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Abstract

We address the question of existence of equilibrium in general timing games with complete
information. Under weak assumptions, any two-player timing game has a Markov subgame
perfect e-equilibrium, for each ¢>0. This result is tight. For some classes of games (symmetric
games, games with cumulative payoffs), stronger existence results are established.
© 2004 Elsevier Inc. All rights reserved.
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0. Introduction

Many economic and political interactions revolve around timing. A well-known
example is the class of war of attrition games, in which the decision of each player is
when to quit, and the game ends in the victory of the player who held on longer.
These games were introduced by Maynard Smith [19], and later analyzed by a
number of authors. Hendricks et al. [15] provide a characterization of equilibrium
payoffs for complete information, continuous time wars of attrition played over a
compact time interval. Several models that resemble wars of attrition were studied in
the literature. Ghemawat and Nalebuff [14] analyze the exit decision of two
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competing firms in a declining market, and assume that the market will eventually
not be profitable if none of the two firms ever drops from the market (see also [7]).
Fudenberg and Tirole [12] look at an incomplete information setup, in which there is
a small probability that either firm will find it dominant to stay in forever. More
recently, Bilodeua and Slivinski [4] studied a model where a volunteer for a public
service is needed, while Bulow and Klemperer [5] consider multi-player auctions as
generalized wars of attrition.

Another important class of timing games are preemption games, in which each
player prefers to stop first. The analysis is then sensitive to the specification of the
payoff, were the two players to stop simultaneously, see [11,13, pp. 126-128].

Yet another class of timing games consists of duel games. These are two-player
zero-sum games. In the simplest version, both players are endowed with one bullet,
and have to choose when to fire. As time goes, the two players get closer and the
accuracy of their shooting improves. These games are similar to preemption games in
that a player who decides to act may be viewed as preempting her opponent.
However, as opposed to preemption games, in duel games a player has no guarantee
that firing first would result in a victory. We refer the reader to Karlin [16] for a
detailed presentation of duel games, and to Radzik and Raghavan [24] for an
updated survey.

There are many timing games that do not fall neatly into any of these known
categories. Consider for instance the standard case of a declining market, with two
initially present firms. If the monopoly profits in that market are not decreasing—
e.g. if the market has a cyclical component—or if the monopoly profits remain
consistently above the outside option, the game fails to be a war of attrition (see [13,
p.- 122]). In another setup, when two firms compete on the patenting or the
introduction of new technology, their interaction has the flavor of a preemption
game. But each such firm also has an incentive to wait, since the probability of higher
payoffs increases with time (and, presumably, with product quality). LaCasse et al.
[17] studied a model where volunteers for several jobs are needed. When only one
volunteer is needed, the model reduces to a standard war of attrition, but when there
are several jobs, the strategic considerations are more complex.

The present paper addresses the question of existence of equilibrium in general
timing games. It provides a framework that includes all timing games discussed in
the literature, together with many other, and a unified analysis of all these games.

For our purposes, a continuous-time game of timing is described by a set I of
players, and, for each non-empty subset of players S<1, a function ug : [0, 00 ) »R’,
with the interpretation that ug(¢) is the payoff vector if the players in S—called the
leaders—are the first to act, and they do so at time ¢. In addition, player i’s time
preferences are described by a discount rate J;.'

Our first result is a general existence result for two-player games: assuming ug(-) is
continuous and bounded for each S, a Markov subgame-perfect ¢-equilibrium exists,
for each ¢>0.

'The model that is described here is of a game with complete information. We shall argue that some of
our results extend to games with symmetric incomplete information.
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This general existence result does not hold with more than two players.
Nevertheless, an existence result can still be established for most cases of economic
interest. As an illustration, we consider two such classes of games.

For symmetric games, our existence result is valid irrespective of the number of
players. Moreover, the corresponding strategy profile is pure. Hence, any symmetric
timing game has a Markov subgame perfect ¢-equilibrium in pure strategies.
However, a symmetric e-equilibrium need not exist.

In most cases of interest, the payoff of a player who acts at time 7 can be written as
the sum of a payoff incurred up to ¢ and of an outside option. As a consequence, the
payoff to such a leader is independent of the identity of the other leaders. We call
these games games with cumulative payoffs. For such games, our existence result is
valid for any number of players.

A point of interpretation is worth stressing here. In some applications once a
player drops from the game, the interaction continues among the remaining players.
Our existence result allows for the analysis of such games, using backward induction
and applying the existence result inductively. Specifically, the payoff u(z), for i¢ .S,
should rather be interpreted as the sum of the payoff accrued to i up to time ¢, and of
an equilibrium payoff to player i in the continuation game—the timing game that
starts at time ¢ and with set of players /\S. Our technique can be used to study
interactions in which each player can act a bounded number of times, and the payoff
depends on past and current behavior of the players.

Most of our proofs are constructive. In addition, our existence results are tight.
Indeed, we exhibit a two-player zero-sum game with no exact Nash equilibrium, and
a three-player zero-sum game with no Nash ¢-equilibrium, provided ¢ is sufficiently
small. In these two examples, payoffs are constant over time.

Finally, we provide a restrictive condition under which existence of a Nash ¢-
equilibrium for every e¢>0 implies the existence of an exact equilibrium. The
condition is that the function ug is constant for each S</, and that players are not
discounting payoffs (but we do not impose any restriction on the number of players).
Incidentally, this establishes the existence of a Nash equilibrium for the
corresponding class of two-player timing games, a class of games for which none
of the known sufficient conditions for equilibrium existence hold (see, e.g., [25]).

We conclude the introduction by discussing a few conceptual issues. We adhere to
the classic view of continuous-time models as idealized versions of discrete-time
models, which allows for the use of powerful tools of mathematical analysis within a
simple framework.

In this respect, the use of continuous-time repeated games has been controversial.
In such games, a “naive” definition of a strategy profile need not yield a well-defined
outcome. This difficulty has been discussed at length, e.g., in [1,2,28,31]. All these
authors provide various cumbersome restrictions on strategies, at the cost of losing
the conceptual elegance of the continuous-time framework. Perry and Reny [22,23]
adopt another approach. They assume that players have a waiting time: once
changing the current action, a player needs to wait a pre-specified period until he can
change his action again. We emphasize that such a difficulty in the notion of a
strategy does not arise in timing games. The reason is that at any time #, there is only
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one relevant history of play—the history in which no one stopped. As a consequence,
the difficulty of adapting one’s own behavior to past behavior of the other players
disappears.

A second issue is more directly related to timing games. It turns out that the set of
equilibrium outcomes in continuous-time timing games need not coincide with the
limit set of equilibrium outcomes of discrete time versions of the game, when
the length of the time periods shrinks to zero. This issue was first raised in [11],
through the grab-the-dollar game.” In this game each of two players (with the
same discount rate) can grab a dollar that lies between them, at any time. The
game terminates once at least one of the players grabs the dollar. If at that time
only one player grabbed the dollar, he receives 1, and his opponent receives 0. If
both grabbed it, both lose 1. In the discrete-time version of this game, the players are
only allowed to act at exogenously given times (#,), where the sequence (¢,) is
increasing. The unique symmetric equilibrium has both players grab the dollar with
probability 1/2 at every time ¢, (if the game still goes on at that stage), yielding a
payoff of zero to both players. When the stage length decreases to zero, the
symmetric equilibrium strategies do not converge to any strategy profile of the
continuous-time version, since such a limit strategy would have to stop with
probability 1/2 at any time.

In our view, the problem which arises in the grab-the-dollar game is best seen as a
lack of upper semi-continuity, as the time period decreases to zero. However, as was
also pointed out in [10] in a different context, some kind of lower semi-continuity
always holds: given any ¢ >¢>0, any c-equilibrium profile for the continuous-time
model is still, when discretized, an ¢’-equilibrium in the discrete-time versions of the
game, provided the time period is short enough.

To summarize, our analysis of a given continuous-time timing game yields a
subgame perfect g-equilibrium profile of the continuous-time game. Moreover, this
profile yields an approximate equilibrium of all discrete-time versions of the game,
provided time periods are short. However, not all ¢'-equilibria of the discrete-time
versions will be obtained this way.

The paper is organized as follows. In Section 1 we state our assumptions and our
results. Section 2 contains the proof of the general existence result for two-player
games while the discussion of specific classes of games is postponed to Section 3. The
proofs of the assertions relative to Markov equilibrium are given in Section 4. All
examples are collected in Section 5. Section 6 contains the proof of a result on the
existence of exact equilibrium. Finally, Section 7 concludes with further discussion
and few extensions.

1. The model and the main results

The set of non-negative reals [0, o0 ) is also denoted by R*, and for every re Rt we
identify [z, 0] = [t, 0) U {0}

2Qur discussion follows closely the discussion in [11].
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1.1. The model

A game of timing I' is given by:

® A finite set of players /, and a discount rate 5;eR" for each player ie/.
® For every non-empty subset = S<I, a continuous and bounded function
us: [0, 00) >R’

To be consistent with the terminology of games in extensive form (see, e.g., [21, p.
103], we define a plan of action (or plan in short) of player i to be simply a time ¢; to
act, namely an element of [0, oo], where the alternative ¢; = oo corresponds to never
acting. Such a time does not define a strategy in the usual sense, since it does not
prescribe what to do, if the game were to start after ;.

Given a pure plan profile (#;),.;, we let 0 := min;;#; denote the terminal time, and
S. = {iel|t; =0} be the coalition of leaders. The payoff gi(((,)j) to player i is
e"sf"ug* (0) if 6 < co—i.e., if the game terminates in finite time—and 0 otherwise.

In most timing games of economic interest, the players incur costs, or receive
profits prior to the end of the game, and the discounted sum of profits/costs up to ¢ is
bounded as a function of 7. This case reduces to the case under study here by
deducting/adding the total cost/profit up to time ¢ from the discounted ug(z). Hence,
our standing assumption that g’ = 0 if = oo is a normalization convention, and
entails no loss of generality.

