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A team is a group of people having the same motives but possibly different
available actions. A team game is a game where two teams face each other. An
absorbing game is a repeated game where some of the entries are absorbing, in
the sense that once they are chosen the play terminates, and all future payoffs are
equal to the payoff at the stage of termination. We prove that every absorbing team
game has an equilibrium payoff and that there are ε-equilibrium profiles with cyclic
structure. Journal of Economic Literature Classification Numbers: C72, C73. © 2000
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1. INTRODUCTION

A team is a group of people having the same motives but possibly differ-
ent available actions. The members of the team may be connected by some
contract or by the mere fact that they happen to have the same occupation
and therefore the same motives. An economic theory of teams was devel-
oped by Marschak and Radner (1972). The theory mainly deals with the
problem of information distribution among the team members. An anno-
tated bibliography on the theory of teams that concentrates on stochastic
models can be found in Başar and Bansal (1989).
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also thank Ilan Amit and Tim Feddersen for interesting discussions, Alon Amit for his help,
and an anonymous referee for comments.
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A team game is a competitive model where two teams face each other.
One could attempt to analyze a team game as a two-player game by con-
sidering each team as a single player. However, such a reduction misses an
important feature of team games—players on the same team cannot neces-
sarily correlate their actions. Therefore, viewing a team as a single player
adds new strategies to the game.

In particular, an equilibrium in a team game is not necessarily an equi-
librium in the same game, where each team is considered as a single player,
and vice versa. Moreover, existence of an equilibrium in a team game does
not imply and neither is implied by the existence of an equilibrium in the
corresponding two-player game.

Team games were first studied by Palfrey and Rosenthal (1983) in the
context of voting games. Recently von Stengel and Koller (1997) studied a
model where a team faces a single adversary and characterized the “best”
equilibrium from the point of view of the team. Team games were studied
also in the context of Rendezvous–Evasion games [see, e.g., Kim and Roush
(1987), Lim (1997), and Alpern and Lim (1998)] and in experiments—the
effect of repetition on cooperation among players and on free riding [see,
e.g., Bornstein, et al., (1994, 1996, 1997)].

In sequential games, the equilibrium path is usually sustained by threats
of punishment. In team games members of the same team receive the same
payoff; hence, punishing a deviator means punishing every member of his
or her team. In many situations, a team will be punished by the other team
if one of its members deviates, and the deviator suffers as part of the team.
For example, a war between two families may begin if a member of one
family attacks a member of the other family, and all the shepherds hunt a
pack of wolves if one wolf captured a single sheep.

In the present paper we are interested in a model where a deviator is
punished both by his or her team and by the opposing team. Thus, the team
of the deviator suffers from its decision to punish the deviator and from
the reaction of the opposing team. As an example, consider a key star of
a basketball team who does not show up for a practice. The key star is
suspended from the next game, even though the chances of winning the
game without him are virtually zero. The opponent in the next game can
react in two ways. It can either let its own star rest as well and win the
game by a small margin or play as hard as it can, humiliating the first team.
In this example, the first team punishes itself by suspending its star, and the
opponent can exploit this move in various ways, some of which are more
damaging than others.

The model that we study is a class of stochastic games called absorbing
games. In these games, at every stage each player chooses an action, in-
dependently of the other players. The action combination that was chosen
determines three things: (a) a daily payoff for each player, (b) a probabil-
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ity that the game terminates (is absorbed), and (c) a terminal payoff that
each player receives at every future stage if the game has terminated by
this combination.

If the players are divided into two teams, and the players in each team
have the same payoffs, both daily payoffs and terminal payoffs, then we
face an absorbing team game.

Absorbing games arise naturally in the context of repeated games with
symmetric incomplete information and signalling. Kohlberg and Zamir
(1974) proved that if there exists a value in any two-player zero-sum
absorbing game then there exists a value in any repeated game with sym-
metric incomplete information and deterministic signalling. This result was
generalized by Neyman and Sorin (1998) for existence of equilibrium pay-
off in n-player repeated games with symmetric incomplete information and
nondeterministic signalling.

A (uniform) equilibrium payoff is a payoff vector �vi� such that for every
ε > 0 there is a finite horizon t0 ∈ N and a strategy profile σε = �σiε� that
satisfy the following conditions:

• If the players follow the profile σε, then the expected average payoff
of each player i in every t-stage game (for t ≥ t0) is at least vi − ε.

