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1 Introduction

The present monograph deals with uniform equilibria in stochastic games.
In the Introduction we review informally the basic definitions and the known
results in this topic. We begin by introducing the model, continue with the
known results for the discounted and the uniform equilibria, and finally we
review the main results and ideas presented in the monograph.

1.1 The Model

A stochastic game is played in stages. At every stage the game is in some
state of the world, and each player, given the whole history (including the
current state), chooses an action in his action space. The action combination
that was chosen by all the players, together with the current state, determine
the daily payoff that each player receives and the probability distribution
according to which the new state of the game is chosen.

The results that appear in this monograph are for stochastic games where
the number of players, states and available actions are finite.

One may consider a finite t-stage game — the game terminates after
t stages, and the payoff for the players is their average payoff. Another
standard version is the infinite discounted game, where the infinite sequence
of payoffs (ri1, r

i
2, . . .) of player i is evaluated by the discounted sum

(1− β)
∞∑
t=1

βt−1rit,

and β ∈ [0, 1) is the discount factor.
It is fairly easy to prove (i) the existence of a stationary equilibrium profile

for the discounted case (stationary, in the sense that the mixed action that is
chosen by each player at every stage depends only on the current state, rather
than on the whole history), and (ii) the existence of an equilibrium profile
(which usually depends on the stage of the game, as well as on the current
state) for finite t-stage games. However, the equilibrium profiles in both cases
usually depend on the exact discount factor or on the exact duration of the
game; an equilibrium profile for one discount factor might yield some players
a low payoff if the discount factor is slightly changed and the equilibrium
profiles for finite t-stage games differ for every t.
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A strategy profile is a uniform ε-equilibrium if no player can profit more
than ε by deviating in any sufficiently long game, or in any discounted game,
for discount factor sufficiently close to 1. Moreover, no player can profit more
than ε in the infinite game as well (a precise definition is given in section 3.4).

Aumann and Maschler [2] mention several reasons to study the uniform
equilibrium:

1. A uniform ε-equilibrium profile is an ε-equilibrium profile in any finite
game whose duration is sufficiently long, as well as in any discounted
game, when the discount factor is sufficiently close to 1. Thus, the
uniform equilibrium can be used

• if the game is “long”, but its the exact duration is not known, or if
the players are sufficiently patient, but the exact discount factor,
is not known,

• or when the players have bounded rationality, and taking the stage
of the game into account is too complex.

2. Uniform ε-equilibrium profiles are usually simple to describe, and the
players follow rules that make use only of fairly simple statistics of the
past history. Thus, uniform equilibria lead to simple “rules of thumb”
for the players.

3. To study optimal behavior for the players in games that continue in-
definitely, and the payoff of any finite number of stages is negligible.

4. Since uniform ε-equilibrium profiles depend only on the structure of
the game (rather than on its duration or the discount factor), one can
compare optimal behavior of different games — how does an additional
player changes the optimal behavior, or the addition of states or actions
for the players.

In the following two subsections we introduce the discounted and the
uniform equilibria, and the results concerning these two types of equilibria.
The proofs in the monograph make use of the discounted equilibria, rather
then equilibria in finite t-stage games. However, bearing in mind the results
of Bewley and Kohlberg [4], one could use finite games instead of discounted
games.
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1.2 The Discounted Equilibrium

Let 0 ≤ β < 1. In the β-discounted game each player i evaluates a profile σ
by

viβ(s, σ) = Es,σ

(
(1− β)

∞∑
t=1

βt−1rit

)

where s is the initial state and rit is the daily payoff that player i receives at
stage t.

A strategy profile σ is a β-discounted (Nash) equilibrium if viβ(s, σ) ≥
viβ(s, σ−i, τ i) for every player i and every strategy τ i of player i, where σ−i =
(σj)j 6=i. The payoff vector vβ(·, σ) is a β-discounted equilibrium payoff. It is
easy to verify that if the equilibrium payoff of a two-player zero-sum game
exists, then it is unique. In this case, the unique equilibrium payoff of player
1 is the discounted value of the game.

Shapley [26] introduced the model of stochastic games and proved that
every two-player zero-sum discounted stochastic game has a discounted value.
Moreover, there are stationary equilibrium profiles. Fink [12] generalized this
result for n-player stochastic games.

Bewley and Kohlberg [4] proved that the value of a two-player zero-sum
discounted game, as a function of the discount factor, is a Puiseux function
(that is, it has an expansion as a Laurent series in fractional powers). In par-
ticular, it follows that the limit of the discounted value, as the discount factor
tends to 1, exists. Moreover, they proved that there exists a Puiseux func-
tion that assigns to every discount factor a stationary equilibrium profile in
the corresponding discounted game. Following similar lines it can be proven
(see, e.g., Mertens, Sorin and Zamir [21]) that for every n-player stochastic
game there exists a Puiseux function that assigns for every discount factor an
equilibrium payoff and an equilibrium strategy profile in the corresponding
discounted game. As we will see, this result is used extensively for proving
results on the uniform equilibrium payoff.

1.3 The Uniform Equilibrium

1.3.1 Uniform Equilibrium Payoff

A payoff vector g = (gis) is a uniform ε-equilibrium payoff if there exists a
strategy profile σ and a finite horizon te ∈ N such that for every player i,
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every strategy τ i of player i and every initial state s

• If the players follow the profile σ, then the expected average daily
payoff for player i in every finite t stage game (for t > te), as well as
the expected lim inf of the average daily payoffs, is at least gis − ε.

• If the players follow the profile (σ−i, τ i), then the expected average
payoff of player i in every finite t stage game (for t > te), as well as the
expected lim sup of the average daily payoffs, is at most gis + ε.

The strategy profile σ is an ε-equilibrium profile.
It can easily be proven that σ is also an ε-equilibrium profile in the dis-

counted game, for discount factors sufficiently close to 1.
A payoff vector g is a uniform equilibrium payoff if it is a uniform ε-

equilibrium payoff for every ε > 0. If the game is two-player zero-sum and
it has a uniform equilibrium payoff, then the uniform equilibrium payoff is
unique. In this case the unique equilibrium payoff of player 1 is the (uniform)
value of the game.

Many authors used the undiscounted equilibrium (the players evaluate a
stream of payoffs by its lim inf, lim sup or some other Banach limit) rather
than the uniform equilibrium. Several results that were proved for undis-
counted equilibria hold for uniform equilibria as well, with minor modifica-
tions in the proofs. In the sequel we mention these results as proved for
uniform equilibria.

1.3.2 Special Classes of Stochastic Games

A state is absorbing if once it is reached, the probability to leave it, whatever
the players play, is 0.

A recursive game is a stochastic game where the payoff for the players
in all the non-absorbing states is identically 0, whatever actions the players
play.

A repeated game with absorbing states is a stochastic game where all the
states but one are absorbing.

A stochastic game is of perfect information if in every state only one
player has a non-degenerate action space (that is, only one player has more
than one possible action), and of switching control if in every state only one
player controls the transitions.
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An irreducible game is a stochastic game where the game reaches every
state infinitely often, whatever the players play.

Stochastic team games are stochastic games where the players are divided
into two teams, and the players of each team have the same payoff function.
Since different players in the same team cannot correlate their actions, the
strategy space of a team, viewed as a single player, is strictly larger than the
product of the strategy spaces of the players of that team (provided that the
team consists of at least two players). Therefore one cannot deduce trivially
results on team games from the corresponding results on two-player games.

1.3.3 Zero-Sum Games

The study of the undiscounted evaluation has begun by Everett [10] and
Gillette [15].

Everett [10] proved that for two-player zero-sum recursive games the value
exists, and there are stationary ε-equilibrium profiles.

Gillette [15] studied games of perfect information and irreducible games,
and proved the existence of stationary equilibrium profiles in both cases.
Gillette introduced the following example of the “Big Match” which is a
two-player zero-sum repeated game with absorbing states.

Example 1 The “Big Match”

B

T

L R

1,−1

−1, 1 ∗

−1, 1

1,−1 ∗

Player 1 is the row player, while player 2 is the column player. The daily
payoff is as indicated by the cell. An cell marked with an asterisk means that
once this cell is reached, then the game moves to an absorbing state, where
the payoff for the players is as indicated by the cell. If an unmarked cell is
chosen, then the game remains at the same state.

Gillette proves that in this game there is no stationary equilibrium profile.

Nevertheless, Blackwell and Ferguson [5] proved that the value of the
“Big Match” is 0 (that is, the value of the non-absorbing state), and they
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constructed ε-equilibrium profiles. In the ε-equilibrium profile, player 2 plays
at every stage with equal probability his two actions, and player 1 plays a
history-dependent strategy. An ε-equilibrium strategy that Blackwell and
Ferguson suggest for player 1 is to play T at stage t with probability 1

1/ε+kt
,

where kt is the number of times that player 2 played R until stage t, minus
the number of times that player 2 played L until stage t. It can easily be
proven that a 0-equilibrium profile for player 1 does not exist, and there are
neither stationary nor Markovian ε-equilibrium profiles.

Kohlberg [16] generalized the result of Blackwell and Ferguson, and proved
that every zero-sum repeated game with absorbing states has a value.

Mertens and Neyman [20] generalized this result further, and proved
that every two-player zero-sum stochastic game has a value. Moreover, they
proved that the limit of the β-discounted value is equal to the uniform value.
Their proof relies on the result of Bewley and Kohlberg [4] that was men-
tioned before, that the value of the β-discounted game is a Puiseux function
in β.

1.3.4 Non Zero-Sum Games

The study of non zero-sum games turns out to be much more difficult. Sorin
[30] introduced the following example of a two-player non zero-sum repeated
game with absorbing states:

Example 2

B

T

L R

1, 0

0, 2 ∗

0, 1

1, 0 ∗

The unique β-discounted equilibrium payoff of this game is (1/2, 2/3),
and the points on the interval (1/2, 1) − (2/3, 2/3) are the only uniform
equilibrium payoffs. Since the limit of the β-discounted equilibrium payoffs
is not on this interval, it follows that the approach of Mertens and Neyman
[20] cannot be used for non zero-sum games.

By studying Sorin’s example, Vrieze and Thuijsman [36] were able to
prove that every two-player repeated game with absorbing states has a uni-
form equilibrium payoff. Though stationary uniform ε-equilibrium profiles
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need not exist in two-player repeated games with absorbing states, one can
prove that ‘almost’ stationary ε-equilibrium strategies do exist. A profile of
strategies is ‘almost’ stationary if it is given by a stationary profile and a
statistical test; the players follow the stationary profile as long as no player
fails the statistical test. Once a player has failed the test, he is punished
with an ε-min-max strategy forever. (an ε-min-max strategy against player
1 is the strategy of player 2 in an ε-equilibrium profile of the zero-sum game
that is defined by the payoffs of player 1).

Rogers [25] and Sobel [28] proved that stationary uniform equilibrium
profiles exist in every irreducible game and Thuijsman and Raghavan [31]
prove the same result for switching control games.

By carefully analyzing the proof of Vrieze and Thuijsman [36], Vieille [32]
proved that every stochastic game with three states has a uniform equilibrium
payoff.

Vieille [33, 34] proved that a uniform equilibrium payoff exists in every
two-player (non zero-sum) stochastic game if and only if a uniform equi-
librium payoff exists in every two player positive recursive games with the
absorbing property. These games are recursive games where the payoff for
player 2 in absorbing states is positive, and satisfy the following absorbing
property: for every fully mixed stationary strategy of player 2, the game
eventually reaches an absorbing state with probability 1, whatever player 1
plays. Existence of a uniform equilibrium payoff for this class of games was
given only recently by Vieille [35].