1.2. Strategies and payoffs

A mixed plan for player i is a probability distribution ¢’ over the set [0, c0]. The
expected payoff given a plan profile ¢ = (d'),_; is

10(0) = Eg, il (11, oo 11)]. (1)

The subscript reminds that payoffs are discounted back to time zero. We denote by
7i(c) = €%y (), the expected payoff discounted to time ¢.

In finite extensive form games, the notions of pure and mixed plans do not suffice
when studying subgame-perfect equilibria. This is still the case here. Indeed, pure
and mixed plans indicate when the player acts for the first time. However, they do
not indicate how the player plays if the game starts at some time #>0 which is
beyond his acting time.

For every >0, the subgame that starts at time ¢ is the game of timing I'; with
player set I, where the payoff function when coalition S terminates is wus(s) =
us(t+ ). Thus, payoffs are evaluated at time z.

Definition 1.1. A sirategy of player 1 is a function ¢ : 7+ ¢’ that assigns to each >0
a mixed plan ¢! that satisfies

® Properness: ¢! assigns probability one to [z, o0].
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® Consistency: For every 0<f<s and every Borel set A< [s, co], one has

ay(4) = (1 — ai([t,5))o,(A4).

The properness condition asserts that ¢/ is a mixed plan in the subgame that starts
at time t: the probability that player i acts before time ¢ is 0. The consistency
condition asserts that as long as a plan does not act with probability 1, later
strategies can be calculated by Bayes’ rule.

The consistency requirement is closely related to the consistency property of
conditional probability systems, see [20]. This is no coincidence, since a strategy (o)
can be interpreted as a conditional probability system over [0, 4 c0].

Given a strategy profile ¢ = ('), a player iel and a time teR", we denote by
71(G) = y(0,) the payoff induced by & in the subgame starting at time 7.

A Markov strategy is a strategy that depends only on payoff relevant past events,
see [18]. In the context of timing games, this requirement is expressed as follows. A
real number T eR™ is a period of the game if ug(t + T) = ug(¢), for every te R* and
every ScI. A strategy profile ¢ is Markov if, for every teR™ and every iel, the
mixed plan ¢!, ; is obtained from ¢! by translation: for each Borel set A=R™, one
has ol(A4) =6} (A+T).

1.3. Main results

Let ¢ >0 be given. A profile of mixed plans is a Nash c-equilibrium if no player can
profit more than ¢ by deviating to any other mixed strategy. Equivalently, no player
can profit more than ¢ by deviating to a pure plan.

A profile of strategies @ = (0,),- is a subgame-perfect c-equilibrium if for every
t=0, the profile o, is a Nash ¢-equilibrium in the subgame that starts at time ¢# (when
payoffs are discounted to time ?).

We now state a general existence result for two-player games. The proof appears
in Section 2.

Theorem 1.2. Every two-player discounted game of timing in continuous time admits a
Markov subgame-perfect e-equilibrium, for every ¢>0. If 6; = 0 for some i, the game
admits a Nash c-equilibrium, for each ¢>0.

The proof is essentially constructive. In many cases of interest, a pure subgame-
perfect e-equilibrium exists.

Section 3 deals with some classes of timing games of specific interest. We first
analyze games with cumulative payoffs, defined by the property that for ie S, the
payoff u%(7) does not depend on which other player(s) happen to act at time 1.
Formally, u(t) = ui[}(t) for every player i and every subset S that contains i. This

class includes games in which each player receives a stream of payoffs until he exits
from the game (and the game proceeds with the remaining players). In particular, it
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includes models of shrinking markets, (see, e.g., [12,14]). It can also accommodate
the case in which there is a collection & of winning coalitions, and the game
terminates at the first time ¢ in which the coalition of remaining players S; is a
winning coalition. One model of this sort is the model of multi-object auctions
studied in [5].

Theorem 1.3. Every game with cumulative payoffs has a subgame-perfect e-
equilibrium, for each ¢>0. Moreover,

® there is such a profile in which symmetric players play the same strategy;’
® there is a Markov subgame-perfect e-equilibrium, provided not all functions us(-),
S<, are constant.

In many cases of economic interest, the players enjoy symmetric roles, in the sense
that the payoff u/() to player i if S acts depends only on ¢z, on the size of S, and on
whether i belongs to S or not. Formally, a symmetric /-player game of timing is
described by functions o : R" >R, B,: R" >R, ke{l, ..., |I|}, with the interpreta-
tion that, for |S| =k, one has ui(r) = oy (¢) if i€ S, and u(t) = B (¢) if i¢S. For
symmetric games, our existence result is surprisingly strong.

Theorem 1.4. Every symmetric discounted game of timing admits a pure Markov
subgame-perfect e-equilibrium, for each ¢>0.

The grab-the-dollar game is an example of a symmetric game that does not have a
symmetric ¢-equilibrium, provided ¢ is sufficiently small.

Finally, in Section 1.5, we prove that under somewhat restrictive assumptions, the
existence of an e-equilibrium implies the existence of an equilibrium.

Theorem 1.5. Let I be a finite set of players, let us(-) be a constant function for each
0#S<I, and let 6; =0 for each iel. If the game of timing (I, (us)g) has an ¢-
equilibrium for each ¢>0, then it also has a zero equilibrium.

In particular, combined with Theorem 1.2, Theorem 1.5 implies that every two-
player, constant-payoff, undiscounted game of timing has a (mixed) Nash
equilibrium. This equilibrium existence result is not standard. It is worth noting
that it does not follow from the most general existence result due to Reny [25].
Indeed, Theorem 3.1 in Reny assumes that both strategy spaces are compact
Hausdorff spaces, and that the game is so-called better-reply secure. In the context of
timing games, one is tempted to endow the mixed strategy spaces with the topology

3Players i and j are symmetric if (i) Uy = u’q for every S that either contains both 7 and j, or none of
them, (ii) “gu{[) = ugu{/} for every S that contains neither i nor j, and (iii) 6; = 6;.
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of weak convergence.* Consider the constant-payoff timing game defined by ugy =
(3,1), upzy = (0,0) and uy 5, = (2,3/2), and any strategy profile ¢ where player 1
acts at time zero, but player 2 does not act at time zero: ¢! ({0}) = 1 and ¢>({0}) = 0.
Plainly, ¢ yields the payoff (3,1) but is not an equilibrium. Since 3 is the highest
payoff player 1 may possibly get in the game, player 1 cannot secure at ¢ a higher
payoff, in the sense of Reny. On the other hand, any strategy 6> of player 2 that
secures at o a payoff strictly above one must act with some positive probability # at
time zero. Let now ¢! be a sequence of strategies that weakly converges to ¢' and
with no atom at time zero. Plainly lim,, ,.9*(c},6%) = (1 — ) <1, hence Reny’s
condition does not hold.

2. Subgame-perfect equilibria in two-player games

This section is devoted to the proof of Theorem 1.2. The proof combines a
backward induction argument with a compactness, or diagonal extraction, principle.
We provide here a brief outline.

We start with few definitions, that will be in use throughout the section. We let a
two-player game of timing (us(+))p.s< 12} be given, together with the discount rates
d1,0,>0 of the two players. For ease of presentation, we denote by a(-), b(-) and ¢(+)
the three functions ugy(-), upy(-) and ug 5 (-), respectively.

Note that for every continuous function f/: Rt - RY and every 5, >0, there is a
strictly increasing sequence (f),, with limit oo, such that for every k and every
G <s<t<tiyr, |le 01 (s) = f ()] <n.

Given ¢>0, we let >0 be small enough. We apply the previous paragraph to the
RS-valued function f = (a, b, c), to n and to 6 = min{d;, 5>}, and obtain a sequence
(), that strictly increases to oo.

The proof is divided into two parts. Given neN, we consider the version of the
timing game that terminates at time ¢, with a payoff of zero if no player acted before.
In this game with finite horizon, we define inductively, for 0 <k <n, a strategy profile
or(n) over the time interval [t,1#,1). We prove that the profile obtained by
concatenating the profiles 6% () is a subgame-perfect e-equilibrium in the game with
finite horizon.

Next, we let n go to co. We observe that, for fixed k, the sequence (g% (n)), takes
only finitely many values, so that by a diagonal extraction argument a limit o of a(n)
exists. This limit is our candidate for a subgame-perfect ¢-equilibrium.

2.1. Induction games

The induction step mentioned above takes as given a timing game played between
times #; and #;; and with a terminal payoff that may differ from zero. We deal in
this section with such games.

4As in the two-player zero-sum timing game of Example 5.1 in Reny.
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Given 0<t<0< oo and veR?, we define the induction game G([t,0);v) to be the
game that starts at time 7, and ends at time 6 with a payoff of v if no player acted in
between. In this game, each player is allowed to act at any time in [z, 0), and the
payoff is v if no one ever acts. Since the interval [z, 0) is homeomorphic to R™, the
induction game is formally equivalent to a game of timing, as introduced in Section
1, except that the terminal payoff may differ from zero, and that discounting is not
exponential. The definitions of pure plans, mixed plans and strategies, as well as of a
subgame-perfect ¢-equilibrium, are analogous to those given for infinite horizon
games. Hence, a pure plan in the induction game is an element in [z, 0) U{ o }, while
a strategy of player i is a map ¢’ that assigns to each re[r,0) a probability
distribution over [r,0)u{oo}, and satisfies the analogs of the Properness and
Consistency requirements of Definition 1.1.

We shall later obtain strategy profiles in the infinite-horizon game by
concatenating profiles of successive induction games. For clarity, we use the letter
g for the payoff function in G([r,0);v): given a strategy profile ¢ in G([z,0);v) and
telr,0), g,(o) is the payoff induced by ¢ in the subgame starting from 7, and
evaluated at time 7.

2.1.1. Classification

We will say that the induction game G(][z, 0);v) is of:

Type C if ¢! () =b!(z) and cz(r)>a2(r).

Type V if e 2109yl + y>4'(1) and e~ 20902 + = 5(1).

Type Al if a'(t)=e 1=p! + 4 and @?(1) =2 (1).