• If player i deviates to any strategy then his or her expected average
payoff in every t-stage game (for t ≥ t0), is at most vi + ε.

• If the players follows σε in the infinite game then for every player
i the expected value of the lim inf of his or her average payoffs is at least
vi − ε.

• If player i deviates to any strategy in the infinite game then the
expected value of the lim sup of his or her average payoffs is at most
vi + ε.
The strategy profile σε is an ε-equilibrium profile. One can show that σε is
a 2ε-equilibrium profile in every discounted game, provided the discount
factor is sufficiently close to 1.

We prove that in every absorbing team game there exists an equilibrium
payoff v. Moreover, the ε-equilibrium profiles have a very special (and
simple) structure.

1.1. The ε-Equilibrium Profiles

In general n-player stochastic games, existence of a uniform equilibrium
payoff is not known, and in the classes where existence was proven, the
ε-equilibrium profiles might be complex.

Blackwell and Ferguson (1968) gave an example of a 2-player zero-
sum absorbing game where no 0-equilibrium profiles exist, the only ε-
equilibrium profiles are history dependent, and they require infinite recall.
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Kohlberg (1974) proved the existence of a uniform equilibrium payoff in
2-player zero-sum absorbing games. This result was generalized by Mertens
and Neyman (1981) for general zero-sum stochastic games.

Vrieze and Thuijsman (1989) proved the existence of a uniform equi-
librium payoff in 2-player non-zero-sum absorbing games, where the ε-
equilibrium profiles are “almost” stationary—they are given by a stationary
profile and a statistical test: the players follow the stationary profile as long
as no deviation is detected, and once a deviation is detected, both players
switch to a punishment strategy.

Flesch et al. (1997) provided an example of a 3-player absorbing game
where no “almost” stationary ε-equilibrium profile exists. Nevertheless,
Solan (1999) proved that every 3-player absorbing game has a uniform
equilibrium payoff, where the ε-equilibrium profiles are perturbed—they
are given by a stationary profile, small perturbations, and statistical tests:
as long as no deviation is detected, the players play mainly the stationary
profile, but perturb to other actions with a small probability. Once a devia-
tion of one of the players is detected, the deviator is punished by the other
two players for the rest of the game. The small perturbations have a “nice”
structure: they are cyclic, but the length of the cycle may depend on ε.

In particular, it follows that every absorbing team game, where one team
consists of a single player and the other consists of two players, admits a
uniform equilibrium payoff.

Recently Vieille (1997a,b) proved the existence of a perturbed ε-
equilibrium profile in general 2-player non-zero-sum stochastic games.
However, Solan and Vieille (1998) provided an example of a 4-player ab-
sorbing game where no perturbed ε-equilibrium profile exists. Existence
of a uniform equilibrium payoff in n-players stochastic games was estab-
lished only for irreducible games (Sobel, 1971; Federgruen, 1978) and
for games with additive reward and additive transitions [which includes
the class of games with complete information (Thuijsman and Raghavan,
1997)]. In both cases there are 0-equilibrium profiles—in the former they
are stationary and in the latter “almost” stationary.

In the present paper we prove that every absorbing team game admits a
uniform equilibrium payoff, where the corresponding ε-equilibrium profiles
are perturbed. Moreover, the perturbations are cyclic, and the length of the
cycle is either 1 or 2.

The paper is arranged as follows. In Section 2 we present the model of
n-player absorbing games and the special case of absorbing team games.
In Section 3 we define perturbed equilibria. In Section 4 we provide three
sufficient conditions for an n-player absorbing game to have a perturbed
equilibrium, and finally, in Section 5, we prove that in any absorbing team
game at least one of the sufficient conditions hold.
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2. THE MODEL

Definition 2.1. An n-player absorbing game G is given by ��Ai; hi;
ui�ni=1; w� where

• Ai is a finite set of actions available for player i. Denote A =
×ni=1A

i.

• ri:A→ R for i = 1; : : : ; n. For every a ∈ A, ri�a� is the daily payoff
for player i.

• w:A→ �0; 1�. For every a ∈ A, w�a� is the probability the game is
absorbed if the action combination a was played by the players.