The only result on stochastic games with more than two players, whose
proof is different than the standard proofs for two-player games, was given
by Flesch et al. [13], who introduced the following example of a three-player
repeated game with absorbing states.

Example 3

B

T

L R L R
W E

1, 3, 0 ∗
0, 0, 0

1, 0, 1 ∗
0, 1, 3 ∗

0, 1, 1 ∗
3, 0, 1 ∗

0, 0, 0 ∗
1, 1, 0 ∗

In this game at every stage player one chooses a row, player 2 chooses a
column and player 3 chooses a matrix.
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Flesch et al. proved that there is no stationary uniform ε-equilibrium
profile in this game, but nevertheless a uniform equilibrium payoff does exist.
The equilibrium strategy profile has a cyclic nature: the mixed action that
player i plays at stage t is equal to the mixed action that player i+ 1 mod 3
plays at stage t+ 1. For more details, see section 4.2.5.

1.4 Application

Stochastic games have many applications in economy, biology, political sci-
ences and other fields. Bargaining between agents, interactions between dif-
ferent species, the behavior of political parties and political alliances can be
modeled by stochastic games.

Shubik and Whitt [27] modeled an economy with one non-durable good,
where the money is valued only as a means to obtain more real goods, as a
stochastic game. The state variable in this case is the vector of amounts of
money each player possesses.

Winston [38] gave a model of an arm race as a stochastic game. In his
model there is a weapon development competition between two countries,
and the difference between the level of development between the countries is
the state variable.

Filar [11] studied a traveling inspector model: an inspector should in-
spect some facilities, who can profit by violating the regulations. The aim of
the inspector is to minimize the cost for the society, due to inspection and
violations. In this model the state variable is the current facility that the
inspector inspects.

Levhari and Mirman [19], Amir [1], Dutta and Sundaram [9] and others
consider a common property resource model. Two agents simultaneously
exploit a productive asset (or resource). Any amount of the resource left over
after consumption in a given period forms the investment for that period,
and is transformed into the available stock for the next period through a
production function.

Team games were studied in [6, 7, 8] for understanding interactions be-
tween players of the same team, and more precisely, the “free rider” phe-
nomenon in team games.

Kohlberg and Zamir [17] proved that if every two player zero-sum re-
peated game with absorbing states has a uniform equilibrium payoff then ev-
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ery repeated game with symmetric incomplete information and deterministic
signaling has a uniform equilibrium payoff. This result was generalized by
Neyman and Sorin for existence of a uniform equilibrium payoff in n-player
repeated games with symmetric incomplete information and deterministic
signaling [23] and for non-deterministic signaling [24].

1.5 The Present Monograph

The goal of the present monograph is to shed more light on the existence
of the uniform equilibrium payoff in n-player stochastic games, and on the
structure of the uniform ε-equilibrium profiles.

We consider both n-player repeated games with absorbing states, and
two-player stochastic games, and we prove existence of a uniform equilibrium
payoff in classes of stochastic games, where existence was unknown before.

In this section we outline the main ideas of the monograph. We first
concentrate on n-player repeated games with absorbing states, and then on
two-player stochastic games.

1.5.1 Two-Player Repeated Games with Absorbing States

Since a basic idea of our approach was presented by Vrieze and Thuijsman
[36] in their proof for existence of a uniform equilibrium payoff in two-player
non zero-sum repeated games with absorbing states, we give a sketch of their
proof.

Vrieze and Thuijsman consider a sequence of β-discounted equilibria in
the game that converges to a limit as β → 1, and they construct different
types of uniform ε-equilibrium profiles according to various properties of this
sequence. Denote by x = (x1, x2) the limit of the β-discounted equilibrium
profiles, and by g = (g1, g2) the limit of the corresponding β-discounted
equilibrium payoffs. Note that x can be viewed as a stationary profile as
well.

Vrieze and Thuijsman prove that three cases can occur. (i) The stationary
profile x is absorbing, and then, by adding threat strategies to x, one can
construct a uniform ε-equilibrium profile. (ii) The stationary profile x is
non-absorbing, but the expected non-absorbing payoff for the players if they
follow the profile x is at least g. Then, by adding threat strategies to x,
one can devise a uniform ε-equilibrium profile. (iii) The stationary profile
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x is non-absorbing, but the non-absorbing payoff for one player, say player
1, if the players follow the profile x, is strictly less then g1. In this case, as
Vrieze and Thuijsman prove, player 2 has an action a2 (or a perturbation)
such that by playing the stationary profile (x1, a2) the game will be eventually
absorbed, and the payoff for both players is at least g. Using x, a2 and threat
strategies, one can construct a uniform ε-equilibrium profile.

It turns out that for more than two players, if the first two cases do not
occur then it might be the case that neither the payoff that the players receive
by the stationary profile x nor any absorbing perturbation of any subset of
the players (or a convex combination of some perturbations), yield all the
players a payoff which is at least g.

1.5.2 n-Player Repeated Games with Absorbing States

In order to overcome this difficulty, we define an auxiliary game, where the
non-absorbing payoff is bounded by the min-max value of the players in the
original game. We prove that for every player, the discounted value of the
auxiliary game converges, as the discount factor tends to 1, to his uniform
value in the original game.

Consider a sequence of discounted equilibria in the auxiliary game. De-
note by x the limit of the discounted stationary equilibrium profiles, and by
g the limit of the corresponding discounted equilibrium payoffs. It turns out
that the first two cases of Vrieze and Thuijsman yield an ‘almost’ stationary
ε-equilibrium profile as above, and, if they do not hold, then there exists a
convex combination of some perturbations that yields each player i a payoff
which is at least gi. When there are three players, or in team games, one can
construct, using this convex combination, a uniform ε-equilibrium profile for
every ε > 0.

In all the uniform ε-equilibrium profiles that we construct, the players
play mainly the limit of the discounted stationary equilibrium profiles, and
perturb to other actions with a very small probability, while checking statisti-
cally whether the other players do not deviate. Once a deviation is detected,
the deviator is punished with an ε-min-max profile forever. Such a profile is
called a perturbed profile.

Unfortunately, our approach cannot be generalized for more than three
players. In section 4.8 we give an example of a four player repeated game
with absorbing states where there exists a sequence of discounted equilibrium
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profiles in the auxiliary game that converges to a limit, but one cannot con-
struct a uniform ε-equilibrium profile where the players play mainly the limit
mixed-action. Recently Solan and Vieille [29] found an example of a four
player repeated game with absorbing states that has no perturbed uniform
equilibrium payoff. It is currently not known whether a uniform equilib-
rium payoff exists in every n-player repeated game with absorbing states, for
n ≥ 4.

The uniform equilibrium payoff that we construct is not necessarily equal
to g, the limit of the discounted equilibrium payoffs of the auxiliary game.
The reason is that the discounted payoff is a convex combination of the non-
absorbing payoff and the absorbing payoff, whereas the undiscounted payoff
of an absorbing mixed-action combination depends only on the absorbing
part.

For this reason we could not generalize the construction for stochastic
games with more than one non-absorbing state — if there is an equality be-
tween the uniform equilibrium payoff and the limit of the discounted payoffs,
then one can turn all non-absorbing states but one into absorbing states,
which yield the players a payoff equal to this limit, and get a repeated game
with absorbing states. By our result, this game has an equilibrium payoff,
which would be equal (by the hypothesis) to the original limit of the dis-
counted payoffs. Thus, one could construct an equilibrium payoff by working
“state after state”.

However, since the hypothesis is incorrect, and the limit of the discounted
payoff is not necessarily equal to the constructed equilibrium payoff, such an
approach fails.

1.5.3 Two-Player Recursive Games with the Absorbing Property

To overcome this problem we consider the undiscounted payoff instead of the
discounted payoff, that is, a player evaluates a stationary profile x by

Ex,s

 lim
t→∞

1

t

t∑
j=1

rij

 .
Since the undiscounted payoff is not continuous over the space of stationary
strategies (with the maximum norm), we cannot use standard fixed point
theorems.
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In order to “make” the undiscounted payoff continuous, we use a result
of Vieille [34]. As mentioned above, Vieille proved that for two player games,
it is sufficient to prove the existence of an equilibrium payoff for positive
recursive games with the absorbing property.

If we consider such a game, and restrict player 2 to a compact subset of the
fully mixed stationary strategies, then the undiscounted payoff is continuous
over the strategy space. We define ε-approximating games where player 2
must play every action with a positive probability, which is greater than some
function of ε. We consider a sequence of stationary undiscounted equilibria
in the ε-approximating games as ε→ 0, and, as in Vrieze and Thuijsman [36],
if there are at most two non-absorbing states then we construct, according
to various properties of the sequence, uniform ε-equilibrium profiles.

Unfortunately, the uniform equilibrium payoff that we construct need
not be equal to the limit of the sequence of the equilibrium payoffs of the
ε-approximating games, hence we cannot generalize the proof for stochastic
games with more than two non-absorbing states.
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2 Preliminaries

2.1 On Puiseux Functions

Denote by F the collection of all Puiseux series, that is, the collection of all
the formal sums

∑∞
k=K ak(1− θ)k/M where K ∈ Z, M ∈ N, (ak)

∞
k=K are real

numbers and there exists θ0 ∈ (0, 1) such that
∑∞
k=K ak(1− θ)k/M converges

for every θ ∈ (θ0, 1).
We use θ both as an abstract symbol and as a real number. This dual

use should not confuse the reader.
It is well known (see, e.g. Walker [37] or Bewley and Kohlberg [4]) that F

is an ordered field, when addition and multiplication are defined in a similar
way to the same operations on power series, and

∑∞
k=K ak(1 − θ)k/M > 0 if

and only if
∑∞
k=K ak(1− θ)k/M > 0 for every θ sufficiently close to 1.

We define the degree of any non-zero Puiseux series by:

deg

( ∞∑
k=K

ak(1− θ)k/M
)

def
=

min{k | ak 6= 0}
M

and deg(0) =∞.

Definition 2.1 A function f̂ : [0, 1) → R is a Puiseux function if there
exists a Puiseux series

∑∞
k=K ak(1 − θ)k/M and θ0 ∈ (0, 1) such that f̂(θ) =∑∞

k=K ak(1− θ)k/M for every θ ∈ (θ0, 1).

As a rule, Puiseux functions are denoted with a hat.
The degree of a Puiseux function is the degree of the corresponding

Puiseux series, and the order on F induce an order on Puiseux functions.
Note that f̂(θ) = o((1 − θ)deg(f̂)−c) for every c > 0. If deg(f̂) ≥ 0 then

limθ→1 f̂(θ) is finite. In this case define f̂(1)
def
= limθ→1 f̂(θ). Note also that

deg(f̂ ĝ) = deg(f̂) + deg(ĝ). (1)

Clearly we have:

Lemma 2.2 Let f̂ , ĝ be two Puiseux functions such that f̂ , ĝ > 0. limθ→1
f̂(θ)
ĝ(θ)
∈

(0,∞) if and only if deg(f̂) = deg(ĝ), and limθ→1
f̂(θ)
ĝ(θ)

= 0 if and only if

deg(f̂) > deg(ĝ).
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2.2 Semi-Algebraic Sets

Definition 2.3 For every d ≥ 1, let Cd be the collection of all subsets of
Rd of the form {x ∈ Rd | p(x) = 0} or {x ∈ Rd | p(x) > 0}, where p is an
arbitrary polynomial.

A set C ⊆ Rd is semi-algebraic if it is in the finitely generated algebra
which is spanned by Cd.