Type B1 if b*(t) = e 20=9¢2 4+ 5y and b' () =c'(1).

Type A2 if a'(t)=e v! 4+ and @*(7) = (7).

Type B2 if b*(t)=e 2=9¢? 4 and bl(r) a'(z).

Type A3 if a' (r)>b1(r) and a*(7) =2 (1).

Type B3 if b*(t) =a*(t) and b' (1) =c' (7).

Each of these types may easily be interpreted. In a game of type C, the players will
agree to act simultaneously. In a game of type V, the players will agree not to act on
T7,0).
| E;ch induction game has at least one type, and possibly several. Indeed, assume
that G([t, 0); v) has no type. If a' (1) = e °1("~")p! 45, one must have a?(t) <b*(1) by
A2, b'(1)<c'(t) by B3, a*(t)>c*(1) by C and a'(1r)<e 10"yl 4y by Al—a
contradiction. If a' (1) <e=?1=9y! 4 5 then one must have »?(t) =e %20~ 4 5 by
V, so that by the previous chain of implications, applied to player 2, one reaches a
contradiction.

—=01(0-1) 1

Plainly if (v,) is a convergent sequence in R?, with limit v, and if the induction
game G([t,0);v,) is of type T for every n, then G([r,0);v) is also of type T.

2.1.2. Definition of the strategy profile
We next proceed to define a strategy profile o in the game G([z, 6);v). The payoff
that will correspond to (a!,6?) is ¢(¢) (resp. v discounted to time ¢) if the type is C
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(resp. V), and is approximately a(¢) (resp. b(¢)) if the type is Al, A2 or A3 (resp. BI,
B2 or B3).
If the game is of

e type C, we let o/ act with probability one at time ¢, for each te(t,0), and i = 1,2;
hence 7,(c/) = ¢(1);

® type V, we let ¢! act with probability zero over the time interval [z,0), for each ¢
and i = 1,2; hence yi(g,) = e %(0=0y';

® type Al, we let ¢! act with probability one at time 7, and o7 assign probability zero
(© [1,ti1); hence 7:(0) = a(?);

® type A2, we let ¢! be the uniform distribution over [f,0), and o7 act with
probability zero over the time interval [z,0); hence y,(0,)~a(t) provided the
maximal variation of a over the interval [z, 6) is small;

® type A3, we let ¢! act with probability one at time 7, and o7 be the uniform
distribution over [z, 0); hence y,(g,) = a(?).

Finally, types B1-B3 correspond, respectively, to types A1-A3, when exchanging
the roles of the two players, and the definition of ¢’ for those types is to be deduced
from the definitions for their symmetric counterpart.

It is clear that ¢ satisfies the properness requirement, and one can verify that it also
satisfies the consistency requirement.

As explained earlier, the inductive proof will apply this construction to time
intervals [z, 0) over which the maximal variation of ug(-) is close to zero, for each
S'<=1. We now prove that, under such assumptions, the profile o is a subgame-perfect
e-equilibrium of the game G(]z, 0);v).

Proposition 2.1. Let t,0eR" and veR® be given. Assume that, for every f e{a,b,c},
and for 6 =min{d1,0,}, and t1<s<t<0 one has ||e?~If(s) —f(1)||<n and
moreover that (1 —e=°=))||v||<n. Then, for each telz,0), the profile (a},0?) is a
dn-equilibrium of the game G([t,0);v). Moreover, if a? assigns probability one to o,
then player 1 does not profit by not acting, and the same holds when exchanging the
roles of the two players.

Proof. Let te[t,0) be arbitrary. We prove that no pure plan of player 1 improves
upon ¢; by more than 4#. The argument for player 2 is symmetric.

Assume that under ¢? player 2 does not act in the interval [£,0) (types V, Al, A2).
Any deviation of player 1 yields at most

max{e 1! sup e 164! (5)} <max{e ! 4l (1)} 41, (2)
se[t,0]

whereas the payoff to player 1 under (¢!, 0?) is e=10=)p! if the type is V, a'(¢) if the
type is A1, and at least infse[,_’(;]e‘m“")al (s)=a'(t) — n if the type is A2. In each case,
by the definition of the types, this payoff is higher than the quantity in (2) minus 2.
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Observe that by not acting player 1 receives e—1(*=9y! which is at most what he
receives in each of these cases. This establishes the second assertion of the
Proposition.

Assume next that under o7 player 2 acts at time ¢ (types C, B, B3). Any pure
deviation of player 1 yields either 5'(z) or c¢'(¢). However, the payoff to player 1
under (a},0?) is ¢!(¢) (resp. b'(2)) if the type is C (resp. Bl or B3), which, by the
definition of the types, is equal in both cases to max{b'(¢), c!(¢)}.

Assume finally that a? is the uniform distribution over [z,0) (types A3, B2). Any
deviation of player 1 yields at most max{a'(z),b'(z)} + 5. However, the payoff to
player 1 under (¢!, 0?) is at least a' (£) — n (resp. b'(¢) — n) if the type is A3 (resp. B2),
which, by the definition of the types, is equal in both cases to max{a'(z),b'(£)} — .
In particular, player 1 cannot gain more than 25 by deviating. [

2.2. Proof of Theorem 1.2

We here explicit the induction and the limit argument that were sketched in the
introduction to this section.

Given neN, we associate to each ke {0, ..., n} a payoff v (n) eR* and a type ji (n),
as follows:

® we set v,(n) = (0,0);

® for k<n, we let ji(n) be a type of the induction game G([tx, tx+1); vk+1(n)), and we
let v (n) be the payoff induced by the 4n-equilibrium that was defined in Section
2.1.1: vi(n) = g4, (04,)-

We now let n go to infinity. Since there are finitely many types, and since payoffs
are bounded, a diagonal extraction argument implies that there is an increasing
sequence of indices (7,,),,.n such that the sequences (vk(mm)),en a0 k() en
converge for every k>0. Denote for every k=0 vx = lim,,_, o vr(ny,) and jir =
limy, -, k(). By the remark at the end of Section 2.1.2, ji is a type of
G([tk, tks1); V1)

We next proceed to the definition of a strategy profile (¢',3?) in the timing game
(with infinite horizon). Given k€N, we denote by ("%, 5>*) the strategy profile in
the game G([tk, tx+1); vk+1) corresponding to type ji, as defined in Section 2.1.2. Note
that, for iel and t€ [ty tit1), o' is a probability distribution over [0, oo] which gives
probability 1 to [¢, t;41) {00}

By Proposition 2.1, for each r€[ty, tx11), the profile (ag * a,z’k) is a 4n-equilibrium
of the game G([t, tx11); Vg11)-

Intuitively, we shall define &/, reR*, as the concatenation of the different
strategies (%), .. Formally, this is achieved via the following construction.

Given a mixed plan ¢’ in an induction game G([¢,7');v) and a mixed plan ¢” in an
induction game G([7,¢");v'), we define their concatenation ¢'c¢” to be the
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distribution in G([t,7"); 1) that assigns probability ¢’(4) to every Borel set A< |1, '),
and probability (1 — o'([t,7))d"(A) to every Borel set A<[¢',¢")u {0 }. For every k
and every t€ty, tx1) define
i ik ghktl | ikt
! Ut ljey2
One can verify that ¢ = (a?),_g+ satisfies both the Properness and the Consistency
requirement in Definition 1.1. We omit this verification.

Proposition 2.2. The strategy profile ¢ is a subgame-perfect c-equilibrium of the timing
game.

Proof. We first claim that y, () = vi for each keN. Indeed, since 7 is defined as the
concatenation of the profiles G*, the equation that links 74 (0) t0 7, (o) is the same as
the relation between v, and vy : if at least one player acts with probability one on the
interval [t, x11), both vx and y, (¢) coincide with the corresponding payoff. On the
other hand, if both players act with probability zero on [fx,#r11), then yik (o) =
e“5i<’k+1"k>y’t'k+1 (G) and v, = e~ %1~ ®)p} . Therefore, for a given k, either (i) there is
k. >k such that at least one player acts with probability one on the interval [#,, #, 1),
in which case reasoning backwards from k. yields y,, (6) = v, or (ii) no such k, exists, in
which case the equality v} = el ’[k)v§ holds for each />k. Since payoffs are
bounded, by letting / go to infinity we obtain vy = 0 for each k, so that as above
74 (0) = 0.

Let keN and € (t, tx41) be given. We shall prove that, for each pure plan a/' in
the timing game starting at ¢, one has

ri(el 07) <y (07, 07) + e (3)

Since the roles of the two players are symmetric, this will imply that (¢!, 0?) is an ¢
equilibrium of the game starting at time ¢. Since ¢ is arbitrary, the Proposition will follow.

Since it is a pure plan, ¢/' assigns probability one to some element
tieft, 0)u{co}. We first deal with the case t, < co.

Let k. eN be the unique integer such that . €[ty , fx,+1). Let k.. =k be the first
integer such that the type of the game G([ty,., t.,+1); Uk,.+1) is either C, B1, B2, A3
or B3 (with k,, = oo if no such integer exists). By the definition of the plan of player
2, the game terminates before time #;,_; with probability one, whatever player 1

plays. Set k= min{k,, k. }.
We prove that for every k<k’ <l€, the expected payoff of player 1 if player 2

follows afk, and player 1 acts at time ¢,, discounted to #;/, is at most v}c, + 4n.
For k' =k this follows since (¢!,0?) is a 4n-equilibrium of the induction game

Gt te)s Uk”+l).5 Assume we proved the claim for &' + 1. Since player 2 does not

*Strictly speaking, ¢! need not be an admissible plan in G([tg, te,1)ive ), but it induces one when

collapsing [t ,, o] to oo.
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act before time #;/, 1, the type jis of the game G([t;/, ty/11); vx11) must be V, Al or A2.
By the induction hypothesis, the expected payoff of player 1 if player 2 follows atk,
and player 1 acts at time ¢,, discounted to #, is at most e 91(k+1- ’k’>(vk/+1 +
4n)<e U=yl +4n. By the second assertion of Proposition 2.1 this last
quantity is at most v}c, + 4p, as desired. The same argument, applied to the induction
game G([t, tx11); Vks1), delivers now (3).