• ui:A → R for i = 1; : : : ; n. Given that the game was absorbed by
action combination a ∈ A, ui�a� is the constant payoff player i receives at
every future stage.

We assume w.l.o.g. that � r �; � u �≤ 1, and denote X = ×ni=11�Ai�
the set of mixed-action combinations. Let rit be the payoff of player i at
stage t.

Definition 2.2. An n+m-player absorbing game is called an absorbing
team game if ri = rj and ui = uj whenever 1 ≤ i; j ≤ n or n + 1 ≤ i; j ≤
n+m.

Most of the results we prove are valid for general n-player absorbing
games. Only in Theorem 3.5 do we use the special structure of absorbing
team games.

Let G be an n-player absorbing game. Let N = �1; : : : ; n� be the set
of players, and let ci be the min–max value of player i in the game. By
Neyman (1988) ci exists for every i ∈ N . Moreover, players N \ �i� have an
ε-min–max profile against player i, that is, a profile τ−iε such that for every
strategy σi of player i

Eτ−iε ; σi
(
ri1 + : : :+ rit

t

)
≤ ci + ε

and for every t > t0 (where t0 is independent of σi)

Eτ−iε ; σi
(

lim sup
t→∞

ri1 + : : :+ rit
t

)
≤ ci + ε:

Note that in a team game, though players of the same team have equal
payoff functions, their min–max value may be different.

Each vector xi ∈ 1�Ai� is a probability distribution over Ai. Therefore,
every x ∈ X is a probability distribution over A. For any x ∈ X and a ∈ A
denote xa = 5i∈Nxiai .
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We define the multilinear extension of ri and w by

ri�x� = ∑
a∈A

xar
i�a�

and

w�x� = ∑
a∈A

xaw�a�

for every x ∈ X.
A mixed-action combination x ∈ X is absorbing if w�x� > 0 and nonab-

sorbing if w�x� = 0.
For every absorbing mixed-action x ∈ X we define

ui�x� = ∑
a∈A

xaw�a�
w�x� u

i�a�:

ui�x� is the expected absorption payoff for player i if the players play the
stationary profile x. Note that ui�·� is continuous whenever it is defined.

Definition 2.3. The vector v = �vi�i∈N is a (uniform) equilibrium payoff
if for every ε > 0 there exists t0 ∈ N and a strategy profile σε = �σiε�ni=1 such
that for every player i ∈ N , every strategy τi of player i and every t > t0

Eσε

(
ri1 + : : :+ rit

t

)
≥ vi − ε;

Eσε

(
lim inf
t→∞

ri1 + : : :+ rit
t

)
≥ vi − ε;

Eσ−iε ; τi
(
ri1 + : : :+ rit

t

)
≤ vi + ε and

Eσ−iε ; τi
(

lim sup
t→∞

ri1 + : : :+ rit
t

)
≤ vi + ε:

The profile σε is an ε-equilibrium profile for v.

3. ON PERTURBED EQUILIBRIA

Let H = ∪t∈NA
t be the space of all finite histories. Define a partial order

on H by �a1; a2; : : : ; at� ≥ �a′1; a′2; : : : ; a′t ′ � if and only if t ≥ t ′ and ai = a′i
for every i = 1; : : : ; t ′, i.e., �a′1; a′2; : : : ; a′t ′ � is a beginning of �a1; a2; : : : ; at�.

Definition 3.1. A function f :H → �0; 1� is monotonic if h ≥ h′ im-
plies f �h� ≥ f �h′�.
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f is monotonic if f �h� = 0 implies that f �h′� = 0 for every beginning h′

of h. A monotonic function f can represent a statistical test—as long as
f �h� = 0 no “deviation” is detected, but as soon as f �h� = 1 a “deviation”
is announced.

Definition 3.2. Let f = �f i�i∈N be a vector of monotonic functions.
A history h ∈ H is a 0-history if f i�h� = 0 for every i ∈ N and 1-history
otherwise. It is a minimal 1-history with index i0 (w.r.t. f ) if

• Any h′ < h is a 0-history.

• f i�h� = 0 for every i < i0.

• f i0�h� = 1.

If f represents a vector of statistical tests, i.e., f i is a statistical test that
checks player i, then a minimal 1-history with index i0 is a history in which
a “deviation” is announced for the first time, and player i0 is the first player
whose “deviation” is detected.