By Theorem 8.14 in Forster [14] we have

Lemma 2.4 If the graph of a real valued function defined on (0, 1) is a semi-
algebraic set, then the function is a Puiseux function.

By Lemma 2.4 and Theorem 2.2.1 in Benedetti and Risler [3] we have,
by induction on d:

Theorem 2.5 Let C ⊆ Rd be a semi-algebraic set, whose projection over
its first coordinate includes the interval (0, 1). Then there exists a vector of
Puiseux functions f̂ = (f̂ i)d−1

i=1 : (0, 1) → Rd−1 such that (θ, f̂(θ)) ∈ C for
every θ ∈ (0, 1).

2.3 Notations

For every finite set I, we denote by ∆(I) the set of all probability distributions
over I.

Let I be a finite set, J ⊆ I, µ ∈ ∆(I) a probability distribution such that∑
i∈J µ(i) > 0, and L = {L1, . . . , Ln} a partition of J (that is, {Lj}nj=1 are

disjoint sets, whose union in J). The conditional probability induced by µ
over L, µL, is a probability distribution over L that is defined by:

µL(Lj) =

∑
i∈Lj µ(i)∑
i∈J µ(i)

.

For every a, b ∈ Rd, a ≥ b if ai ≥ bi for every i = 1, . . . , d, and a > b
if a ≥ b and a 6= b. Whenever we use a norm, it is the maximum norm. If
‖ a− b ‖≤ ε, we say that a is ε-close to b. For every ε > 0 let

B(a, ε) = {a′ ∈ Rd | ‖ a− a′ ‖≤ ε}.
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We identify each a0 ∈ A with α ∈ ∆(A) that is defined by

αa =

{
1 a = a0

0 a 6= a0

By convention, a sum over an empty set of indices is 0.
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3 Stochastic Games

3.1 The Model

A stochastic game is a 5-tuple G = (N,S, (Ai)i∈N , h, w) where

• N is a finite set of players.

• S is a finite set of states.

• For every i ∈ N , Ai is a finite set of actions available for player i in
each state s. Denote A = ×i∈NAi.

• h : S × A → R is the daily payoff function, hi(s, a) being the daily
payoff for player i in state s when the action combination a is played.
Let R ≥ 1 be a bound on |h|.

• w : S × A→ ∆(S) is the transition function.

Note that since the state space is finite, the assumption that the available
set of actions is independent of the state is not restrictive.

Let Hn = S × (A × S)n be the space of all histories of length n, H0 =
∪n∈NHn be the space of all finite histories and H = S × (A× S)N be the
space of all infinite histories. For every finite history h0 ∈ H0, L(h0) is its
length and sL(h0) is its last stage.

We define a partial order on H0. Let h0 = (s0, a1, s1, . . . , at, st) and
h′0 = (s′0, a

′
1, s
′
1, . . . , a

′
t′ , s

′
t′) be two histories. h′0 ≤ h0 if and only if t′ ≤ t

and (s′0, a
′
1, . . . , s

′
t′) = (s0, a1, . . . , st′), that is, h′0 is a beginning of h0. Define

h′0 < h0 if and only if h′0 ≤ h0 and h′0 6= h0. If h0 ∈ H0 and h ∈ H,
we say that h0 < h if h = (s0, a1, s1, . . .), h0 = (s′0, a

′
1, s
′
1, . . . , a

′
t, s
′
t) and

(s′0, a
′
1, . . . , s

′
t) = (s0, a1, . . . , st), that is, h0 is a beginning of h.

For every i ∈ N , let X i = ∆(Ai), the set of all mixed-action combinations
of player i. We denote X = ×i∈NX i, X−i = ×j 6=iX i and XL = ×i∈LX i for
every L ⊆ N . The multi-dimensional extensions of h and w to X are denoted
also by h and w.

Definition 3.1 A behavioral strategy of player i is a function σi : H0 →
X i. A strategy σi is stationary if σi(h0) depends only on sL(h0).
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A strategy profile (or simply a profile) is a vector of strategies, one for each
player. Every profile σ and finite history h0 induce a probability measure over
H (equipped with the σ-algebra generated by all the finite cylinders). The
probability measure is the measure that is induced by σ given that the history
h0 has occurred (regardless of the probability of h0 under σ). We denote this
measure by Prh0,σ, and expectation according to it by Eh0,σ. If h0 = (s) we
denote the expectation by Es,σ.

For every strategy σ and finite history h0 = (s0, a1, s1, . . . , at, st) we define
the strategy σ|h0 by:

σ|h0(h
′
0) = σ(s0, a1, s1, . . . , at, s

′
0, a
′
0, . . . , a

′
t′ , s

′
t′)

where h′0 = (s′0, a
′
0, . . . , a

′
t′ , s

′
t′).

Every xi ∈ X i can be viewed as a stationary strategy of player i. Every
such strategy is identified with a vector in R|S|·|A

i|

3.2 The Discounted Payoff

We denote by rit the daily payoff that player i receives at stage t.
Let σ be a strategy profile, s ∈ S, β ∈ [0, 1) and i ∈ N . The expected

β-discounted payoff for player i if the initial state is s and the players follow
the profile σ is given by:

viβ(s, σ) = (1− β)
∞∑
t=1

βt−1Es,σr
i
t,

where rit is the payoff of player i at stage t.

Definition 3.2 Let i ∈ N and β ∈ [0, 1). The vector (cis(β))s∈S is the
β-discounted min-max value of player i if the following two conditions hold:

• For every strategy profile σ−i of players N \ {i} there exists a strategy
σi of player i such that viβ(s, σ) ≥ cis(β) for every s ∈ S.

• There exists a strategy profile σ−i of players N \{i} such that for every
strategy σi of player i, viβ(s, σ) ≤ cis(β) for every s ∈ S.

Since the discounted payoff is continuous over the strategy space, and the
setup is finite, it follows that the β-discounted min-max value exists.
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Definition 3.3 The strategy profile σ is a β-discounted equilibrium if for
every player i, every strategy τ i of player i and every initial state s,

viβ(s, σ) ≥ viβ(s, σ−i, τ i).

The payoff vector (vβ(s, σ))s∈S is a β-discounted equilibrium payoff.

Fink [12] has proved the following:

Theorem 3.4 For every β ∈ [0, 1) there exists a β-discounted stationary
equilibrium profile in every stochastic game.

3.3 The Uniform MinMax Value

Definition 3.5 Let i ∈ N . The vector (cis)s∈S ∈ RS is the uniform min-
max value of player i if for every ε > 0 there exists tc ∈ N and a profile σ−iε
of players N \ {i} such that for every initial state s ∈ S:

• For every strategy σi of player i

Es,σ−iε ,σi

(
lim sup
t→∞

ri1 + ri2 + · · ·+ rit
t

)
≤ cis + ε

and for every t ≥ tc

Es,σ−iε ,σi

(
ri1 + ri2 + · · ·+ rit

t

)
≤ cis + ε.

• For every strategy profile σ−i of players N \ {i} there exists a strategy
σi of player i such that

Es,σ

(
lim inf
t→∞

ri1 + ri2 + · · ·+ rit
t

)
≥ cis − ε

and for every t > tc,

Es,σ

(
ri1 + ri2 + · · ·+ rit

t

)
≥ cis − ε.

The profile σ−iε is a uniform ε-min-max profile against player i.
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Lemma 3.6 For every player i, the min-max value ci exists. Moreover, ci =
limβ→1 c

i(β), the limit of the discounted min-max value of player i.

This result was proved by Mertens and Neyman [20] for two-player stochas-
tic games, and an unpublished proof of Neyman [22] that follows similar lines
proves the result for n-player stochastic games.

3.4 The Uniform Equilibrium Payoff

Definition 3.7 The payoff vector (g(s))s∈S ∈ RN×S is a uniform ε-equilibrium
payoff if there exist a strategy profile σε and te ∈ N such that for every player
i, every strategy τ i of player i, every initial state s and every t ≥ te

Es,σε

(
ri1 + ri2 + · · ·+ rit

t

)
≥ gi(s)− ε, (2)

Es,σε

(
lim inf
t→∞

ri1 + ri2 + · · ·+ rit
t

)
≥ gi(s)− ε, (3)

Es,σ−iε ,τ i

(
ri1 + ri2 + · · ·+ rit

t

)
≤ gi(s) + ε and (4)

Es,σ−iε ,τ i

(
lim sup
t→∞

ri1 + ri2 + · · ·+ rit
t

)
≤ gi(s) + ε. (5)

The profile σε is a uniform ε-equilibrium profile. The payoff vector g ∈ RN×S

is a uniform equilibrium payoff if it is an ε-equilibrium payoff for every ε > 0.

3.5 On Perturbed Equilibrium

In order to be able to implement the ε-equilibrium profile, we need the profile
to be “simple”. In example 1, one cannot construct ε-equilibrium profiles
which are stationary or Markovian. For some classes of stochastic games
existence of ‘almost’ stationary ε-equilibrium profiles was established. Flesch
et al. proved that in the game presented in example 3 there are no ‘almost’
stationary ε-equilibrium profiles.

In this section we define a broader class of profiles, called perturbed pro-
files. A profile in this class is given by a stationary strategy, small perturba-
tions and statistical tests. The players play mainly the stationary strategies,
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but perturb to other actions with small probability. All along, the actions of
each player are screened by a statistical test, and the first player who fails
the test is punished forever.

We later prove that different classes of stochastic games admit equilibrium
payoffs, whose corresponding ε-equilibrium profiles are perturbed.

The importance of perturbed strategies are that the distribution of the
actions almost resembles stationary strategies. Thus, if the players are dif-
ferent species, and the actions stand for various types of this specie, then
an equilibrium where at even stages half the population should consists of
males and half of females, while at odd stages two thirds should be females,
is clearly undesirable.

Note that perturbed equilibrium profiles may be complex: we say nothing
about the complexity of the perturbations, or on the statistical test.

For every function f : H0 → {0, 1}, let Z(f) ⊆ H0 be the set of all finite
histories h0 such that f(h0) = 0, but f(h′0) = 1 for every h′0 < h0.

Every function f : H0 → {0, 1} can represent a statistical test — if
f(h0) = 1 then the player does not fail the test, while if f(h0) = 0 then the
player fails the test. Z(f) is the set of all finite histories in which the player
fails the test for the first time.

For every vector function f : H0 → {0, 1}N we define Z(f) ⊆ H0 to be
the set of all finite histories h0 such that h0 ∈ Z(f i) for some i ∈ N , but
h′0 6∈ Z(f j) for every h′0 < h0 and every j ∈ N . For every h0 ∈ Z(f), the
index of h0 is the minimal i such that h0 ∈ Z(f i).

Every vector function f : H0 → {0, 1}N can represent a vector of statis-
tical tests, one test for each player. Z(f) is the set of finite histories where
a failure of some player is observed for the first time, and the index of the
history is the identity of the first player who failed his test.

We denote by G(f) the set of all finite histories h0 such that f i(h′0) = 1
for every i ∈ N and h′0 ≤ h0. G(f) is the set of “good” histories, where no
failure of the test has ever occurred.

Define
G?(f) = {h ∈ H | h0 ∈ G(f) ∀h0 < h}

and
Z?(f) = H \G?(f).

G?(f) is the set of all infinite histories where no failure is detected along the
whole game, and Z?(f) is the set of all infinite histories where a failure of
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some player is detected at some point.
Formally, the new class of equilibrium payoffs is defined as follows:

Definition 3.8 Let x ∈ X and ε > 0. A profile σ is (x, ε)-perturbed if
there exist

• a function f : H0 → {0, 1}N

• and for every i ∈ N , an ε-min-max strategy τ−iε against player i

such that

• For every history h0 ∈ G(f) we have ‖ σ(h0)− x ‖< ε.