For every t€0, oo] denote by J(¢) the pure plan that acts at time ¢ with pro-
bability 1.

If ¢, = oo, then, since 0; >0 and by the first part,

71 (8(0),0%) = lim 7! (5(7),0 v (a,) + 4. O (4)

4)0’

Comment. We now argue that if 6, =0 (or 0, =0), that is, if at least one of
the players does not discount, then a Nash ¢-equilibrium exists.

For every n and k, let (¢'*(n),5>*(n)) be the strategies defined in Section 2.1
for type jx(n) in the game G([tk,+1);vk(n)). Denote of(n) = ojll (n) o
oif(n) o e oai}f 11( ). If under (¢}(n),03(n)) both players act with probability 1
before time #,,, the arguments we presented in the proof of Proposition 2.2 imply that
(6d(n),a3(n)) is an e-equilibrium.

Assume, then, that under 0(2)(}1) player 2 never acts, for every n. Then ji(n) is V, Al
or A2 for every k and every n. The construction in Section 2.1.2 implies that v} (n) >0
for every k and every n. In particular, the plan 6(oo) that never acts cannot be a
profitable deviation of player 1. Let n be sufficiently large such that for some t<1,
one has a'(1)=supyo)a'(s)—n and for some <z, one has b*({)>
supse[()m)bz(s) —n. In words, the best payoff by acting alone occurs before time

t,. One can verify that (o}(n),d3(n)) is a Sp-equilibrium.

Corollary 2.3. Assume that, for every t one has either (i) b (1) =c! () and a®(t) = (1),
or (ii) b'(t) <c'(¢) and a®(t) <3 (t). Then for every £>0,

® fmin{d,,0,} >0, there exists a pure subgame-perfect c-equilibrium.
® jfmin{d;,d,} = 0, there exists a pure c-equilibrium.

Observe that in wars of attrition, condition (i) holds for every ¢.

Proof. It suffices to show that all the induction games G([tx, tx+1), Ui+1(n)) that
appear in the proof are of types C, V, Al or B1. This is a matter of straightforward
verification. [
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3. Proofs of Theorems 1.3 and 1.4

Many proofs in this section are minor variations upon the proof of Theorem 1.2.
Hence few details will be omitted. Again, the proofs of the assertions relative to
Markov equilibrium are postponed to Section 4.

3.1. Games with cumulative payoff

We here prove Theorem 1.3. Let I' be a game with cumulative payoffs. Fix a
strictly increasing sequence (s,) with so =0 and lim,_ o5, = o0 such that
SUD,SUDy, << /<y, [€ °0 T u(s) — ulg(1)| <e for every non-empty subset S=I and
every player i. Define an auxiliary game ['* in which players can act only at times
{sn,n=0} and must continue in all other times. The auxiliary game I'* is equivalent
to a discounted® game I'** in discrete time with countably many states s,. The
stochastic game I'** has quite a specific structure: at state s,, each player can either
act or not. If at least one player acts, the game reaches an absorbing state. If no one
acts, the game moves to state sy, 1.

Every strategy profile 7., in the game I'** naturally induces a strategy profile in the
game I'*, and therefore it induces a strategy profile 7 in the game I'. Observe that for
every n, the expected payoff under .. starting from state s, is equal to the expected
payoff induced by 7 in I', starting from time s,,.

By Fink, [8] the discounted stochastic game I has a subgame-perfect 0-
equilibrium 7., = (%,),.;. Moreover, there is such a subgame-perfect 0-equilibrium
in which symmetric players play the same strategy.

Denote by & the profile of strategies in I" induced by t,.. Then ¢ = & for every
pair of symmetric players i#j. Moreover, under ¢ players act only at times (s,), >
that is, the probability distribution ¢’ gives weight one to the set {s,,n>0}, for each
teR™.

We will prove that @ is a subgame-perfect e-equilibrium. Let 7€ R™ be given, and
let v/ be a pure plan of player i in the subgame starting at time ¢, which acts at time
tielt, ).

We denote by # the auxiliary pure plan that acts at time sz, where ke NU {00} is
the minimal integer such s, >7;. By construction, under both (¢,7,7") and (o7, ') no
player in S\{i} acts in the time interval (¢, ). Therefore,

pi(or ", 7) = vilo ) <le O Vuiy (1) — uly (se) <c. (5)

The pure plan # is a valid plan in I'*, and therefore naturally induces a pure strategy

# _in I'**. Since 1., is a subgame-perfect 0-equilibrium, the payoff induced by
—i

(#,,7.7) in the stochastic game I'™*, starting from state s;, does not improve upon

*% ) Yk

the payoff induced by t.. in that game. Since these payoffs coincide with y!(a,", %)

t

*k

Swith a state-dependent discount factor.
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and y!(o,) respectively, and by (5), one gets
yl( a l)<ylt(o-f)+6a

as desired.

3.2. Symmetric games

We here prove Theorem 1.4. Let an /-player symmetric timing game be given. We
set

Ty ={t€[0, 00) | oy (1) =B (1)}
and
T ={te]0,0) |oax(t) = fi_;(t) and op1(1)<Pr(8)}, for k=2,3,...,1 —1.

If te T} then the plan profile in which all players act at time ¢ is a 0-equilibrium in I',.
Indeed, under this profile the payoff for all players is a;(¢), while any deviator who
will not act at time ¢ will receive B;_; (¢) <oy (¢).

Similarly, if ze T, for k =2, ...,1 — 1, any plan profile in which exactly k players
act at time ¢ is a 0-equilibrium in the game starting from time ¢. Indeed, any one of
the k players who acts at time # receives oy (¢), while if such a player deviates and does
not act at time ¢ he will receive f,_; (¢) <o (). Any one of the I — k players who does
not act at time ¢ receives 5 (¢), while if such a player deviates and acts at time ¢ he
will receive oy (7) < (7).

For k=2,3,...,1, we let T} be the closure of the interior of Tj. Then each Tj is
the union of at most countably many disjoint closed intervals: 7} = [J,,[c fl, d,f] Set
j: k= UOO [ l;’ drlz( )

We set Ty = [0, c0)\ Ui:z T} Observe that T, = U2, [, d%) is a union of disjoint
half-closed half-open intervals.

Given teR", one has 1€ |J;-, Tk as soon as (1) >, (¢). Therefore, oa(r) <p (1)
for every teTy.

We already defined a pure 0-equilibrium for initial times 7€ |J, Ty. To complete
the proof, it is now sufficient to prove that a subgame-perfect ¢-equilibrium exists in
each game G([c?,d°);v), where v is the equilibrium payoff we defined starting from
time d. If d° = oo, we set this terminal payoff to zero. To prove this claim, we shall
mimic the proof of Theorem 1.2. We shall only sketch the main steps of the proof.
We let the game G([c?,d");v) and €>0 be given. Choose n>0 to be very small.
Consider an increasmg sequence (f), that converges to d? and such that
SUPy se.t141] |e (=)o () — oy (¢)| <n. If d° < co, we define the sequence so that it
contains only finitely many terms (), g, with tx =d,. In that case, the profile

is constructed by backward induction, starting with the game G([tx_1,d°);v). If
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d’ = oo, the sequence (#) contains infinitely many terms, and the induction
proceeds as in the proof of Theorem 1.2, as explained below.

Fix keN, and look at the game G([tx, tx+1); vk (n)) that appears in the induction
step. We use the symmetry of the game to simplify the classification into types.
Specifically, we say that G([tx, tx11); vk(n)) is of

Type V if e 21~ min;c ol (n) + 0= o (1)

Type 1i if e 0Ukn1=%)vi (n) + n <o (tk).

Following the proof of Theorem 1.2, we define a pure strategy profile in the game
G([tk, tk+1); vk (n)), depending on the type of that game. If it is of type V, we let ¢’ act
with probability zero on the time interval [¢, #x1), for each 7€ [t, t;41). If it is of type
1i for some i, we let ¢! act with probability one at ¢, and a} act with probability zero
on the time interval [, #;11), for each j#i and t€(t, tx41). The rest of the proof
follows the proof of Theorem 1.2.

4. Markov equilibrium

We here collect all proofs that relate to Markov strategies. It will be convenient to
describe the set of Markov strategies, when payoffs are constant. Let ¢’ be a Markov
strategy of player i. If 6,(0) = 1 then ¢?(0) = 1 for every ze R": under &' the player
acts at every time ¢.

If ¢}(0)<1 then o)(n)<1 for some n>0 sufficiently small. By the Markov
requirement, this implies that o} (s) <1 for every se R*; indeed, by induction over &,
o ((k+ 1)n) = a}(kn) + (1 — ol (kn))a}(n) < 1. Moreover, the Markov requirement
implies that (1 — a{(¢))(1 — a}(s)) = 1 — a})(¢ + s), so that by the characterization of
the exponential distribution (see, e.g., [3, p. 189]) gy is an exponential distribution
over R, and for >0 ¢, is obtained by translation. To summarize, if a strategy & is
Markov, then g, is obtained from o by translation. Moreover, gy is either a unit
mass located at 0 or oo, or is an exponential distribution over [0, c0). Conversely,
any such strategy has the Markov property.

Proposition 4.1. Every two player game has a Markov subgame-perfect c-equilibrium,
for each ¢>0.

Proof. We shall use the notations of Section 2. We first assume that a(-),b(-) and ¢(-)
are constant, and we adapt the proof of Theorem 1.2. Since payoffs are constant,
it is sufficient for our proof to consider only one induction game G(|0, ©);0).
In most cases (i.e., C, V, Al, B1l, A2 and B3 for player 2, A3 and B2 for player 1)
the strategies we defined are either never to act, or always to act, which are Markov.
In the other four cases replace the current definition of ¢! by an exponential
distribution over [f, c0) with sufficiently high parameter o. Given ¢>0, if a is
sufficiently high, then under the new definition the game terminates before time ¢ + ¢
with probability at least 1 — ¢; since the payoff functions are constant this implies
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that no player can profit in discounted terms more than 3¢ by deviating, provided ¢ is
sufficiently small.