For any two histories h = �a1; a2; : : : ; at� and h′ = �a1; a2; : : : ; at ′ � such
that h′ < h we define the subtraction h \ h′ = �at ′+1; at ′+2; : : : ; at� ∈ Ht−t ′ .

Definition 3.3. Let x ∈ X and ε > 0. A profile σ is �x; ε�-perturbed if
there exist

• a vector fε = �f iε�i∈N of monotonic functions

• and, for every i ∈ N , an ε-min–max profile τ−iε against player i,

such that for every 1-history h ∈ H, σ−i0�h� = τ−i0ε �h \ h′� where h′ is a
beginning of h which is a 1-minimal history with index i0 (w.r.t. fε) and for
every 0-history h ∈ H, � σ�h� − x �< ε.

In other words, the players play an ε-perturbation of the stationary profile
x. Meanwhile, the actions of each player are screened by some statistical
test. The first player who fails the test is punished with an ε-min–max profile
forever.

Definition 3.4. Let x ∈ X and v ∈ Rn. v is an x-perturbed equilibrium
payoff if it is an equilibrium payoff, and for every ε > 0 there exists an
�x; ε�-perturbed profile σε that is an ε-equilibrium profile for v. x is the
base of the perturbed equilibrium.

The main result of the paper is:

Theorem 3.5. Any absorbing team game admits a perturbed equilibrium
payoff.
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4. SUFFICIENT CONDITIONS FOR PERTURBED EQUILIBRIA

In this section we consider n-player absorbing games. We provide three
sufficient conditions for a mixed-action combination x to be a base of a
perturbed equilibrium. The first two conditions were used by Vrieze and
Thuijsman (1989) for the case n = 2, but the third condition is new. Since
the proofs given by Vrieze and Thuijsman hold for the general case as well,
we provide for the first two sufficient conditions only an intuitive proof. A
more general form of the third condition was used in Solan (1999) for 3-
player absorbing games. The 3-player game studied by Flesch et al. (1997)
does not satisfy any of these three conditions.

For any player i define ei:X → R by

ei�x� = w�x�ui�x� + �1−w�x��ci:
If w�x� = 0 we define w�x�ui�x� = 0. ei�x� is the maximal payoff that
player i can guarantee if at the current stage the players play the mixed-
action combination x and from tomorrow on player i is punished with
an ε-min–max profile, with an arbitrarily small ε. Note that w�x�ui�x� =∑
a∈A xaw�a�ui�a�, and therefore ei is a continuous function.

Definition 4.1. Let v ∈ Rn be a payoff vector. A mixed-action combi-
nation x is individually rational for v if for every player i ∈ N ∪M and every
action ai ∈ A

vi ≥ ei�x−i; ai�:
In particular, if the players play today a mixed-action combination that

is ε-close to x and their expected payoff is ε-close to v, then none of them
can profit more than 2ε by a unilateral deviation that will be followed by a
punishment.

For every mixed-action combination x ∈ X let vi�x� be the expected
undiscounted payoffs for player i if the players play the stationary profile
x; i.e.,

vi�x� =
{
ri�x� w�x� = 0
ui�x� w�x� > 0.

Lemma 4.2. Let x ∈ X be a mixed-action combination that satisfies two
conditions:

1: x is individually rational for v�x�.
2: If x is absorbing, then ui�x� = ui�x−i; ai� for every player i ∈ N and

every action ai ∈ supp�xi� such that w�x−i; ai� > 0.

Then v�x� is an x-perturbed equilibrium payoff.
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Proof. Let ε > 0 be fixed. Define the following �x; ε�-perturbed
profile σ :

1. As long as no deviation is detected, each player i plays the mixed
action combination xi.

2. Each player is checked for the following:

(a) that his or her realized action is in supp�xi�, and
(b) that the distribution of his or her realized actions is ε-close to xi.

Test (a) is employed from the first stage, while test (b) is employed only
from stage t1, where t1 is chosen sufficiently large such that the probabil-
ity that a player who plays the stationary strategy xi will fail it is smaller
than ε.

It is clear that if the players follow σ then their expected payoff in every
sufficiently long game, as well as in the infinite game, is close to v�x�.