• For every history h0 ∈ Z(f) with index i0 we have σ−i0|h0
= τ−i0ε .

Finally

Definition 3.9 Let x ∈ X. The payoff vector g ∈ RN×S is a uniform
(x, ε)-perturbed equilibrium payoff if it is an ε-equilibrium payoff, and there
exists an ε-equilibrium profile for g which is (x, ε)-perturbed. x is the base
of the ε-equilibrium payoff. The payoff vector g ∈ RN×S is a uniform x-
perturbed equilibrium payoff (or a perturbed equilibrium payoff) if it is an
(x, ε)-perturbed equilibrium payoff for every ε > 0.

In all the classes of stochastic games for which existence of the undis-
counted equilibrium payoff was proven, there exists a perturbed equilibrium
payoff. These classes, apart of the classes that admit stationary equilibria,
are two-player non zero-sum repeated games with absorbing states (Vrieze
and Thuijsman [36]), and positive recursive games with the absorbing prop-
erty (Vieille [35]). Recall that for two-player zero-sum stochastic games,
there exists an ε-equilibrium profile σ such that ‖ σ(h0) − x ‖< ε for every
finite history h0 ∈ H0, where x is a fixed mixed action combination (the
limit of the discounted stationary equilibria). Moreover, the expected payoff
that these profiles yield converge, as ε tends to 0, to the value of the game
(Mertens and Neyman [20]).

However, Solan and Vieille [29] show that stochastic games in general
need not admit perturbed equilibrium payoffs.

In the present paper we prove existence of a uniform perturbed equilib-
rium payoff in the following three classes of stochastic games: three-player
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repeated games with absorbing states, repeated team games with absorbing
states and two player stochastic games with two non-absorbing states.

Since the results in this monograph refer to uniform equilibria, when-
ever we write equilibrium payoff, ε-equilibrium profiles and min-max value,
we mean the uniform equilibrium payoff, uniform ε-equilibrium profile and
uniform min-max value respectively. Whenever we refer to the discounted
version of these notion, we explicitly mention the word discounted.
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4 Repeated Games with Absorbing States

In this section we prove that every three-player repeated game with absorb-
ing states, as well as every repeated team game with absorbing states, has
an equilibrium payoff. We begin by introducing an equivalent formulation of
repeated games with absorbing states (section 4.1). We then give five sets of
sufficient conditions for existence of a perturbed equilibrium payoff (section
4.2). We derive some preliminary results in sections 4.3-4.6, including the
definition of an auxiliary game (section 4.4), which is the core of the proof.
Afterwards we prove that every three-player repeated game with absorbing
states has an equilibrium payoff (section 4.7), and we explain why our ap-
proach cannot be used for games with more than three players (section 4.8).
We finally prove that every repeated team game with absorbing states has
an equilibrium payoff (section 4.9), and prove a geometric result, which is
used along the section (section 4.10).

4.1 An Equivalent Formulation

Recall that a repeated game with absorbing state is a stochastic game where
all the states but one are absorbing. Since every absorbing state is a standard
repeated game, we can choose for each such state one equilibrium payoff, and
assume that once this state is reached, all future payoffs are equal to this
equilibrium payoff.

Thus, an equivalent representation of a repeated game with absorbing
states is by a 5-tuple G = (N, (Ai, hi, ui)i∈N , w) where:

• N is a finite set of players.

• For every player i ∈ N , Ai is a finite set of pure actions available to
player i. Denote A = ×i∈NAi.

• For every player i, hi : A→ R is a function that assigns to each action
combination a ∈ A a non-absorbing payoff for player i.

• For every action combination a ∈ A, w(a) is the probability that the
game is absorbed if this action combination is played. If the game is
absorbed, ui(a) is the payoff that player i receives, at each future stage.
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The game is played as follows. At every stage each player chooses an action
ai ∈ Ai. If the game is not already absorbed, the players receive a daily payoff
h(a), where a = (ai)i∈N . With probability w(a) the game is absorbed, and
then the players receive a payoff u(a) at each future stage. With probability
1− w(a) the game continues.

Recall that the multi-linear extensions of h and w are also denoted by
h and w. A mixed action combination x ∈ X is absorbing if w(x) > 0 and
non-absorbing otherwise. Define an extension of u to X by:

ui(x) =
∑
a∈A

(∏
i∈N

xiai

)
w(a)ui(a)/w(x) (6)

whenever x is absorbing and 0 otherwise. ui(x) is the expected absorbing
payoff for player i given absorption occurs when the players play the mixed
action combination x. Note that u is semi-algebraic, and that wu is multi-
linear.

Since there is only one “interesting” state, we omit the state variable from
all the entities that we have defined, and they all refer to the non-absorbing
state as the initial state.

4.2 Different Types of Equilibria

In this section we present five sets of sufficient conditions for existence of
a perturbed equilibrium payoff in a repeated game with absorbing states.
The first three sets are for games with arbitrary number of players, while
the fourth is given only for three-player games. The fifth set of sufficient
conditions is a generalization of the third and fourth conditions for n-player
games.

The first and second sufficient conditions and a degenerate version of the
third were used by Vrieze and Thuijsman [36] for two-player games.

For every player i define the function ei : X → R by

ei(x) = w(x)ui(x) + (1− w(x))ci.

ei(x) is the maximal payoff that player i can guarantee if at the current stage
the players play the mixed-action combination x, and from the next stage
player i is punished forever with an ε-min-max profile, for an arbitrary small
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ε. Define
Ei(x) = max

ai∈Ai
ei(x−i, ai).

Ei(x) is the maximal payoff that player i can guarantee by “deviating” when
the mixed action combination x should be played, and then be punished with
an ε-min-max strategy, for an arbitrary small ε.

4.2.1 The Structure of the Proofs

With every set of sufficient conditions we give an example that illustrates the
corresponding ε-equilibrium profile, a formal definition of the ε-equilibrium
profile, and a proof that the profile is indeed an ε-equilibrium.

Since the proofs in all the different cases have the same structure, we will
now sketch the structure of the proofs.

In all the cases, we will be given a mixed action combination x ∈ X and
a payoff vector g ∈ RN such that gi ≥ Ei(x) for every player i ∈ N . We will
fix ε > 0 and proceed as follows.

Step a: Definition of a profile σ
We will define a profile σ such that ‖ σ(h0)− x ‖≤ ε for every finite history
h0 ∈ H0. The profile σ will always be cyclic, but the length of the cycle may
depend on ε, and its exact nature is derived from the conditions we impose.
Therefore the limit limt→∞(ri1 + · · ·+rit)/t exists a.s. w.r.t. σ. We will define
σ in such a way that∣∣∣∣Eσ

(
lim
t→∞

(ri1 + · · ·+ rit)/t
)
− gi

∣∣∣∣ < ε. (7)

Step b: Definition of a statistical test f
We will define a statistical test f : H0 → {0, 1}N . Recall that G?(f) is the
collection of all the infinite histories where the statistical test never fails, and
Z(f) is the collection of all the finite histories where the statistical test fails
for the first time.

We will prove that for every profile τ such that Prτ (G
?(f)) > 0, limt→∞(ri1+

· · ·+ rit)/t exists a.s. w.r.t. τ conditional on G?(f) and

Eτ

(
lim sup
t→∞

(ri1 + · · ·+ rit)/t | G?(f)
)
≤ gi + εR. (8)
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That is, as long as no “deviation” is detected, the expected payoff for any
player i cannot exceed gi + εR.

Step c: False Detection of Deviation
Next we will prove that if the players follow σ, then the probability of false
detection of deviation is smaller than ε, that is:

Prσ(G?(f)) > 1− ε. (9)

Step d: Definition of a Profile σf
For every profile σ and statistical test f , we define an (x, ε)-perturbed profile
σf as follows. The players follow σ as long as no player fails the statistical
test. The first player who fails the statistical test is punished with an ε-
min-max profile forever. Formally, σf (h0) = σ(h0) for every h0 ∈ G(f), and
σf |h0 = τ−iε for every h0 ∈ Z(f) with index i, where τ−iε is any ε-min-max
strategy against player i.

In all the cases, we define σ and f in such a way that the profile σf is a
3εR-equilibrium for g.

In the following steps we show how we will prove that σf is a 3εR-
equilibrium profile.

Step e: Eqs. (2) and (3) in Definition 3.7 hold
We shall now see that from the above steps it follows that Eqs. (2) and (3)
in Definition 3.7 hold w.r.t. σf . Indeed, by (7), (9) and since the payoffs are
bounded by R ≥ 1 it follows that

Eσf

(
lim inf
t→∞

(ri1 + · · ·+ rit)/t
)
≥ gi − 2εR.

Assume that te is sufficiently large such that for every t ≥ te

Eσ

(
(ri1 + · · ·+ rit)/t

)
≥ gi − 2ε ∀i ∈ N. (10)

It follows from (9) and (10) that for every t ≥ te

Eσf
(
(ri1 + · · ·+ rit)/t

)
≥ gi − 3εR ∀i ∈ N.
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Step f: Eqs. (4) and (5) in Definition 3.7 hold
This part of the proof is different for each set of sufficient conditions. Since
the limit limt→∞(ri1 + · · ·+ rit)/t exists a.s. w.r.t. σ, there exists te ∈ N such
that for every t ≥ te

Eτ

(
(ri1 + · · ·+ rit)/t | G?(f)

)
≤ gi + ε. (11)

By (8) and (11) it is left to verify that for every player i, every strategy τ i

of player i and every finite history h0 ∈ Z(f) with index i,

Eh0,σ
−i
f
,τ i

(
lim sup
t→∞

(ri1 + · · ·+ rit)/t
)
≤ gi + εR

and for every t ≥ te

Eh0,σ
−i
f
,τ i

(
(ri1 + · · ·+ rit)/t

)
≤ gi + εR.

To summarize, for each set of sufficient conditions we need to define a profile
σ that satisfies (7), a statistical test f that satisfies (8), and to prove (9)
and Step f. Along the different proofs we will refer to these steps as our
guidelines.

4.2.2 An ‘Almost’ Stationary Non-Absorbing Equilibrium

Example 4

B

T

L R L R
W E

1, 0, 0

0, 1, 0 ∗

0, 0, 0

0, 1, 2 ∗

0, 0, 1

1, 0, 0

1, 1, 1

0, 1, 0

The min-max value of each player in this game is 0.
One equilibrium payoff in the game is (1/2, 1/2, 1/2). Consider the non-

absorbing stationary profile (1
2
T + 1

2
B, 1

2
L + 1

2
R,E). Player 1 is indifferent

between his actions, while player 2 prefers to play always R, and player 3
prefers to play always W . Since the profile is non-absorbing, the players can
conduct a statistical test and check whether player 2 plays each action with
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probability close to 1/2. If the distribution of the realized actions of player
2 is not sufficiently close to (1/2, 1/2), then the other two players punish
him with a min-max profile forever. A deviation of player 3 is detected
immediately, and, given the game is not absorbed, can be punished with a
min-max profile.

It is easy to verify that the stationary non-absorbing profile, supplemented
with these threat strategies, is an ε-equilibrium profile for h(x), where the ε
comes from the probability of false detection of deviation in the statistical
test.

Lemma 4.1 Let x ∈ X be a non-absorbing mixed action combination such
that hi(x) ≥ Ei(x) for every player i ∈ N . Then h(x) is an equilibrium
payoff.