Next, we assume that the functions «(-),b(-) and ¢(-) have a common period
T < co. We shall discuss two cases. Up to symmetries, these cases exhaust all possible
cases.

Case 1: a' (1) <b'(t) and a?(t)=b*(t) for each teR™. In a sense, each player would
rather see his opponent stop. We adapt the proof of Theorem 1.3, see Section 3.1.
We shall only sketch the proof, without providing all the details. Given ¢>0, we let
n>0 be small enough, and let 0 = fy<t;<---<t, = T be a finite subdivision of
[0, 7], such that a, b and ¢ do not vary by more than n on each subinterval [#;, tj+1],
k=0,1,...,n—1.

Consider the stochastic game I'** with finitely many states labelled 1, ...,
where (i) the game moves cyclically from one state to the next one in the sequence
(and from ¢,_; to fy) as long as no player ever acts, (ii) player 1 (resp. player 2) can
only act in states with odd index (resp. with even index), and (iii) the payoff by acting
at state # is a(t;) or b(t;) depending on k. The game I'** has a subgame-perfect
equilibrium ¢ in stationary strategies—strategies that depend only on the current
state. When reverting to the interpretation of #; as a time rather than a state, this
profile corresponds to a periodic profile—still denoted 6—in the timing game. We
derive a modified, periodic strategy profile T as follows. Loosely, if player i stops with
probability p at time #; under &, we will have him act under T with probability p over
the whole time-interval [f, #x+1). Specifically, for k<n, the mixed plan rﬁk has no

atoms, assigns to the interval [, fx11) the probability oik({tk}) with which aik acts at
time #;, and can be calculated using Bayes’ rule from T;k+1 on the interval [, o0].

For t#1, 1, is defined via Bayes rule. Note that, for each teR™, the payoffs y,(o)
and y,(7) differ by at most #.

We claim that 7 is a subgame-perfect ¢-equilibrium, provided # is small enough.
Plainly, it is enough to prove that player 1 cannot deviate profitably in the game that
starts at time 0. This claim is supported by the following arguments.

Let ) be a pure plan of player 1 in the timing game. If it never acts, it is payoff
equivalent—up to 7—to the plan in I'** that never acts.” If it acts at time 7€ [ty tes1)
for some odd £, it is payoff-equivalent to the plan in I'** that acts at state #;. Finally,
if it acts at time 7€ [fy, #+1) for some even k, it yields a lower payoff than the plan
that acts at time #;. |, by the assumption on payoffs.

Case 2: a*(t.)<b*(t.) for some t,eR". We start with a simple observation.
Assume that, for some reR" and #>0, there is a profile ¢ such that (i) ¢ is a
subgame-perfect e-equilibrium in G([z,¢+ #);v), irrespective of v and (ii) for each
set,t+n), under oy, at least one player will act before ¢ + . Then there is a Markov
e-equilibrium.

Indeed, by translation we can assume that />7. By the backward-induction
argument presented in Section 2.2 we construct a pure g-equilibrium in the period

"To be precise: faced with 75" in the timing game, it yields approximately the same payoff as the plan
never act in I'**, faced with 6"
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[t+n— T,t+n]. By (2), the strategy profile in the original game that is defined by
repeating periodically this e-equilibrium is a subgame-perfect e-equilibrium in the
original game.

Given this fact, we shall mimic the proof of Theorem 1.2, see Section 2.2, where we
choose the sequence (#;) so that 7, = #, for some k,eN. If, for some neN, the
induction game G([t,, tx,+1); Uk, (n)) is either of type A3, B3 or C, we may apply the
above observation with [t,¢4 1) = [t,, t.+1) and the result follows. Otherwise, it
must be that a'(z.) <b'(z.). Indeed, since a*(t,) <b*(t.), one first has b!(z,) <c!(z,)
by B3, next a*(t,)>c*(t.) by C, and finally a'(z,) <b'(z.) by A3.

To conclude, we let [t,¢+#n) = [tk,, tk.+1), and define a profile ¢ in G([¢, ¢+ n);v)
by having both players acting time be distributed according to an exponential
distribution® over [t,1 4+ 1). The parameter of player 2’s distribution is chosen to be
much larger than the parameter of player 1’s distribution. We then apply the basic
observation. [

Next, we show that in symmetric games and in games with non-constant
cumulative payoff a Markov c-equilibrium always exists, irrespective of the number
of players.

Proposition 4.2. Every multi-player symmetric game of timing has a pure Markov
subgame-perfect e-equilibrium.

Proof. We modify the proof given in Section 3.2. If payoffs are constant, the proof is
similar to the proof of Proposition 4.1.

Assume now that the payoffs are periodic with period 7>0. We shall use the
observation made in Case 2 of the previous proof. Observe that if 7€ T} for some
k=2,...,K, and if >0 is small enough, then the profile that requires k players to
act and I — k players to continue satisfies the two requirements of that observation.
Therefore, we can assume w.l.o.g. that Ty = [0, c0).

If sup o;(-)<0, there is a subgame-perfect equilibrium in which no player ever
acts. Thus, we may assume that sup o >0. We divide the proof in three cases. Since
o and f§; are continuous, these exhaust all possible cases.

Case 1: oi(t) = B,(¢) for some t. We let n be small enough, and let (#,) be an
increasing sequence with limit # 4 # and such that ¢y = . We define ¢ as follows:
player 1 (resp. player 2) acts at each time s€(t,,#,11) for even n (resp. for odd n).
Players 3,4, ..., I never act. We then use the first observation.

Case 2: (1) > B, (¢) for each te RT. We divide the time interval [0, 7] into a large,
finite, even number of intervals, and define a periodic profile & as follows: player 1
(resp. player 2) acts at each time s€(t,,#,41) for even n (resp. for odd n). Players
3,4,...,1 never act. It is straightforward to check that ¢ is a subgame-perfect
e-equilibrium, provided the partition of [0, 7] is fine enough.

8To be precise, it is the image of an exponential distribution over R under an increasing
homeomorphism that maps R to [, 7+ 7).
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Case 3: o1 (1) < B,(¢) for each teR™. Choose ¢, > T such that o (z,) = sup, g+ (7),
and let >0 be small enough. We divide the period [t. — T + ¢, 1. + ¢) into finitely
many small intervals [tx,#41), K =0, ..., k. and apply the backward construction
that appears in the proof of Theorem 1.4. We initialize the induction with player 1
acting at each se[t,, fx,+1), while players 2, ..., 1 do not act on [t,, f,+1). Hence
vp, = a1 (t.), while vj,_ = p(z.) for each i =2, ..., 1. One can check inductively that
0<v}€<v§< for each k=1, ....k, and i =2, ..., I—so that each induction game is
either of type 1-1 or C, while the last one, G([t, #1); v1) is of type 1-1. Therefore, this
construction generates a periodic profile. [

Proposition 4.3. In every multi-player game with non-constant cumulative payoffs a
Markov subgame-perfect e-equilibrium exists. Moreover, there is a Markov equilibrium
where symmetric players play the same strategy.

Proof. The proof is essentially the same as the proof of Theorem 1.2. All one should
note is that since payoffs are periodic, one can construct the stochastic game I'** in
discrete time to have finitely many states, that correspond to one period of the game
in continuous time. [

5. Examples

In the present section we study several examples, which show that the results we
present in the paper are sharp. We first exhibit a two-player zero-sum game with no
Nash (exact) equilibrium. Next, we analyze a three-player zero-sum game with no &-
equilibrium, provided ¢ is sufficiently small. As mentioned in the Introduction, the
grab-the-dollar game is a symmetric game with no symmetric e-equilibrium, but it
does admit a pure (non-symmetric) equilibrium. Our third example is one of a two-
player symmetric game with no pure equilibrium. We conclude with a three-player
game with cumulative payoffs, that has no Markov &-equilibrium.

5.1. A two-player zero-sum game with no equilibrium

Consider the two-player zero-sum game defined by ui() =1 if |S|=1 and
uy, 5, (1) = 0, with 3;>0.

We first argue that player 1 can guarantee a payoff 1 — ¢, for every ¢>0. Indeed,
consider the mixed plan ¢! that acts at a random time in the interval [0, 7], where
>0 satisfies e %" >1 — ¢. Formally, the corresponding c.d.f. F' is defined by F! =
min{z/n, 1}. Since player 1 acts at a random time, the probability that both players
act simultaneously is 0, whatever be the plan used by player 2. Since the game
terminates by time 7, player 1’s payoff is 1 with probability 1, and taking the
discount rate into account, his expected payoff is at least e °1">1 —¢. Since the
highest payoff in the game is 1, this means that the value of the game exists, and is
equal to 1.
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Don’t Act Act
Don’t Act Act Don’t Act Act
Don’t Act —-1,1,0 0,—1,1 1,0,—1
Act 1,0,—1 0,—1,1 -1,1,0 0,0,0

Fig. 1.

We now claim that player 1 has no optimal strategy. Indeed, the discounted payoff
of player 1 equals 1 only if, with probability one, the game terminates at time 0, and
only one player acts at that time. This can happen only if one player acts with
probability one at time 0, while the other does not act. However, if player 1 acts with
probability 1 at time 0, it is optimal for player 2 to act at time 0 as well, whereas if
player 1 does not act at time 0, it is optimal for player 2 not to act at time 0 as well.

5.2. A three-player zero-sum game with no c-equilibrium

We here analyze the three-player zero-sum game of timing with constant payoffs

that i§ czieﬁned by’ iy (1) =1, u’g}l(t) =0, u‘{jr}z(t) = —1 w0, (0) =0, Uiy, (1) =
i+

-1, u{i,i+l}([) =1 and “1{1,2,3}(0 =0 for every iel and every teR". The game is
described by the matrix given in Fig. 1 in which players 1, 2 and 3 choose,
respectively, a row, a column and a matrix. We assume that the three players have
the same discount rate >0. The value of ¢ plays no role in the analysis. In
particular, we allow for the possibility that 6 = 0, allowing in effect for the case of an
un-discounted game.