By the first condition, deviations outside supp�xi� are not profitable (that
is, the deviator cannot profit more than 2ε). Moreover, it follows from the
first condition that if x is nonabsorbing then deviations in supp�xi� are not
profitable as well. By both conditions, the same conclusion holds if x is
absorbing.

Lemma 4.3. Let x be a nonabsorbing mixed-action combination. If there
exist player i0 and an action bi0 ∈ Ai0 such that w�x−i0; bi0� > 0 and x is
individually rational for u�x−i0; bi0�, then u�x−i0; bi0� is an x-perturbed equi-
librium payoff.

Proof. Let ε > 0 be fixed and δ ∈ �0; ε� be sufficiently small. Define the
following �x; ε�-perturbed profile σ :

1. As long as no deviation is detected, each player i 6= i0 plays the
mixed action xi, while player i0 plays the mixed action �1− δ�xi0 + δbi0 .

2. Each player i 6= i0 is checked as in the profile constructed in the
proof of Lemma 4.2.

3. Player i0, in addition to the two checks done in the proof of
Lemma 4.2, is checked for

(c) whether the stage of the game is smaller than t2, where t2 is suf-
ficiently large such that if no player fails one of the previous tests, then
absorption occurs before stage t2 with probability greater than 1− ε.
Test (c) is required, since if ri0�x� > ui0�x−i0; bi0� then player i0 receives
more by never playing bi0 .

The constant δ is chosen sufficiently small such that the probability that
player i0 plays bi0 before test (b) in the proof of Lemma 4.2 is employed is
smaller than ε; that is, �1− δ�t1 > 1− ε.
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It is clear that if the players follow σ and no deviation is detected then
the game will be eventually absorbed, and their expected payoff in every
sufficiently long game, as well as in the infinite game, is close to u�x−i0; bi0�.
As in Lemma 4.2, no player i 6= i0 can profit more than 3ε by deviating,
and the three tests for player i0 imply that he or she cannot profit more
than 3ε as well.

Definition 4.4. Let x ∈ X be a mixed-action combination and let ∅ 6=
S ⊆ N . An action combination bS ∈ AS is a neighbor of x if

• w�x−S; bS� > 0.

• w�x−T ; bT � = 0 for every proper subset T of S.

In particular, if x has a neighbor then for T = ∅ we get w�x� = 0, which
means that x is nonabsorbing. It follows that an absorbing mixed-action
combination does not have neighbors.

If S = �i0� contains a single player, bS = b�i0� is a neighbor of distance 1.
In such a case we write bi0 instead of b�i0�.

Lemma 4.5. If there exists a nonabsorbing mixed-action combination x ∈
X, a set B of neighbors of x such that �S� ≥ 2 for every bS ∈ B, and
a probability distribution µ ∈ 1�B� such that x is individually rational for∑
bS∈B µ�bS�u�x−S; bS�, then

∑
bS∈B µ�bS�u�x−S; bS� is an x-perturbed equi-

librium payoff.

Proof. Denote B = �bS1
1 ; : : : ; b

SK
K �, and let ε > 0 be given. We are going

to construct an �x; ε)-perturbed equilibrium profile, where the equilibrium
path has a cycle of length K. At stage t, the players try to be absorbed with
a small probability δ by the neighbor bSkk , where k = tmodK. Thus, each
player i 6∈ Sk plays xi, whereas each player i ∈ Sk plays �1− δk�xi + δkbik,
where δk is appropriately chosen. Since players need not be indifferent
between the various neighbors in B, suitable statistical tests are needed to
make deviation nonprofitable, and they can be performed effectively since
�S� ≥ 2 for every bS ∈ B.

We define here a profile that depends on various constants and prove
that if the constants satisfy several properties then the profile is an ε-
equilibrium. The exact way to choose the constants appears in the Ap-
pendix.

Let δ ∈ �0; ε� be sufficiently small. Assume w.l.o.g. that µ has a full
support. Denote αk = µ�bSkk �, and

δk = �δαk/w�x−Sk; bSkk ��1/�Sk�:
Note that

w�x−Sk; bSkk �δ�Sk�k = δαk: (1)
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Define the following �x; ε�-perturbed profile σ :

1. Denote k = tmodK, where t is the current stage. If no deviation
was detected before stage t, then each player i plays as follows. If i 6∈ Sk
player i plays the mixed-action xi, while if i ∈ Sk player i plays the mixed-
action �1− δk�xi + δkbik.