Note that by the assumption it follows that hi(x) ≥ ci for every player i.
Proof: Let ε > 0 be fixed, and denote g = h(x). Define a stationary profile
σ by:

σ(h0) = x ∀h0 ∈ H0.

It is clear that σ satisfies (7).
Define a statistical test as follows.

1. Each player i is checked if his strategy is compatible with σ (that is,
he does not play an action outside supp(xi)).

2. At every stage t ≥ t1 (where t1 is defined below), each player i is
checked whether the distribution of his realized actions is ε-close to xi.

Formally, the statistical test is given by a function f : H0 → {0, 1}N that is
defined as follows. f i(a1, a2, . . . , at) = 0 if and only if ait 6∈ supp(xi) or t ≥ t1

and
∣∣∣∣∣∣∣∣ai1+···+ait

t
− xi

∣∣∣∣∣∣∣∣ > ε. It is clear that (8) holds.

The constant t1 ≥ 1/ε is chosen sufficiently large such that the probability
of false detection of deviation is bounded by ε, that is, for every i ∈ N

Pr
(
‖ X̄ i

t − xi ‖< ε ∀t > t1
)
> 1− ε/|N | (12)

where X̄ i
t = 1

t

∑t
j=1 X

i
j and {X i

j} are i.i.d. r.v. with distribution xi. Hence
(9) holds.
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We shall now verify that (4) and (5) in Definition 3.7 hold. As remarked
in Step f, we fix a player i, a strategy τ i of player i and a history h0 ∈ Z(f)
with index i.

We assume that t1 is sufficiently large such that:

t1h
i(x) + tcR

t1 + tc
≤ hi(x) + ε ∀i ∈ N. (13)

Let t2 ≥ tc be sufficiently large such that

t1R + t2c
i

t1 + t2
≤ ci + ε ∀i ∈ N. (14)

If L(h0) ≤ t1 then by (14) and the condition, for every t ≥ t1 + t2,

Eh0,σ
−i
f
,τ i

(
ri1 + · · ·+ rit

t

)
≤ hi(x) + 2εR (15)

and

Eh0,σ
−i
f
,τ i

(
lim inf
t→∞

ri1 + · · ·+ rit
t

)
≤ hi(x) + εR. (16)

If, on the other hand, L(h0) > t1 then it follows by (13) and the condition
that (15) and (16) hold.

Thus σf is a 3εR-equilibrium profile for h(x), and h(x) is an x-perturbed
equilibrium payoff.

4.2.3 An ‘Almost’ Stationary Absorbing Equilibrium

Consider the game in example 4. Another equilibrium payoff in this game is
(0, 1, 1), and an equilibrium profile is to play the stationary profile (T, 1

2
L+

1
2
R,W ), while checking for a deviation of players 1 and 3. Once a deviation is

detected, the deviator is punished with a min-max strategy profile. Note that
player 2 is indifferent between his actions, hence the fact that his deviations
cannot be checked (since the game is absorbed after the first stage, whatever
he plays) does not affect this equilibrium.

Lemma 4.2 Let x ∈ X be an absorbing mixed action combination that sat-
isfies the following two conditions:
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1. ui(x) ≥ Ei(x) ∀i ∈ N .

2. ui(x) = ui(x−i, ai) for every i ∈ N and every ai ∈ supp(xi) such that
w(x−i, ai) > 0.

Then u(x) is a perturbed equilibrium payoff.

Proof: Denote g = u(x). We will consider the profile that was defined in
the proof of Lemma 4.1, but assume that the constant t1 is sufficiently large
to satisfy an additional requirement. We will then prove, as in Lemma 4.1,
that this profile is an ε-equilibrium for g.

It is clear that if the players follow the stationary profile σ that was
defined in the proof of Lemma 4.1 then (7) holds, and that (8) holds as well.

Let η > 0 be fixed. Let ε ∈ (0, η) be sufficiently small such that every
y ∈ B(x, ε) satisfies that w(y) > w(x)/2 and ‖ u(y)− u(x) ‖< η.

Consider the statistical test f that was defined in the proof of Lemma 4.1,
but assume that the constant t1 is sufficiently large such that if no deviation
is detected then absorption occurs before stage t1 with probability greater
than 1− ε, that is, (1− w(x)/2)t1 < ε.

By the choice of t1, (9) holds.
Fix a player i, a strategy τ i of player i and a history h0 ∈ Z(f) with

index i. If L(h0) ≤ t1 then by (14) and the conditions, for every t ≥ t1 + t2
(where t2 is defined in the proof of Lemma 4.1)

Eh0,σ
−i
f
,τ i

(
ri1 + · · ·+ rit

t

)
≤ t1u

i(x) + (t− t1)(Ei(x) + ε)

t
≤ ui(x) + ε (17)

and

Eh0,σ
−i
f
,τ i

(
lim inf
t→∞

ri1 + · · ·+ rit
t

)
≤ ui(x) + ε. (18)

Since
Prσ (h ∈ H | ∃h0 < h s.t. h0 ∈ Zf and L(h0) ≥ t1) < ε

it follows that

Eσ−i
f
,τ i

(
ri1 + · · ·+ rit

t

)
≤ ui(x) + 3εR

and

Eσ−i
f
,τ i

(
lim inf
t→∞

ri1 + · · ·+ rit
t

)
≤ ui(x) + 2εR.
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Thus σf is a 3εR-equilibrium profile for u(x), and u(x) is an x-perturbed
equilibrium payoff.

4.2.4 Average of Perturbations

Example 5

B

M

T

L C R L C R

W E

1,−2, 3∗
0, 0, 0

0, 0, 0

1, 4, 1 ∗
0, 0, 0 0, 1, 0 ∗

3, 0, 1 ∗
0, 0, 0 0, 0, 0

The empty cells may be arbitrary (both the payoff and whether they are
absorbing or not). Let R be the maximal payoff (in absolute values). We fix
ε > 0 and denote δ = ε/R. Note that the min-max value of players 1 and 2
is at most 1, and the min-max value of player 3 is at most 0.

One equilibrium payoff is (1, 4, 1) and an ε-equilibrium profile for it is to
play at every stage the mixed-action combination ((1− δ)T + δM, (1− δ)L+
δC,W ). Clearly if the players follow this profile then they receive the desired
payoff, and no player can profit more than δR = ε by deviating.

Absorption occurs at every stage with probability δ2, while perturbations
of players 1 and 2 occur with probability δ. Therefore, if δ is sufficiently
small, the players can conduct statistical tests to check whether player 1
plays the action M in frequency δ, and whether player 2 plays the action L
with frequency δ. Though these tests are not necessary, since no player can
profit by deviating, they can still be employed.

Another equilibrium payoff is (2, 2, 1) = 1
2
(1, 4, 1) + 1

2
(3, 0, 1), and an

ε-equilibrium profile for it is:

• At odd stages play ((1− δ)T + δM, (1− δ)L+ δC,W ).

• At even stages play ((1− δ)T + δM,L, (1− δ)W + δE).

If the players follow this profile then their expected payoff is approximately
(2, 2, 1). Since player 1 prefers absorption by (M,L,E), while player 2 prefers

34



absorption by (M,C,W ), the players should conduct statistical tests and
check whether each of them follows this profile, and punish a deviator with
an ε-min-max profile.

Yet a third equilibrium payoff is (1, 1, 2) = 1
2
(1, 4, 1) + 1

2
(1,−2, 3), and an

ε-equilibrium profile for it is:

• At odd stages play ((1− δ)T + δM, (1− δ)L+ δC,W ).

• At even stages play ((1− δ2)T + δ2B,L,W ).

If the players follow this profile then their expected payoff is approximately
(1, 1, 2). In this case the players cannot check whether player 1 plays at
even stages the action B in frequency δ2, since once he plays this action the
game terminates with probability 1 − δ, and there is a probability of 1/2
that he never plays B. Nevertheless player 1 has no incentive to deviate, and
therefore such a check is not needed. However. the players do need to check
whether player 2 perturbs at odd stages as he should.

Actually, every convex combination (g1, g2, g3) of the four absorbing cells
(1,−2, 3), (1, 4, 1), (0, 1, 0) and (3, 0, 1) in which g1, g2 ≥ 1, g3 ≥ 0 that satis-
fies:

• If (1,−2, 3) has a positive weight in this combination then g1 = 1.

• If (0, 1, 0) has a positive weight in this combination then g2 = 1.

is an equilibrium payoff.

Definition 4.3 Let x ∈ X be a non-absorbing mixed-action combination
and L ⊆ N . An action combination bL ∈ ×i∈LAi is an absorbing neighbor
of x by L if

• w(x−L, bL) > 0.

• w(x−L
′
, bL

′
) = 0 for every strict subset L′ of L.

If L = {i} then the absorbing neighbor is called a single absorbing neighbor
of player i.

We denote by B(x) the set of all absorbing neighbors of x, and by Bi(x)
the set of all single absorbing neighbors of player i. Note that B(x) is never
empty (as long as there is an absorbing action combination), but Bi(x) may
be empty.
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Lemma 4.4 Let x ∈ X be a non-absorbing mixed action combination. Let
µ ∈ ∆(B(x)) and denote g =

∑
bL∈B(x) µ(bL)u(x−L, bL). Assume the following

conditions hold:

1. gi ≥ Ei(x) ∀i ∈ N .

2. ui(x−i, ai) = gi for every player i and every action ai ∈ Bi(x)∩supp(µ).

Then g is an equilibrium payoff.

Proof: Let ε > 0 be sufficiently small, T ∈ N sufficiently large, and m :
[1, . . . , T ]→ supp(µ) such that∣∣∣∣∣#{j | m(j) = bL}

T
− µ(bL)

∣∣∣∣∣ < ε/3, ∀bL ∈ supp(µ). (19)

That is, m is a discrete approximation of µ. Extend the domain of m to N
by m(t) = m(t mod T ) for every t > T . Let L(t) be the set of players for
which m(t) is an absorbing neighbor of x.

In the sequel, δ ∈ (0, ε) is sufficiently small, such that

(1− δ)T > 1− ε/3 (20)

and t1, t2 ∈ N are sufficiently large. For every bL ∈ supp(µ), let δ(bL) =
(δ/w(x−L, bL))1/|L|. Define a cyclic profile σ as follows:

• At stage t the players play the mixed action combination (1−δ(m(t)))x+
δ(m(t))(x−L(t),m(t)).

If the players follow σ then the probability of absorption at each stage
t is δ(m(t))|L(t)|w(x−L(t),m(t)) = δ. Fix consecutive T stages. By (19) and
(20), the probability that the game is absorbed by a neighbor bL ∈ supp(µ),
given absorption occurs in these T stages, is ε-close to µ(bL). It follows that
(7) holds.

Let η ∈ (0, ε/3) be sufficiently small such that for every bL ∈ supp(µ) and
y ∈ B(x, η) we have ‖ u(x−L, bL)− u(y−L, bL) ‖< ε. Define a statistical test
f as follows. Each player i is checked for the following:

1. Whether his realized actions are compatible with σ.
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2. For every bL ∈ supp(µ) such that i 6∈ L, whether the distribution of his
realized actions, restricted to stages j such that m(j) = bL, is η-close
to xi. This check is done only after stage t1T .

3. For every bL ∈ supp(µ) such that i ∈ L, whether player i plays the
action bi during stages j such that m(j) = bL with probability δ(bL)
(that is, the realized probability p should satisfy 1−η/|N | < p/δ(bL) <
1 + η/|N |). This check is done only after stage t2T .