We prove that this game has no e-equilibrium, provided ¢ >0 is small enough. It is
interesting to recall that three-player game of timing in discrete time do have a
subgame-perfect equilibrium (see [8,29]). Thus, this example stands in sharp contrast
with known results in discrete time.

We first verify that this game has no (exact) equilibrium. Let o be a plan profile. If
¢ is an equilibrium, the probability that the game terminates at time O is below one.
Otherwise, at least one player, say player 1, would act with probability one at time 0.
By the equilibrium condition, player 2 would act with probability 0: given that player
1 acts, act is a strictly dominated action for player 2. Hence, player 3 would act with
probability one at time 0, and player 1 would find it optimal not to act at time 0—a
contradiction. Next, given that the game does not terminate at time 0, each player i
can get a payoff arbitrarily close to one, by acting immediately after time 0, that is,
by acting at time #>0, where ¢ is sufficiently small so that the probability that ¢'*! or
¢'*? act in the time interval (0,7 is arbitrarily small. Thus, the continuation
equilibrium payoff of each player must be at least one—a contradiction to the zero-
sum property. Hence ¢ is not an equilibrium.

Here addition is understood modulo 3.
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We now prove that the game has no e-equilibrium. For every we[—1,1]" let G(w)
be the one-shot game with payoff matrix as in Fig. 1, where the payoff if no player
acts is w. The result of the previous paragraph can be rephrased as follows: for every
wel—1, 1]3 with Z?:lwi = 0, the probability that the game terminates at time 0,
under any Nash equilibrium in G(w), is strictly less than 1. Since the correspondence

that assigns to each we[—l,l]3 and every ¢>0 the set of c-equilibria of the

game G(w) has a closed graph, there is ¢>0 such that for every we[—1, l]3 with

Z?lei =0, the probability that the game terminates at time 0, under any
e-equilibrium in G(w), is strictly less than 1 — 2e¢.

Let ¢ be an ¢-equilibrium of the timing game. In particular, the probabilities
o'({0}) assigned to act at time zero form an e-equilibrium of the game G(w), taking
for w the continuation payoff vector in the game. Since the game is zero-sum, the
continuation payoff at time 0 of at least one player is non-positive. As argued
above, by acting right after time 0, this player can improve his payoff by almost 1
if the game is not terminated at time 0. By the previous paragraph, this event
has probability at least 2¢, hence the deviation improves by more than
e¢—a contradiction.

5.3. A symmetric game with no pure equilibrium

We here provide a symmetric two-player game with no pure equilibrium. It is
defined by

oy(f) = 0 for every ¢: if both players act simultaneously, no-one gets anything,
a(t) =ty + (2 = )lj<icsp2) — %1{95/2} : if only one player is to act,
he will do it at time 1,
Bi(t) = liciyay + G — Dlpjaci<sny — Lisagy-
Graphically, the payoff functions look as follows.

1
1/4
0 %
—1/2
o
—1
B

We assume 0; = J, = 0, but our arguments remain valid as long as the discount
rates are sufficiently small.

Observe that the plan profile in which both players act at a random time uniformly
chosen from the interval [1/4,1/4 + ¢] is a symmetric e-equilibrium. Indeed, the
corresponding payoff to both players is 1/4, whereas the best payoff a player can get
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by deviating is at most 1/4 + ¢. It is also easy to verify that the plan profile in which
player 1 acts at time 1/4 and player 2 acts at time 1/4 + ¢ is an g-equilibrium.

Assume that there is a pure Nash equilibrium. If both players act simultancously
at time 7, e RT U {00}, the equilibrium payoff is 0. Since f, (1) > (z) for 1<1/2, we
must have #,>1/2. Each player would then rather act alone at some time
0<t<min{2,¢.}.

By symmetry, it is now sufficient to assume that players 1 acts at time z,, and
player 2 acts at time ¢,, > t., possibly infinity. Since o, (¢) > f,(¢) for > 1/2, we must
have £,<1/2. Since the function o increases until 1 = 1, player 1 is better off by
acting at any time 7€ (f,, min{z., 1}).

5.4. A game with cumulative payoffs and no Markov equilibrium

Consider the following three-player game with constant cumulative payoffs.

Don’t Act Act
Don’t Act Act Don’t Act  Act
Don’t Act 2,1,-3 -3,2,1 2,1,1
Act 1,-1,2 1,1,2 1,2,1 11,1

As shown in Section 4, the only Markov strategies 6’ = (o), are either (i) o/ acts at
time 7, for every ¢, or (ii) ¢! assigns probability 1 to co, for each ¢ or (iii) ¢! is an
exponential distribution over [z, +00).

Suppose to the contrary that we are given a Markov equilibrium in this game.

If some player, say player 3, follows the strategy of type (i), the best reply of player
2 is to follow the strategy of type (i) as well, so that the best reply of player 1 is to
follow a strategy of type (ii) or (iii), so that the best reply of player 3 is to follow a
strategy of type (ii) or (iii) as well, a contradiction.

Otherwise, all players play strategies of type (ii) or (iii), so that either the game
never terminates, or it terminates by a single player. If the game terminates by a
single player the sum of payoffs to the three players is 1/2. In particular, in this case
the expected payoff of at least one player is below 1/2, but that player can receive 1
by acting at time 0.

Consequently, the game admits no Markov ¢-equilibrium, provided ¢ is sufficiently
small.

Observe that the strategy profile in which each player acts with probability 1/2
whenever ¢ is an integer, and does not act otherwise, is a non-Markov Nash
equilibrium.

6. An equilibrium existence result
We here prove Theorem 1.5. It will be convenient to describe a mixed plan ¢ of

player i by its cumulative distribution function (c.d.f.), i.e., by the function
F': R"—>[0,1] defined by F'='([0,7]). Plainly, F’ is right-continuous and
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non-decreasing. Note also that 1 — lim, o, F! is the probability under ¢’ that player i
never acts, and that F{ is the probability that player i acts immediately. We let #
denote the set of all such functions F".

Given FeZ and t€[0, 0], we let F,_ = lim, »,F, denote the left-limit of F at ¢
(with Fy_ =0 and F,,_ = lim,_, , F;) and we denote by AF, .= F, — F;_ the jump of
F atzt

When expressed in terms of c.d.f’s, formula (1) reduces to

yh(FY, . Fly = Z/ ey () [J(1 = F)) aF;
0,0)

iel VEL
DD 08 | KA | ()]
Scr|S|=2 =0 ieS i¢S

where the integral is a Stieltjes integral w.r.t. F/ (the notation f[o o) Stresses that the
jump of F' at zero is explicitly taken into account in the value of the integral).

The proof of Theorem 1.5 relies on a compactness principle. We shall exhibit a
compact set ¥ of profiles that satisfies:

(a) if there is an ¢-equilibrium, then there is an g-equilibrium in ¢, and
(b) the payoff function y(-) is continuous on %.

The second property will imply that any accumulation point of e-equilibria in ¥, as
¢ goes to 0, is an equilibrium, while the first property, together with the compactness
of ¢4, will imply that under the assumptions of Theorem 1.5 such an accumulation
point exists.

The set #! of all profiles, endowed with the weak topology, does not satisfy the
second property, since the payoff function is not continuous over Z’. Disconti-
nuities may arise for two reasons. First, in the weak topology, several atoms may
merge to a single atom at the limit. Second, a sequence of non-atomic distributions
may weakly converge to an atomic distribution.

We illustrate these two phenomena with two examples. Both examples involve two
players. We let F = (F', F?) be the profile in which both players act with probability
1 at time 0: F' =1 for every reR™.

Example 1. Player 1 acts with probability 1 at time 0, while player 2 acts with
probability 1 at time 1/n. Formally, for every neN, F!(n) = F! whereas F2(n) =
1,21/, Plainly the sequence (F(n)) weakly converges to F, but y(F(n)) = uyy, while
V(F) = uq ).

Example 2. Both players act uniformly in the interval [0,1/n]. Formally, F!(n) =
F?(n) = min{1,nt}. The sequence (F(n)) weakly converges to F. Since for every
neN the probability that under F(n) both players act simultaneously is 0, y(F(n)) =
%u{l} + %u{z}, while y(F) = uy 5.
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Roughly speaking, the auxiliary space % contains all profiles G = (G', ..., G')
that satisfy (A) if G' has a jump of AG! at ¢, then all G’s are constant in the
interval (r — AG!,1), and (B) the slope of 15°.G' is 1 whenever this function is
continuous.

The first requirement implies that as one goes to the limit, it cannot be that two
atoms merge. Indeed, if for each neN G(n) and G/ (n) have discontinuities at ¢, and
su, Tespectively, with ¢, <s,, then Ang (n) is bounded by s, — t,. Therefore, if lim 5, =
lim ¢, then the atom of G/(n) at s, vanishes at the limit.

The second requirement implies that a sequence of non-atomic distributions in ¥
cannot converge to an atomic distribution, since the slope of G'(n) is uniformly
bounded by 1.

We now turn to the formal presentation. Recall that # is the space of all functions
F: R*—|[0,1] that are non-decreasing and right-continuous. It is in bijection with
the set of probability measures p over [0,+0c0]. We denote by A the Lebesgue
measure over [0, +o0). The set of atoms of u (or equivalently, of discontinuities of
F')is denoted by 4. Let 4 = (7)! be the space of all u = (4!, ..., 1) that satisfy the
following conditions.

(0) The support of each u' is an interval [0, T;], with T;<1.
(A) For each iel and teA

RAUs s [0 16,1
(B) One has 13,1, = 15" 24~ 0.1, for every A= T,.

uis

one has /Vt][.tf,u’;,t) =0 for every jel. Set T, =

By Helly’s Theorem [3, Theorem 25.9] and Theorem 25.10 in [3], the set ¥ is
compact for the topology of weak convergence.