2. For the statistical test, the players consider at stage t only stages
j < t such that j = tmodK. All other stages are ignored.

(a) Each player i is checked whether his or her realized action is
compatible with this profile; that is, if it is in supp�xi� and if i ∈ Sk, it may
be also bik.

(b) Each player i is checked whether the distribution of his or her
realized actions, when restricted to supp�xi�, is ε-close to xi.

(c) Each player i ∈ Sk is checked whether he or she plays the action
bik with frequency δk. Formally, the realized probability p that player i plays
bik at stages j < t such that j = tmodK should satisfy �p/�δkt/K� − 1� < ε.
The first two tests are used in the previous sufficient conditions as well and,
if δ is sufficiently small, can be employed effectively. The third statistical
test is employed only from stage t3K, where t3 is chosen such that (i) no
player can profit more than ε by changing the frequency in which he or
she plays bik before the test is employed (t3 is not too large), and (ii) the
probability of false detection of deviation is smaller than ε (t3 should be
large enough).

It is clear that if the players follow σ then the game will be eventually
absorbed, and their expected payoff in every sufficiently long game, as well
as in the infinite game, is close to

∑
bS∈B µ�bS�u�x−S; bS�. By the statistical

tests, no player can profit more than ε by deviating.
The only question that arises is whether there exist t3 ∈ N and δ > 0

such that test (c) can be employed effectively. This question is answered
affirmatively in the Appendix. Intuitively such constants exist since absorp-
tion occurs at every stage with probability O�δ�, while player i perturbs at
stage k to bik with probability O�δ1/�Sk�� ≥ O�δ1/2�. Hence, until absorption
occurs, player i should perturb at least O�δ−1/2� times, which is sufficient
for statistical tests.

Remark. If the game is a team game, then we can assume w.l.o.g. that
�B� = 2. Indeed, consider the convex polyhedron

Q
def=
{ K∑
k=1

αku�x−Sk; bSkk �
}
;

where α = �αk� ranges on all probability distributions over �1; : : : ;K�.
Since q = ∑K

k=1 µ�bSkk �u�x−Sk; bSkk � ∈ Q and both q and Q are essentially
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two-dimensional, there exists a probability distribution ν ∈ 1�B� such that
its support includes at most two elements, and

∑K
k=1 ν�bSkk �u�x−Sk; bSkk � ≥∑K

k=1 µ�bSkk �u�x−Sk; bSkk � = q. Hence x is individually rational w.r.t.∑K
k=1 ν�bSkk �u�x−Sk; bSkk �, and the conditions of Lemma 4.5 are satis-

fied with ν replacing µ.
Note that in a general n-player absorbing game, a similar argument shows

that if the conditions of Lemma 4.5 are satisfied and the dimension of Q is
d, then there exists a perturbed equilibrium profile where the equilibrium
path has a cycle of length d.

5. EXISTENCE OF AN EQUILIBRIUM PAYOFF

In this section we prove that in any absorbing team game at least one of
the sufficient conditions presented in Section 4 holds.

Let G be an absorbing team game. We denote by N and M the two sets
of players in each team, and let n = �N� and m = �M�.

Let

di =
{

maxj∈N cj i ∈ N
maxj∈M cj i ∈M :

It is clear that for any equilibrium payoff v = �vi�i∈N∪M , vi = vj whenever
i; j ∈ N or i; j ∈ M . Moreover, vi ≥ ci for every i ∈ N ∪M . Therefore
vi ≥ di for each i ∈ N ∪M .

The following lemma is crucial for the proof of the main result. The
lemma is proved in Solan (1999). Since its proof is involved, we provide
here only a sketch of the proof.