4. If supp(µ) ⊆ Bi(x), whether the game was absorbed before stage t0
(where t0 is defined below).

The second test checks whether the players play mainly the mixed action
combination x, and the third test checks whether the players perturb to
absorbing neighbors bL such that |L| ≥ 2 in the pre-specified frequencies. By
the second condition, it is not necessary to check whether players perturb to
single absorbing neighbors in the pre-specified frequencies. Moreover, such
a check cannot be done. However, if all the absorbing neighbors in µ are
single absorbing neighbors of player i, then it might be in the interest of
player i never to perturb to his single absorbing neighbors, and to receive
the non-absorbing payoff forever. The last test takes care of this type of
deviation.

Formally, f i(a1, . . . , at) = 0 if and only if at least one of the following
holds:

• i 6∈ L(t) and ait 6∈ supp(xi).

• i ∈ L(t) and ait 6∈ supp(xi) ∪ {mi(t)}.

• t ≥ t1T , i 6∈ L(t) and
∣∣∣∣∣∣∣∣xi − ∑

j<t | m(j)=m(t)
aij

t

∣∣∣∣∣∣∣∣ > η.

• t ≥ t2T , i ∈ L(t) and∣∣∣1−#{j < t | m(j) = m(t) and aij = mi(t)}/δ(m(t))
∣∣∣ < η/|N |.

• If supp(µ) ⊆ Bi(x) and t ≥ t0, where t0 ∈ N satisfies that (1 −
δ(m(1)))t0 < ε.

37



Note that if no deviation is ever detected, then the game is bounded to be
eventually absorbed. By (19), (20), the second condition and the definitions
of η and f it follows that (8) holds.

It is left to prove that (9) holds, and that no player can gain too much
by deviating.

We claim that it is sufficient to prove the following:

a) If the game is absorbed before a deviation is detected, while player i
plays an action ai ∈ Bi(x)∩ supp(µ), then player i’s expected payoff is
at most gi + ε.

b) If player i deviates, by altering the probability in which he plays actions
within supp(xi), or the action mi(t) at stage t with |L(t)| ≥ 2, then
the probability of absorption before the statistical test is employed is
at most ε.

c) By a detectable deviation no player can profit more than 2εR.

d) The probability of false detection of deviation is bounded by ε (that is,
(9) holds).

Indeed, (a)-(c) imply that Step f holds. Note that (a) holds by the second
condition and the definition of σ, and (c) holds by the first condition and the
definition of σ.

Let us now see how to choose the constants δ,t1 and t2 such that (b) and
(d) will hold. To insure (d) we need for the second test that

Pr
(
‖ X̄ i

t − xi ‖< η ∀t > t1T
)
> 1− ε/2|N | ∀i ∈ N (21)

where X̄ i
t = 1

t

∑t
j=1 X

i
j and {X i

j} are i.i.d. r.v. with distribution xi. For the
third test we need that

Pr
(
‖ Ȳ i

t /δ(m(t))− 1 ‖< η ∀t > t2T
)
> 1− ε/2|N | ∀i ∈ N (22)

where Ȳ i
t = 1

t

∑t
j=1 Y

i
j and {Y i

j } are i.i.d. Bernoulli r.v. with P (Y i
j = 1) =

δ(m(t)). To insure (b) we need for the first test that

(1− δ)t1T > 1− ε (23)
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and for the third test that(
1− δ(|L(t)|−1)/|L(t)|

)t2T ≥ (1− δ1/2)t2T > 1− ε ∀t = 1, . . . , T. (24)

We claim that there exist δ, t1 and t2 such that (21), (22), (23) and (24)
hold. We need the following lemma:

Lemma 4.5 Let ε > 0, p = 1/n for some n ∈ N and (Xt)t∈N be i.i.d.
Bernoulli random variables with P (Xt = 1) = p. There exists t? ∈ N such
that

P

(∣∣∣∣∣
∑t
j=1 Xj

tp
− 1

∣∣∣∣∣ < 2ε ∀t > t?
p

)
> 1− ε. (25)

Proof: Let λ ∈ (1, 1 + ε) and t? = λ/ε3(λ− 1). By Kolmogorov’s Inequality
(see, e.g., Lamperti [18], p. 46), for every k ∈ N

Pr

 max
λkt?/p<t≤λk+1t?/p

∣∣∣∣∣∣
t∑

j=1

(Xj − p)

∣∣∣∣∣∣ < ελk+1t?p

 ≤ λk+1t?p(1− p)
ε2λ2(k+1)t2?p

2

<
1

ε2λk+1t?p
(26)

Summing (26) over all k ≥ 0 yields

Pr

max
t?/p<t

∣∣∣∣∣∣
t∑

j=1

(Xj − p)

∣∣∣∣∣∣ < 2εt

 <
λ

ε2t?(λ− 1)
≤ ε

and (25) follows.

Let t1 ∈ N be sufficiently large to satisfy (21). Let ρ0 > 0 be such that
for every ρ ∈ (0, ρ0)

(1− ρ)ρ
−1/2

=
(
(1− ρ)1/ρ

)ρ1/2
> 1− ε. (27)

Let δ ∈ (0, ρ2
0) be sufficiently small such that (23) holds. Denote t2 = 1/Tδ1/4.

We assume δ is sufficiently small such that t? = t2T satisfies Lemma 4.5.
Since δ1/2 < ρ0, it follows by (27) that (24) holds, and since t2T satisfies
Lemma 4.5, (22) holds.
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4.2.5 A Cyclic Equilibrium

Example 6

B

T

L R L R
W E

1, 3, 0 ∗
0, 0, 0

1, 0, 1 ∗
0, 1, 3 ∗

0, 1, 1 ∗
3, 0, 1 ∗

0, 0, 0 ∗
1, 1, 0 ∗

This game was studied by Flesch et al. (1997). The game is symmetric
in the sense that for every player i and action combination a = (a1, a2, a3) 6=
(T, L,W ) we have

ui(a1, a2, a3) = ui+1 mod 3(a3, a1, a2),

where we identify T = L = W and B = R = E.
Flesch et al. (1997) prove that (1, 2, 1) is an equilibrium payoff. The

equilibrium profile that Flesch et al. suggest is the following.

• At the first stage, the players play (1
2
T + 1

2
B,L,W ).

• At the second stage, the players play (T, 1
2
L+ 1

2
R,W ).

• At the third stage, the players play (T, L, 1
2
W + 1

2
E).

• Afterwards, the players play cyclicly those three mixed-action combi-
nations, until absorption occurs.

If the players follow this profile then their expected payoff is (1, 2, 1), and it
can easily be checked that no player has a profitable deviation.

Let ε > 0. A more robust ε-equilibrium profile for this game, that does
not depend on the payoffs of the cells (T,R, E), (B,R,W ) and (B,L,E) is
the following. Let δ < ε/R (where R is the maximal payoff in absolute values)
and n ∈ N satisfy that (1− δ)n = 1/2.

• The players play ((1− δ)T + δB, L,W ) for n stages (thus, the overall
probability to be absorbed by the action combination (B,L,W ) is 1/2).

• Then the players play (T, (1− δ)L+ δR,W ) for n stages.
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• Then the players play (T, L, (1− δ)W + δE) for n stages.

• Afterwards, the players play cyclicly those three phases, until absorp-
tion occurs.

Definition 4.6 Let a, b, c ∈ R3. The three vectors (a, b, c) are left-cyclic if
b1 > a1 > c1, c2 > b2 > a2 and a3 > c3 > b3, and right-cyclic if b1 < a1 < c1,
c2 < b2 < a2 and a3 < c3 < b3. They are cyclic if they are either left-cyclic
or right-cyclic. They are positive cyclic if they are cyclic and

det

 0 b1 − a1 c1 − a1

a2 − b2 0 c2 − b2

a3 − c3 b3 − c3 0

 > 0.

Whenever we say that three vectors are cyclic, it should be understood that
the first vector serves as the a in the above definition, the second vector
serves as the b, and the third serves as the c.

Note that if (a, b, c) are left-cyclic, then ((a1, a3, a2), (c1, c3, c2), (b1, b3, b2))
are right-cyclic.

Lemma 4.7 If (a, b, c) are positive right-cyclic vectors then the system of
equations

a1 =
βb1 + (1− β)γc1

β + (1− β)γ
(28)

b2 =
γc2 + (1− γ)αa2

γ + (1− γ)α
(29)

c3 =
αa3 + (1− α)βb3

α + (1− α)β
(30)

has a unique solution. Moreover, this solution satisfies α, β, γ ∈ (0, 1).

Proof: Assume w.l.o.g. that a1 = b2 = c3 = 0. Since the vectors are cyclic, it
follows that a2, a3, b1, b3, c1, c2 6= 0. Note that every solution (α, β, γ) satisfies
that α, β, γ 6∈ {0, 1}.
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We are going now to calculate β. By (29) and (30) we have

α =
−γc2

(1− γ)a2

=
βb3

βb3 − a3

, (31)

and by (28) we have

γ =
−βb1

(1− β)c1

. (32)

Substituting (32) in (31) and dividing by β yields

b1c2

c1 − βc1 + βb1

=
b3a2

βb3 − a3

.

Hence

β =
a2b3c1 + a3b1c2

b3b1c2 + a2b3c1 − a2b3b1

is uniquely determined. Since (a, b, c) are right-cyclic it follows that the
denominator is positive, while since they are positive cyclic, the numerator
is also positive. Hence β > 0. To prove that β < 1 it is sufficient to prove
that b3b1c2 − a2b3b1 − a3b1c2 > 0, which holds since (a, b, c) are right-cyclic.

In a similar way we prove that α, γ ∈ (0, 1).

The following sufficient condition is given only for three-player repeated
games with absorbing states, hence we assume that N = {1, 2, 3}.

Lemma 4.8 Let x ∈ X be a non-absorbing mixed action combination and
for every i ∈ N let yi ∈ X i such that

1) For every i ∈ N , w(x−i, yi) > 0 and ui(x−i, yi) ≥ Ei(x).

2) (u(x−1, y1), u(x−2, y2), u(x−3, y3)) are positive cyclic vectors.

3) For every player i and every action ai ∈ supp(yi), w(x−i, ai) > 0 and
ui(x−i, ai) = ui(x−i, yi).

Then there exists an equilibrium payoff.

Proof: Assume w.l.o.g. that (u(x−1, y1), u(x−2, y2), u(x−3, y3)) are right-
cyclic (otherwise, change the names of players 2 and 3, and recall the remark
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after Definition 4.6). By condition 2 and Lemma 4.7 there exist α, β, γ ∈
(0, 1) such that

u1(x−1, y1) =
βu1(x−2, y2) + (1− β)γu1(x−3, y3)

β + (1− β)γ
, (33)

u2(x−2, y2) =
γu2(x−3, y3) + (1− γ)αu2(x−1, y1)

γ + (1− γ)α
and (34)

u3(x−3, y3) =
αu3(x−1, y1) + (1− α)βu3(x−2, y2)

α + (1− α)β
. (35)

Let ε > 0 be fixed. Let δ1, δ2, δ3 ∈ (0, ε) be sufficiently small and
n1, n2, n3 ∈ N satisfy the following

(1− δ1w(x−1, y1))n1 = 1− α
(1− δ2w(x−2, y2))n2 = 1− β (36)

(1− δ3w(x−3, y3))n3 = 1− γ.

Define a profile σ as follows:

• Phase 1: The players play the mixed action combination (1 − δ1)x +
δ1(x−1, y1) for n1 stages.

• Phase 2: The players play the mixed action combination (1 − δ2)x +
δ2(x−2, y2) for n2 stages.