Theorem 1.5 follows immediately from Lemmas 6.1 and 6.2, using the
compactness of 9.

Lemma 6.1. Let ¢>0 be given. If the game has an e-equilibrium, then it has an &-
equilibrium in 9.

The proof of this lemma appears in Section 6.1.
We denote by A’ the set of pure plans of player i.

Lemma 6.2. The payoff function y is continuous over 4. Moreover, let (G(n)), N
be a convergent sequence in %, with limit G, and let G'€ A', for some i€I. Then there
exists a sequence G'(n)e A, such that

lim 9/(G'(n),G '(n)) =7'(G',G).

n—+o

The proof of this lemma appears in Section 6.2.
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6.1. Time-changes

Our goal in this section is to prove Lemma 6.1. A time-change is a non-decreasing,
right-continuous function defined over some interval of R*, with values in R™. Given
an e-equilibrium (F!, ..., F'), we shall construct a time-change u such that the profile
(G', ..., G') defined by G| = F,, is in %, and is an e-equilibrium.

For seR", we define the s-level set of F to be the interval F~!({s}).

6.1.1. Straightening F

We here define a first time-change, relative to a given continuous function Fe % . In
effect, the clock will be adjusted in such a way that: (i) the duration of the level sets of
F will not be affected and (ii) the increasing portions of F will be transformed into
affine portions with slope one.

We first introduce a usual time-change (see, e.g., [26, Chapter 0]):

Cs, =inf{r=0| F,>s}, for se[0,F,_).

The function C is defined on [0, F., ), with values in R™. It is increasing (since F is
continuous) and right-continuous. Moreover, the s-level set of F coincides with the
interval [Cs_, Cy).

Plainly, the function s+ F¢, increases linearly from 0 to F,_, at unit speed. We
now proceed to introduce the non-trivial level sets of F. More precisely, we will let
the value of F at time ¢ be reached, under the time-change, at a time which is the sum
of two components, the time F,_ that is needed to reach the level F,_ at unit speed,
and the cumulative length of all level sets up to time .

As mentioned above, the length of the Fy-level set is ACp,. Therefore, the
cumulative length of all level sets up to time ¢ is

> ACr, +1-Cr,,

<t

the first summation is the total length of all level sets lying entirely to the left of ¢,
while 1 — Cr,_ is the time elapsed since the current level set was initiated.
This leads us to introduce the function v; defined by

U](l) =F + Z ACF[, +1— CF,f-

<t
The next lemma lists few easy properties of v;. The proof is omitted.

Lemma 6.3. The function v, is continuous and increasing. In addition, v,(0) = 0, and"°
v (00 —) is infinite or finite depending on whether F is eventually constant or not.

Recall that f(c0—) = lim,, £ (2).



R. Laraki et al. | Journal of Economic Theory 120 (2005) 206238 231

6.1.2. Playing with level sets

We here define a second time-change, relative to an arbitrary Fe% . In effect,
we shall adjust the length of level sets of F to the size of nearby disconti-
nuities. Formally, the value of F at time ¢ will be reached, according to the new
clock, at time s, which is obtained from ¢ by subtracting the cumulative length
of all level sets prior to ¢, and by adding the cumulative sum of jumps prior to time .
That is, we set

Uz(l) =t+ Z AF, — (Z ACFﬂ +1— CF,)

<t <t
= Cth + Z AF,/ — Z ACF,,.
<t <t

The proof of the following basic properties of v; is left to the reader.
Lemma 6.4. The function v, is non-decreasing and right-continuous.

6.1.3. Time changes and the equilibrium property

We let here ¢>0 and an ¢-equilibrium (F'),_; be given. Loosely speaking, our goal
is to show that applying the above time changes to the profile (F')._, does not affect
the e-equilibrium property.

We will make extensive use of the following change-of-variable formula
for Stieltjes integrals, which is a minor variation upon Proposition 4.10 in [26,
Chapter 0].

iel

Lemma 6.5. Let u:|a,b]—R" be a right-continuous, non-decreasing map. Let F e F
and g be a bounded, Borel measurable map. Assume that F,, - = F,, whenever
Au(t)>0. Then

/ o(s) dF, = / g(u(1)) dF,qs).
[u(a),u(b))] [a,b]

For iel, we let F' denote the continuous part of F': Fi = F' — 3", _ AF! for
reR*. Next, we set F = 13", _,F' and consider the function v; relative to F, as defined
in Section 6.1.1. Let u; be the inverse map of v;.

For iel, we define G’ to be the image of F’ under the time-change u;: G = Flil@

for s<vi(o0—) and G' = F!,_ for s>v;(o0—). Plainly, G'e # for each iel.

Lemma 6.6. The profile (G'),_y is an e-equilibrium.

Proof. We fix iel, and prove that player i has no pure deviation that increases his
payoff by more than ¢. Let G’ be a pure plan.
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Case 1: G =0 for every seR" (player i never acts). Since (F',...,F') is an -
equilibrium,

V(GG =G F)< (FLFT) +e=7(GLG7) +e,

where the equalities follow by the change-of-variable formula.

Case 2: G' = 1y, for some soeRT (player i acts at time sy). If so<vi (00 —), we set
to = u1(so) and we define F} = 1,5,.

Since (F', ..., F!) is an e-equilibrium,

(GG =y (FLF)<y (FLF ) +e=)(GLG7) +s,

where the equalities follow by the change-of-variable formula.

Assume now that sp=>wv;(c0—). In particular, v;(00—)<oo. For §<v;(o0—),
define I°e 7 by 15 = l55.

Plainly,

yi(éi, Gfi) :yi(lul(oof), Gfi)
= lim (I",G7)<y(¢,G7) +e,

5ovl(0—)
where the last inequality follows by the analysis of the case 5<v'(00—). [

We now analyze the impact of the second time-change on (G),_;. We let v, be the
time-change relative to 13;.,G', as defined in Section 6.1.2. We let u, be the
generalized inverse of vy: un(s) = inf{¢: vy(¢) >s}. The function u; is defined over
[0,v2(00—)), is right-continuous and non-decreasing. Note that a level set of u, with
positive length corresponds to a jump in v;. Also, a jump in u; corresponds to a non-
trivial level set of vy. For i/, we let H] = G, for s<vs(c0—) and H{ = G'(c0—)
for s=vy(00—).

Lemma 6.7. The profile (H'),_; is an e-equilibrium in 4.

Proof. We prove that player i has no pure profitable deviation. Let H'eA’ be
arbitrary. The case H' = 0 can be dealt with as in the previous proof. Assume now
that A = ls>g, for some soeR™. As observed at the end of the previous proof, it is
enough to deal with the case so<vy(c0—). Set 79 = uy(so). If u, is continuous at s,
the inequality y/(H',H')<y'(H',H ")+ ¢ follows by the change-of-variable
formula.

If u, is not continuous at sy, then the change-of-variable cannot be applied (at least
for the integral w.r.t. H'). In that case, we let (s") be a increasing sequence of
continuity points of u,, that converges to sy, and we let 1-72” = ly>¢. It is not difficult
to check that lim,,_, ,,y/(H"", H™") = y/(H', H™"). Hence, by the previous paragraph,
YI(H H)<y'(H', H™") + ¢. Therefore, (H'),_; is an e-equilibrium. [
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6.2. Proof of Lemma 6.2

We shall only prove the first assertion of Lemma 6.2. The second one can be
established using similar ideas.

Let (F(n)) be a sequence in ¢ that weakly converges to Fe .

For every non-empty subset S of I we let ng be the probability that under F the
game terminates, and the terminating coalition is S. For neN, we denote by ng(n)
the analogous probability under F(n).

Since y(F) =) ¢nsus and y(F(n)) = > ¢ns(n)us, it is enough to prove that
lim,, , ws(n) = ng for every S.

Note first that ! = lim,,_, o, F/(n) for each i and for every continuity point ¢ of
F!. In particular, the equality holds for A-a.e. teR™, which implies

lim F! (n)=F', for every teR" and every iel. (6)

Step 1: Relating atoms. Let t be an atom of F', for some iel. Let S* =
{iel, AF'>0} be the set of i’s such that 7 is an atom of F".

We show that for every n there is 7(¢;n) e RT such that

(A) lim,_ o, t(t;n) = ¢,
(A.ii) lim,,_,mAFTi(t,n) (n) = AF! for each iel, and
(A.iil) lim,_ o F;(t:n)(n) = F! for each iel.

Let c€(0, 1) satisfy AF/> (21 + 5)e for every ie S*."" In addition, we assume that
both ¢+ ¢ and 7 — ¢ are continuity points of F.

For n large enough, F., (n) — F,_,(n)>F. , — F._, — ¢=AF! —¢. Let ©'(t;n) be the
infimum over all discontinuities of F'(n) in the interval [t — ¢, ¢ + ¢], and set t(¢;n) =
min; g+’ (£; n). Since F(n) €%, one has

Y. AFRm=F,(n) - F_(n)-2[c, and Y AF(n)<2.  (7)
S€[t—e,t+e] se(t(tn), 1+
Eq. (7) implies that AFY,, > F], (n) — F/_,(n) — 2(I + 1)e=>AF] — (21 + 3)e. There-
fore, for ieS*, AF],,>0, so that t'(t;n) =t(t;n), and moreover AF,, (n)>
AF! — 5¢.'* Therefore,

limninf AFj(t;n) (n)=AF! — 5. (8)

This implies that lim,_, ,, t(#;n) =1, so that (A.i) holds. Indeed, otherwise
there would be a subsequence of (z(t;n)),—still denoted (z(#;n)),—such that

"If = 0, the condition &< is omitted, and in the sequel 7 — ¢ is replaced by .