Lemma 5.1. There exists a mixed-action combination x, a set B of neigh-
bors of x, and a vector g = �gi�i∈N∪M ∈ Rn+m such that the following four
conditions are satisfied for some probability distribution µ ∈ 1�B�:

1. At least one of the following holds,

vi�x� ≥ gi for every i ∈ N ∪M (2)

or ∑
bS∈B

µ�bS�ui�x−S; bS� ≥ gi for every i ∈ N ∪M: (3)

2.

gi ≥ di for every i ∈ N ∪M: (4)
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3. For every player i and every action ai of player i such that w�x−i; ai�
> 0

gi ≥ ui�x−i; ai�: (5)

4. For every player i and every neighbor ai ∈ B of x of distance 1

gi = ui�x−i; ai�: (6)

Sketch of the Proof. Define a function r̃:X → RN by

r̃ i�x� = min�ri�x�; di�:
Define an auxiliary game G̃, which is played like the original game G,
but the daily nonabsorbing payoff that player i receives at stage t is r̃i�xt�,
where xt is the mixed-action combination that the players play at that stage.
Formally, for every discount factor β ∈ �0; 1� and every profile σ , the ex-
pected β-discounted payoff for the players if they follow σ is

Eσ

(
�1− β�

∞∑
t=1

βt�1t≤t? r̃�xt� + 1t>t?u�xt?��
)
;

where t? is the stage of absorption.
It turns out that the discounted min–max value of each player in the

auxiliary game exists and converges, as β tends to 1, to his or her min–max
value in the original game.

For every β we choose a stationary β-discounted equilibrium profile xβ
in G̃. We define x to be the limit of xβ, g to be the limit of the correspond-
ing β-discounted equilibrium payoff vectors, and µ to be the limit of the
probability distribution over the neighbors of x induced by xβ. We assume
that the limits exist by taking a subsequence.

Using the fact that xβ is a discounted equilibrium, (4) hold. If in addition
we recall that u is continuous whenever it is defined, (5) and (6) hold as
well. Since r̃ i�x� ≤ di ≤ gi, it follows that either (2) or (3) holds as well.

We are now ready to prove our main result.

Proof of Theorem 3.5. Let �x;B; g; µ� satisfy the conclusion of
Lemma 5.1. We prove that x is a base of a perturbed equilibrium.

We shall have 4 cases:

1. x is absorbing.
2. x is nonabsorbing and vi�x� ≥ gi for every i ∈ N ∪M .
3. x is nonabsorbing, and there exists a neighbor of x bi0 ∈ B of

distance 1 such that ui�x−i0; bi0� ≥ gi for each i ∈ N ∪M .
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4. None of the above holds.

We prove that in Cases 1 and 2 the conditions of Lemma 4.2 hold, and in
Case 3 the conditions of Lemma 4.3 hold. If Case 4 holds, we prove that
the conditions of Lemma 4.5 hold.

Case 1. x is absorbing.

In this case B = ∅ (since there are no neighbors of x) and therefore (2)
holds. By (2) and (4) for each i ∈ N ∪M

ui�x� = vi�x� ≥ gi ≥ di ≥ ci: (7)

By (5), (7), and the definition of ei, x is individually rational for v�x�. Since
x is absorbing we have by (7) and (5) for each i ∈ N ∪M

gi ≤ vi�x� = ui�x� =
∑
ai∈supp�xi� x

i
aiw�x−i; ai�ui�x−i; ai�∑

ai∈supp�xi� x
i
aiw�x−i; ai�

≤ gi: (8)

Equation (8) implies that ui�x−i; ai� = gi for each player i and ai ∈
supp�xi�, and therefore the second condition of Lemma 4.2 holds, as
desired.

Case 2. x is nonabsorbing and vi�x� ≥ gi for each i ∈ N ∪M .

We prove that the conditions of Lemma 4.2 hold. Since x is nonabsorbing,
it is sufficient to show that x is individually rational for v�x�.

By the assumption and (4)

vi�x� ≥ gi ≥ di ≥ ci for every i ∈ N ∪M: (9)

By (5), (9), and the definition of ei it follows that x is indeed individually
rational for v�x�.

Case 3. There exists bi0 ∈ B such that

ui�x−i0; bi0� ≥ gi for every i ∈ N ∪M: (10)

In this case the conditions of Lemma 4.3 hold. Indeed, by (10) and (4)
ui�x−i0; bi0� ≥ gi ≥ di ≥ ci for each i ∈ N ∪M . Therefore, by (5) and the
definition of ei, x is individually rational for u�x−i0; bi0�, as desired.

Case 4. None of the above holds.