• Phase 3: The players play the mixed action combination (1 − δ3)x +
δ3(x−3, y3) for n3 stages.

• The players repeat cyclicly these three phases until absorption occurs.

If the players follow σ then the probability that the game is absorbed
during the first phase is 1−(1−δ1w(x−1, y1))n1 = α. Similarly, the probability
that the game is absorbed during the second and third phases are β and γ
respectively. Hence the game will be eventually absorbed with probability 1.

We first calculate the expected payoff for the players if they follow σ. The
expected payoff for player 1 is, by (33),

αu1(x−1, y1) + (1− α)βu1(x−2, y2) + (1− α)(1− β)γu1(x−3, y3)

1− (1− α)(1− β)(1− γ)
= u1(x−1, y1).
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Moreover, for every j ≤ n1 his expected payoff given absorption has not
occurred in the first j stages is u1(x−1, y1).

Similarly, the expected payoff of player 2 given absorption has not oc-
curred during the first n1 stages is u2(x−2, y2). By condition 2, u2(x−1, y1) >
u2(x−2, y2), and therefore the expected payoff of player 2 is

αu2(x−1, y1) + (1− α)u2(x−2, y2) ≥ u2(x−2, y2).

Moreover, for every j ≤ n1 the expected payoff for player 2 given absorption
has not occurred in the first j stages is at least u2(x−2, y2).

In a similar way, the expected payoff of player 3 given absorption has
not occurred during the first n1 + n2 stages is u3(x−3, y3). Since the profile
is cyclic, it follows that his expected payoff at the beginning of the game
is u3(x−3, y3). By condition 2, u3(x−1, y1) < u3(x−3, y3), and therefore for
every j ≤ n1 his expected payoff given absorption has not occurred during
the first j stages is at least u3(x−3, y3).

Denote g = (u1(x−1, y1), αu2(x−1, y1) + (1 − α)u2(x−2, y2), u3(x−3, y3)).
Then (7) holds. Since (u(x−1, y1), u(x−2, y2), u(x−3, y3)) are right-cyclic and
by the first assumption, it follows that

gi ≥ ui(x−i, yi) ≥ Ei(x) ∀i ∈ N.

Let η ∈ (0, ε) sufficiently small such that for every z ∈ B(x, η) we have
w(z−i, yi) > w(x−i, yi)/2 and ‖ u(x−i, yi)− u(z−i, yi) ‖< ε.

Define a statistical test f as follows. Each player i is checked for the
following:

• Whether his realized action is compatible with σ.

• Let t0 = k(n1 + n2 + n3) be the first stage of phase 1 at the k + 1st
cycle. At each stage t such that t0 + t1 ≤ t ≤ t0 + n1 (where t1 is
defined below) players 2 and 3 are checked whether the distribution of
their realized actions at stages t0, t0 + 1, . . . , t − 1 is η-close to x2 and
x3 respectively.
Analogous checks are done in phases 2 and 3.

Formally, the statistical test is defined as follows. Let t, k ∈ N satisfy that
k(n1 + n2 + n3) ≤ t < k(n1 + n2 + n3) + n1. f i(a1, a2, . . . , at) = 0 if and only
if at least one of the following holds:
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• i 6= 1 and ait 6∈ supp(xi).

• i = 1 and a1
t 6∈ supp(x1) ∪ supp(y1).

• i 6= 1, t ≥ t0 + t1, where t0 = k(n1 + n2 + n3), and

∣∣∣∣∣
∣∣∣∣∣
∑t−1

j=t0
aij

t−t0 − xi
∣∣∣∣∣
∣∣∣∣∣ > η.

The function f is defined analogously for every t that satisfies k(n1 + n2 +
n3) + n1 ≤ t < (k + 1)(n1 + n2 + n3) for some k ∈ N. By condition 3 and
the definitions of f and η, (8) holds.

We choose the various constants in the following way. Let k0 ∈ N be
sufficiently large such that if no deviation is detected in σf , and at least one
of the players follows σf , then absorption occurs during the first k0 cycles
with probability greater than 1− ε/2. Formally,

(1− α/2)k0 , (1− β/2)k0 , (1− γ/2)k0 < ε/2. (37)

Let t1 ∈ N be sufficiently large such that

Pr
(
‖ X̄ i

t − xi ‖< η ∀t > t1
)
> 1− ε/6k0 ∀i ∈ N (38)

where X̄ i
t = 1

t

∑t
j=1 X

i
j and {X i

j} are i.i.d. r.v. with distribution xi. By (37)
and (38) it follows that (9) holds.

Let δ1, δ2, δ3 > 0 be sufficiently small such that

(1− δi)t1 > 1− ε ∀i ∈ N. (39)

Moreover, we choose {ni} and {δi} in such a way that (36) holds.
Let t3 = k0(n1 + n2 + n3). If no deviation is detected then absorption

occurs before stage t3 with probability greater than 1 − ε/2. Let t4 ∈ N be
sufficiently large such that

t3R + (t4 − t3)ci

t4
≤ ci + ε ∀i ∈ N. (40)

We will show that in phase 1 no player can deviate and profit more than
2εR. The proofs for the other phases is analogous.

Fix a player i, a strategy τ i of player i and a history h0 ∈ Z(f) with index
i such that L(h0) < n1. If in h0 player i fails the second test then by (39)

45



the probability of absorption before the statistical test is employed is smaller
than ε, and by the first condition and the choice of t4, for every t ≥ t4:

Eh0,σ
−i
f
,τ i

(
ri1 + · · ·+ rit

t

)
≤ t3R + (t− t3)(Ei(x) + ε)

t
≤ gi + 2ε (41)

and

Eh0,σ
−i
f
,τ i

(
lim inf
t→∞

ri1 + · · ·+ rit
t

)
≤ Ei(x) + ε ≤ gi + ε. (42)

If, on the other hand, player i fails the first test, then by the first condi-
tion, Eqs. (41) and (42) hold.

Thus σf is a 2εR-equilibrium profile for g, and g is an x-perturbed equi-
librium payoff.

4.2.6 A Generalization

We now generalize the third and fourth sufficient conditions to a single suf-
ficient condition, that holds for an arbitrary number of players.

Lemma 4.9 Let x be a non-absorbing mixed-action combination. For every
j ∈ N, let µj ∈ ∆(B(x)) and αj ∈ (0, 1] such that

∑
j∈N αj =∞. Let (rj)j∈N

be the unique solution of the following system of linear equation:

rj = αj

 ∑
bL∈B(x)

µj(b
L)u(x−L, bL)

+ (1− αj)rj+1 ∀j ∈ N. (43)

Assume that the following conditions hold:

1) rij ≥ Ei(x) for every i, j ∈ N.

2) For every j ∈ N and every player i ∈ N such that there exists a single
absorbing perturbation bi ∈ supp(µj) of player i we have:

rij+1 = ui(x−i, bi) = rij.

Then for every j ∈ N, rj is an x-perturbed equilibrium payoff.
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Note that since
∑
j∈N αj =∞ it follows that the system of linear equations

(43) has a unique solution.
The ε-equilibrium profile is constructed in phases: in phase j, the players

play an ε/2j-equilibrium profile as defined in the proof of Lemma 4.4 for
µj, either until the game is absorbed, or a deviation is detected, or until
the overall probability of absorption during phase j is at least αj − ε/2j. If
the players follow this profile then the overall probability of false detection
of deviation is bounded by ε, and since

∑
j∈N αj = ∞, if no deviation is

detected then the game will eventually be absorbed with probability 1. As
in the proof of Lemma 4.4, no player can profit more than ε by deviating.

Note that this equilibrium can be generalized to equilibrium profiles which
are not perturbed, by using at stage j a (possibly) different mixed-action
combination xj, instead of the same x always.

4.3 On the Discounted Game

Recall that viβ(x) is the expected β-discounted payoff for player i if the players
follow the stationary profile x.

In this section we recall a fundamental formula that is already derived by
Vrieze and Thuijsman [36] for the discounted payoff that is used later, and
we prove that for every ε > 0 there exists an interval (β(ε), 1) such that for
every mixed action x−i of the players N \ {i}, player i has a reply which is
ε-good in every β-discounted game (where β ∈ (β(ε), 1)).

The function vβ(x) satisfies the recursion formula:

vβ(x) = (1− β)h(x) + βw(x)u(x) + β(1− w(x))vβ(x). (44)

Since h and uw are multi-linear, it follows that vβ is quasi-concave. Indeed,
assume that for x, y ∈ X

(1− β)h(x) + βw(x)u(x)

1− β + βw(x)
,
(1− β)h(y) + βw(y)u(y)

1− β + βw(y)
≥ c.

Then

vβ(λx+ (1− λ)y) =

=
λ ((1− β)h(x) + βw(x)u(x)) + (1− λ) ((1− β)h(y) + βw(y)u(y))

λ(1− β + βw(x)) + (1− λ)(1− β + βw(y))

≥ c. (45)
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The solution of (44) is:

vβ(x) =
(1− β)h(x) + βw(x)u(x)

1− β + βw(x)
.

Let

αβ(x) =
1− β

1− β + βw(x)
(46)

then
vβ(x) = αβ(x)h(x) + (1− αβ(x))u(x). (47)

In other words, vβ(x) is a convex combination of the non-absorbing payoff
h(x) and the absorbing payoff u(x). The weight of each factor depends on
the absorbing probability w(x) and on the discount factor β.

αβ(x) is defined only for β ∈ [0, 1), but whenever w(x) > 0 we can define
it continuously for β = 1.

If w(x) = 0 then αβ(x) = 1 for every β, and therefore vβ(x) = h(x) —
if the strategy is non-absorbing then the expected discounted payoff for the
players is equal to the non-absorbing payoff, whatever the discount factor is.

For every fixed x, if w(x) > 0 then limβ→1 αβ(x) = 0, which means that
if x is absorbing then limβ→1 vβ(x) = u(x).

For every ε > 0, define

β(ε) = inf{β′ ∈ [0, 1) | |ci(β)− ci| ≤ ε ∀β ∈ (β′, 1)}.

By Lemma 3.6, β(ε) < 1 for every ε > 0.
For every ε > 0, every player i ∈ N , every action ai ∈ Ai and every

stationary profile x−i ∈ X−i, let

Γε(x
−i, ai) = {β ∈ (β(ε), 1) | viβ(x−i, ai) ≥ ci − ε}.

That is, the set of all discount factors β, such that ai is an ε-good reply of
player i against x−i in the β-discounted game.

By the definition of β(ε),

∪ai∈AiΓε(x−i, ai) = (β(ε), 1). (48)

By (47), if Γε(x
−i, ai) 6= ∅ then at least one of the following inequalities

hold:
hi(x−i, ai) ≥ ci − ε or (49)
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ui(x−i, ai) ≥ ci − ε. (50)

Clearly if for a given pair (x−i, ai) both (49) and (50) hold, then Γε(x
−i, ai) =

(β(ε), 1). If Γε(x
−i, ai) 6= ∅, w(x−i, ai) > 0 and hi(x−i, ai) < ci − ε then

ui(x−i, ai) > ci−ε and vice versa, if ui(x−i, ai) < ci−ε then hi(x−i, ai) > ci−ε.
By the continuity of vβ(x), as a function of β for every fixed x, Γε(x

−i, ai) is
relatively closed in (β(ε), 1).

Lemma 4.10 Let ε > 0, i ∈ N , x−i ∈ X−i and ai ∈ Ai. The set Γε(x
−i, ai)

is either empty, or has the form (β(ε), β1], [β2, 1) or (β(ε), 1).