2For further use, we note the following additional consequence. Strictly speaking, the sequence
(t(t;n)),, depends on ¢, and should rather be denoted by (1°(#;n)),. For ¢ <e, one has t“(t;n)ér‘/(t;n)
whenever the two sides are well-defined. The last inequality in the text implies that t°(z; n) = 1 (1; ) for n

large enough. In that sense, the sequence (7°(#; 7)), is (asymptotically) independent of e.
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lim,,_, 1 o, T(t;n) = ' #¢. By repeating the above argument with ¢ € (0, ¢) small enough
so that /'¢[r — ¢, 1+ ¢], we would construct another sequence (7'(#;n)), such that
lim, 4 o AF;, () (n) = AF!, for each i e I—a contradiction to the second inequality in
(7). By weak convergence, (A.i) implies that (A.ii) holds whenever AF' =0, or,
equivalently, whenever i¢ S*.

We now prove that (A.ii) holds for i€ $* as well. Since F;, , — F, ,<AF, + I¢, one
has AF}, <Fl, (n) — F_,(n)<AF] + (I + 1)e, provided n is large enough. There-
fore, lim sup”AFTi( ey (M) <AF! + 21, which, together with (8), and since ¢ is arbitrary,
yields

Jim AF}, (n) = AF], for each iel, 9)
so that (A.ii) holds.

Finally, we show that lim,,_, o, F’ r"(m)_(n) = F!_, for each ie I, which, together with
(A.ii), implies that (A.iii) holds. W.l.o.g., we may assume that the sequence (z(¢; 1)),
is monotonic. Assume first that it is non-decreasing, and let ¢>0 be given. Choose

' <t such that F, >F/ — ¢ Then, for n large enough, one has by (6)

v —e<F,_(n)<F

(n)<F (n)<F_ +e.

t:n)

If the sequence (z(#; 1)), is non-increasing, then Fr"<rzn>7(n) =F]_
by (6) the claim still holds.
Step 2: lim,_, ,ns(n) = ng whenever |S|=2. Suppose S<I with |S|>2. For the
sake of clarity, we set g7 = [[;,5(1 — F), and i} = [];.g AF] for ScI and teR".
Then

=3 [L0-F)[AF =Y o,

teRT j¢S ieS teRt

(n) for n large, hence

and a similar expression holds for ng(n).

Fix i€ S, and let £>0 be arbitrary. Let AcR™ be a finite set of atoms that almost
exhausts the atoms of F': >, AF' =3, o+ AF —&.

By (A.i) and (A.ii), lim,_ ., gf(t;m (n)hf(m> (n) = gSh$ for every teR*'. In
particular, since A is a finite set,

nan;) Z gf(t;n) (n)hf(t;n) (n) = Z gfh;g (10)
teA teAd
Moreover,
> ghi< > AF] <. (11)
1¢A 1¢S

For neN set 4, = {z(t;n) : te A}. Our goal is to prove that
0,

: SpS _
Jm > ath =
t¢ A,
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which, together with (10) and (11) implies that lim,_, ,7ns(n) = ng, provided
|S|=2.

Let &, = sup{AFi(n) : s¢ A,,iel} (with supd =0) be the maximal size of the
remaining discontinuities, and let ¢, achieve the supremum, up to 1/n. We claim that
lim,,_, ., 8, = 0. Indeed, since the support of F' is included in [0, I], the sequence (z,)
converges, up to a subsequence, to some teR*. If AF/>0 for some iel, then
lim,_, o, AF[H (n) = 0 since 7, #1(t; n) for each n. If AF! = 0 then by weak convergence
lim,_, o AF(n) = 0. Therefore, lim,_, ,, 6, = 0.

For every two sequences (xx,Vk)r—; such that O0<xgx<d<1 and
SoeXi, D vk<1 one has Y, xiyk<d. Since [S|>2, and since g7 (n)hd(n) is
non-zero on at most a countable set of #’s, (12) holds.

Step 3: lim,_, ,ns(n) = g whenever S = {i} is a singleton. Let ¢>0 be arbitrary.
We prove that 7y — 3e<liminf,_, .7y (n) and limsup,_, ., 7y (n) <7y + 3e.

As in step 2, let AcR" be a finite set such that Y,  ,AF/=Y", _s+AF —e.
We assume that A contains 0 if AF}>0.

Since A4 is finite, we may assume w.l.o.g. that for every n, the finite set
{z(t;n),te A} contains |A| different elements.

Denote F! = F/ — Y AF" and Fi(n) = Fi(n) =Y, _, e AF] - This is the
part of F' (resp. Fi(n)) without the atoms in 4. Then (Fi(n)) weakly converges
to F'.

Choose a finite sequence 0<t; < ... <tx = I + 1 such that

s<tseA

(Bi) Fi _ F <gforeachk =0,...,K — 1 (with FI = 0).
liet1 I lo

(B.ii) ¢y, ...,k are continuity points of F/, for every jel.

We now modify the distributions F' and (F'(n)),.n, and construct completely
atomic distributions F’, F', (Fi(n)),.n, and (F'(n)), .y as follows:
e [i:every te A is an atom of F' with size AF'. In addition, each (#;)5_,' is an atom;

the weight of this atom is equal to ﬁka - I?,’/

® Fi:every re A is an atom of F' with size AF’. In addition, each (;)f_, is an atom;
the weight of this atom is equal to I?,’k - I?;'/H.

® Fi(n) and Fi(n) are defined analogously w.r.t. F'(n)."

Thus, under F7 player i acts earlier than under F?, whereas under F' he acts later.

Observe that in this definition, we ignored the part of Fi prior to time #;, but by
(B.i) this part has small weight. Let 7;,, 7y, ;1 (1) and z;y () be analogous to
under (F', F~), (F',F~"), (Fi(n), F~(n)) and (F'(n), F~(n)), respectively.

3 Note that, for n large enough, the two sets {t(z;n),t€ A} and {t;,k =1, ..., K} are disjoint.
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By (B.i) we have

Ty +e2nn 20, and iy (n) + EZTp (n) ZT() (n) VneN. (13)
Moreover,

Since F' is completely atomic, we can derive an explicit formula for Ty

ag=>_ [[ (1 -F)AF, +>° ] (1 - F)AFi. (15)

k=1 j#i ted j#i

One has a similar expression for ;. For 7;,(n) one has

Z H AF’ +ZH In) AFl(tn( ) (16)

k=1 j#i ted j#i

By (A.ii) and (A.iii), since (F'(n)) weakly converges to F', and since (#) are
continuity points of F', lim,_,,AF} (n) = AF} (n). Since the (#) are continuity
points of (F/),,, llmn_,wF],;k(n) = Fj,'k (n). Therefore, again using (A.ii) and (A.iii),
we obtain lim,,, ., ;) (n) = 7y;. Similarly, one obtains lim,,, ., 7y (n) = m(;;. These
two inequalities, together with (13) and (14), deliver the claim.

7. Comments and extensions

In this paper we analyzed continuous-time games of timing with complete
information. Even though in general ¢-equilibria may fail to exist, in several classes
of economic interest we proved the existence of a subgame-perfect e-equilibrium.

One feature of games in continuous time that was critically used is that in these
games a player can mask the time in which he acts. That is, a player who wishes to act
at a certain time ¢y, can instead act at a random time ¢ close to #y, thereby concealing
the exact moment in which he acts. This way the player can guarantee that no other
player will act at the very same moment he does. Since payoffs are continuous, this
concealment is not too costly. This idea was used to construct explicit ¢-equilibria.

The failure of existence of equilibrium in games with more than two players seems
to be related to the non-convergence of the fictitious play dynamics in 3 x 3 two-player
games (see [27]) and to the existence of cyclic equilibrium in undiscounted stochastic
games (see [9]). In our model, as in [9], there are three players that are ordered on a
circle; each player prefers the player to his right to act, while he does not want the
player to his left to act. Since time is continuous, this structure leads to the problem of
“choosing the smallest positive real number’’: If the game is not terminated at time 0,
each player would rather act before his opponents act. In [9], time is discrete, so that
even though there are no symmetric equilibria, there is a cyclic one. In [27] game the
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action 7 of each player is a best reply to action i + 1 mod 3 of his opponent, and this
structure leads to the non-convergence of the fictitious play dynamics.

We conclude by discussing which insights can be gained for the analysis of discrete
time games with short time periods, and some extensions of our results.

Let o be a subgame-perfect e-equilibrium of a continuous-time game of timing.
Consider a discrete-time version of the game, in which the players are allowed to stop
only at times #,, ne N, where (1,), is a strictly increasing sequence in R*. We denote by
7 the discretized version of @, defined as follows: at time ¢,, assuming no player acted
before, player i acts with probability afn_l ((t4-1, t4]) (and acts with probability ¢} ({0})
at time zero, if fyp = 0). In words, at ¢,, player i assigns to act the probability with
which he would have acted between 7, | and ¢,, had he been allowed to act at any
time. Assuming all functions ug are continuous, it is easy to check that 7 is, say, a
subgame-perfect 2¢-equilibrium of the game in discrete time, provided sup,, |, — fy—1]
is small enough. Moreover, this result does not rely on the sequence (#,) being
known ex ante. Specifically, assume that the sequence (z,) is a random sequence
that increases a.s. to oo, and assume that players get to know the value of ¢, at time ¢,
only.'"* Since the probability to act at time 7, is computed ex post, as a
function of the interval (z,_1,1,], the profile T is well-defined. Moreover, it is a
subgame-perfect 2¢-equilibrium provided that, with high probability, sup,, |£, — t,—_1]| is
small enough. Thus, our analysis of the continuous-time game gives an easy scheme
for constructing approximate equilibria in a large class of discrete time scenarios.

Finally, we discuss weakenings of the complete information assumption. Our
approach does not extend to games with asymmetric information. Nevertheless, it
yields partial results in the case of games with symmetric incomplete information. In
these games, ug is a stochastic process, for every S</, whose law is publicly known.
At any time, all the players have the same information on the realization
of the payoff processes.'> These games were first introduced by Dynkin [6] in a
two-player zero-sum discrete-time setting. Since then, they have come to be known
as Dynkin games in the theory of stochastic processes, and a very extensive literature
has been devoted to the zero-sum case, see, e.g., [30] and the references therein.
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