We prove that the conditions of Lemma 4.5 hold.
Since Case 1 does not hold, x is nonabsorbing. Since Case 2 does not

hold, Eq. (3) holds.
Let bi0 ∈ B be a neighbor of distance 1 of x. By (6), ui0�x−i0; bi0� = gi0 ,

and since the game is a team game, ui�x−i0; bi0� = gi for every player i of
the same team as i0. Since Case 3 does not occur, there exists a player i of
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the opposing team such that ui�x−i0; bi0� < gi, and therefore ui�x−i0; bi0� <
gi for every player i in the opposing team. Therefore∑

bS∈B��S�=1

µ�bS�ui�x−S; bS� ≤ ∑
bS∈B��S�=1

µ�bS�gi for every i ∈ N ∪M
(11)

and, if
∑
bS∈B��S�=1 µ�bS� > 0,∑

bS∈B��S�=1

µ�bS�u�x−S; bS� 6= ∑
bS∈B��S�=1

µ�bS�g: (12)

Let C = �bS ∈ B � �S� ≥ 2�. By (3), (11), and (12), C 6= ∅ and∑
bS∈C µ�bS� > 0.
Let ν be the induced probability distribution of µ over C. By (3), (11),

and (4)∑
bS∈C

ν�bS�ui�x−S; bS� ≥ gi ≥ di ≥ ci for every i ∈ N ∪M: (13)

By (13), (5), and the definition of ei, x is individually rational for∑
bS∈C ν�bS�ui�x−S; bS�, and therefore the conditions of Lemma 4.5

hold w.r.t. C and ν.

6. APPENDIX: THE CONSTANTS OF LEMMA 4.5

In the Appendix we show how to choose the constants t3 and δ in the
proof of Lemma 4.5.

These constants should satisfy the following inequalities:

1. The probability of false detection of deviation in test (c) is smaller
than ε,

Pr
(∣∣∣∣
∑n
j=1Xj

nδk
− 1

∣∣∣∣ < ε ∀n ≥ t3
)
> 1− ε; (14)

where �Xj� are i.i.d. Bernoulli r.v. with p�Xj = 1� = δk.

2. If player i plays bik at every stage j with j = kmodK, then the
probability that the game is absorbed before stage t3 is smaller than ε,(

1−w�x−Sk; bSkk �δ�Sk−1�/�Sk�
k

)t3
> 1− ε: (15)

Since t3 and δ should be chosen simultaneously, we need the following
lemma.
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Lemma 6.1. Let p ∈ �0; 1� and �Xt�t∈N be i.i.d. Bernoulli random vari-
ables with Pr�Xt = 1� = p and ε > 0. There exists t? ∈ N (independent of p)
such that

Pr
(∣∣∣∣
∑t
j=1Xj

tp
− 1

∣∣∣∣ < ε ∀t > t?
p

)
> 1− ε: (16)

Define

C = max
k=1; :::;K

(
αk

w�x−Sk; bSkk �

) �Sk �−1
�Sk �

> 0:

Let ρ0 > 0 be sufficiently small such that

�1− Cρ�ρ−1/2 =
(
�1− Cρ�1/ρ

)ρ1/2

> 1− ε ∀ρ ∈ �0; ρ0�: (17)

Let δ = min�ρ2
0; 1/t4?� and t3 = 1/δ4. In particular,

√
δ ≤ ρ0 and t3 ≥ t?.

Equation (14) holds since t3 ≥ t? while Eq. (15) holds since(
1− δ�Sk−1�/�Sk�

k

)t3 ≥ (1− Cδ1/2
)δ−1/4

> 1− ε:

Proof of Lemma 6.1. Let λ ∈ �1; 1 + ε� and t? = λ/ε3�λ − 1�. By Kol-
mogorov’s inequality (see, e.g., Lamperti (1996), p. 46), for every k ∈ N

Pr
(

max
λkt?/p<t≤λk+1t?/p

∣∣∣∣ t∑
j=1

�Xj − p�
∣∣∣∣ > ελk+1t?

)
≤ λ

k+1t?p�1− p�
ε2λ2�k+1�t2?p

<
1

ε2λk+1t?
: (18)

Summing (18) over all k ≥ 0 yields

Pr
(

max
t?/p<t

∣∣∣∣ t∑
j=1

�Xj − p�
∣∣∣∣ > 2εt

)
<

λ

ε2t?�λ− 1� ≤ ε

and the result follows.
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