the uniform distribution over these
four exits and therefore

d1(∞) = d2(∞) =
1

4
(0, 6) +

1

4
(1, 1) +

1

4
(0, 5) +

1

4
(−1, 0) = (0, 3).

However, there does not exist any way to exit from C in such a way that
is individually rational for both players and yields the players an expected
payoff (0, 3).

Though our approach fails for games with more than two non-absorbing
states, we hope that one can prove the existence of an equilibrium payoff
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for an arbitrary number of non-absorbing states by finding another payoff
function for player 2 or another constraints on his strategy space (or both).
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