Proof: For every fixed x ∈ X, the function

αβ(x) = 1− βw(x)

1− β + βw(x)

is monotonic decreasing in β.
Assume that β′ ∈ Γε(x

−i, ai). Since αβ(x−i, ai) is monotonic decreasing in
β, if (49) holds then every β ∈ (β(ε), β′) is also in Γε(x

−i, ai). Symmetrically,
if (50) holds then every β ∈ (β′, 1) is also in Γε(x

−i, ai). Since Γε(x
−i, ai) is

relatively closed in (β(ε), 1) the result follows.

Since limβ→1 αβ(x) = 0 whenever w(x) > 0 and by the continuity of w
and ui we get:

Lemma 4.11 Let ε > 0, i ∈ N , x−i ∈ X−i and ai ∈ Ai such that w(x−i, ai) >
0. If there exists β′ ∈ (β(ε), 1) such that [β′, 1) ⊆ Γε(x

−i, ai) then ui(x−i, ai) ≥
ci − ε, whereas if Γε(x

−i, ai) = (β(ε), β′] for some β′ < 1 then ui(x−i, ai) <
ci − ε.

The result that we need in the next section is the following.

Lemma 4.12 Let ε > 0, i ∈ N and x−i ∈ X−i. Assume that there is no
action ai ∈ Ai such that Γε(x

−i, ai) = (β(ε), 1). Then there exists yi ∈ X i

such that hi(x−i, yi) = ci − ε and ui(x−i, yi) ≥ ci − ε.

Proof: Let x−i ∈ X−i satisfy the assumptions. Since Ai is finite, by (48) and
Lemma 4.10, there exist actions ai and bi of player i such that Γε(x

−i, ai) =
(β(ε), β1], Γε(x

−i, bi) = [β2, 1) and β1 ≥ β2. Indeed, let ai be an action that
maximizes β1 among all actions a′ ∈ Ai such that Γε(a

′, x−i) = (β(ε), β1],
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and let bi be an action that minimizes β2 among all actions a′ ∈ Ai such that
Γε(a

′, x−i) = [β2, 1). It follows from Lemma 4.10 and (48) that β1 ≥ β2, as
desired.

Note that w(x−i, ai) > 0, otherwise hi(x−i, ai) ≥ ci − ε, which implies
that Γε(x

−i, ai) = (β(ε), 1). Similarly, w(x−i, bi) > 0.
By Lemma 4.11, ui(x−i, bi) ≥ ci − ε and ui(x−i, ai) < ci − ε. By (47) and

the assumption it follows that hi(x−i, bi) < ci − ε and hi(x−i, ai) > ci − ε.
Let q ∈ (0, 1) solve the equation

qhi(x−i, ai) + (1− q)hi(x−i, bi) = ci − ε.

Let yi be the mixed action of player i where he plays the action ai with
probability q and the action bi with probability 1− q.

Clearly

hi(x−i, yi) = qhi(x−i, ai) + (1− q)hi(x−i, bi) = ci − ε (51)

and
w(x−i, yi) = qw(x−i, ai) + (1− q)w(x−i, bi) > 0. (52)

Since both viβ(x−i, ai) ≥ ci − ε and viβ(x−i, bi) ≥ ci − ε we get by the quasi-
concavity of viβ that viβ(x−i, yi) ≥ ci − ε. By (47), (51) and (52) we get that
ui(x−i, yi) ≥ ci − ε, as desired.

4.4 The Auxiliary Game

In this section we associate with every repeated game with absorbing states
G and a continuous quasi-concave function h̃ : X → RN a new game G̃(h̃),
similar to the original game, but with a different way to calculate the daily
payoff — the daily payoff for the players in G̃(h̃) is given by h̃, instead of
h. We then define a specific function h̃ and we prove that the β-discounted
min-max value of each player in the G̃(h̃) exists, its limit, as β tends to 1,
is equal to the min-max value of that player in the original game, and that
stationary β-discounted equilibrium profiles in the auxiliary game exist.

Let G = (N, (Ai, hi, ui)i∈N , w) be a repeated game with absorbing states
and h̃ : X → RN be continuous and quasi-concave. The auxiliary game
G̃(h̃), is played in the same way as G, but the non-absorbing payoff at stage
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t is h̃(xt), where xit is the mixed action that the strategy of player i indicates
him to play at stage t.

We denote by ṽβ(x) the expected β-discounted payoff in G̃ given a pure
stationary profile x is played.

Formally, for every profile σ : H0 → X and β ∈ [0, 1), the expected
β-discounted payoff in G̃ is given by:

ṽβ(σ) = (1− β)
∞∑
t=1

βt−1Eσ

(
1t?≥th̃(xt) + 1t?<tu(xt?)

)
where t? is the stage in which absorption occurs.

An equivalent definition for G̃(h̃) is that we consider a game with a larger
strategy space. Each player chooses at every stage a mixed action rather than
a pure action, and the non-absorbing payoff is given by the function h̃. The
game G̃ is given by this larger game, when the players are restricted to pure
strategies (that is, at every stage each player chooses one mixed action, and
he cannot lotter between some mixed actions).

Example 7

Consider the following two-player zero-sum repeated game with absorbing
states:

1− x
x

y 1− y

−1, 1

1,−1

0, 0 ∗
0, 0 ∗

The min-max value of both players in this game is 0. Any stationary
profile (x, y) where x ∈ [1/2, 1] and y = 0 is a discounted equilibrium profile
(for every discount factor).

Define the function h̃ : X → R by

h̃i(x) = min{h(x), 0}

where h(x) is the non-absorbing payoff. In the auxiliary version G̃(h̃) there
is one more stationary discounted equilibrium, (x = 1/2, y = 1/2), since if
player 1 plays x = 1 then his expected payoff in the auxiliary game is 0. Note,
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however, that if player 1 plays x = 0 (while player 2 plays y = 1/2) then
his expected payoff in the β-discounted auxiliary game is strictly less than
0, though x = 0 is in the support of his stationary β-discounted equilibrium
strategy.

The equivalent of (47) for the auxiliary game is:

ṽβ(x) = αβ(x)h̃(x) + (1− αβ(x))u(x) (53)

where αβ is given in (46). Since h̃ is quasi-concave and wu is multi-linear, it
follows that ṽβ is quasi-concave for every fixed β.

Since ṽβ is continuous over X, it follows that c̃iβ, the β-discounted min-
max value of player i in the auxiliary game, exists. Note that, as for standard
stochastic games, c̃iβ is the min-max value when the players can use only
stationary strategies.

The result that we need for the auxiliary game in the sequel is the fol-
lowing:

Lemma 4.13 For every player i, limβ→1 c̃
i(β) = ci.

Proof: Define for every i ∈ N a function h̃i : X → R by

h̃i(x) = min{hi(x), ci}.

Note that h̃ is continuous, quasi-concave and semi-algebraic.
It is clear that c̃i(β) ≤ ci(β) for every β ∈ (0, 1), hence limβ→1 c̃

i(β) ≤
limβ→1 c

i(β) = ci.
For the opposite inequality, let x−i ∈ X−i and ε > 0. First we show that

there exists a mixed action yi ∈ X i of player i such that

ṽiβ(x−i, yi) ≥ ci − ε ∀β ∈ (β(ε), 1). (54)

Case 1: There is no action ai ∈ Ai of player i such that Γε(x
−i, ai) =

(β(ε), 1).
By lemma 4.12 there exists yi ∈ X i such that hi(x−i, yi) = ci − ε and
ui(x−i, yi) ≥ ci − ε. In particular by (53), ṽiβ(x−i, yi) ≥ ci − ε for every
β ∈ (β(ε), 1).
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Case 2: There exists ai ∈ Ai such that Γε(x
−i, ai) = (β(ε), 1).

By the definition of Γε, v
i
β(x−i, ai) ≥ ci− ε for every β ∈ (β(ε), 1). Therefore,

by (47), for every β ∈ (β(ε), 1)

ci − ε ≤ viβ(x−i, ai) = αβ(x−i, ai)hi(x−i, ai) + (1− αβ(x−i, ai))ui(x−i, ai).

If w(x−i, ai) = 0 then αβ(x−i, ai) = 1 for every β ∈ (β(ε), 1), and there-
fore hi(x−i, ai) ≥ ci − ε. In particular ṽiβ(x−i, ai) = h̃i(x−i, ai) ≥ ci − ε. If,
on the other hand, w(x−i, ai) > 0 then limβ→1 αβ(x−i, ai) = 0 and there-
fore ui(x−i, ai) ≥ ci − ε. It follows by (53) and the definition of h̃ that
ṽiβ(x−i, ai) ≥ ci − ε, as desired.

Since for every x−i ∈ X−i there exists yi ∈ X i such that (54) holds, it
follows that limβ→1 c̃

i(β) ≥ ci − ε. Since ε is arbitrary, the result follows.

Remark: Assume that di ≥ ci for every i ∈ N . Define a function h̃i : X →
R by

h̃i(x) = min{hi(x), di}.
It then follows that the discounted min-max value of each player i in the
auxiliary game defined by the new function h̃ converges to ci, as the discount
factor converges to 1.

Remark: Using a similar method to the one used by Mertens and Ney-
man [20] and Neyman [22], it is possible to prove that the undiscounted
min-max value of each player in the auxiliary game exists, and is equal to
his min-max value in the original game.

Remark: One could define the auxiliary game, by changing the values in
the cells, instead of changing the multi-linear extension. However, in this
case, Lemma 4.13 would not be true. Consider example 1. By re-defining
the non-absorbing payoff in each cell to be the minimum of the original non-
absorbing payoff and the min-max value (which is 0), we get the following
game

B

T

L R

0,−1

−1, 1 ∗

−1, 0

1,−1 ∗
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but the min max value of both players in this game is −1
3
, which is less than

their min max value in the original game.

Since ṽβ is quasi concave and continuous for every fixed β, and X is compact,
it follows that:

Lemma 4.14 For every β ∈ [0, 1) there exists a stationary β-discounted equi-
librium in G̃, i.e. there exists a mixed action combination x ∈ X such that
for every player i and mixed action yi ∈ X i of player i,

ṽiβ(x) ≥ ṽiβ(x−i, yi).

4.5 Puiseux Stationary Profiles

Definition 4.15 Let I be a finite set. A vector f̂ = (f̂i)i∈I of Puiseux
functions is called a Puiseux probability distribution if f̂i ≥ 0 for every i ∈ I
and

∑
i∈I f̂i = 1.

Clearly we have:

Lemma 4.16 Let I be a finite set and f̂ a Puiseux probability distribution
over I. Then f̂(1) is a probability distribution over I.

Definition 4.17 A vector of Puiseux functions x̂ = (x̂iai)i∈N,ai∈Ai is a Puiseux
stationary profile if x̂iai is a Puiseux function for every i ∈ N and ai ∈ Ai,
and x̂(θ) = (x̂iai(θ))i∈N,ai∈Ai is a stationary profile for every θ ∈ (0, 1).

The following lemma, which follows from Lemma 2.2, connects the degree
of the probability of absorption to Equation (53).

Lemma 4.18 Let x̂ be a Puiseux stationary profile. deg(w(x̂)) = 1 if and
only if limθ→1 αθ(x̂(θ)) ∈ (0, 1). deg(w(x̂)) < 1 if and only if limθ→1 αθ(x̂(θ)) =
0. deg(w(x̂)) > 1 if and only if limθ→1 αθ(x̂(θ)) = 1.

Lemma 4.19 Let x̂ be a Puiseux stationary profile such that limθ→1 αθ(x̂(θ)) ≤
1. Let i ∈ N and ai ∈ Ai such that deg(w(x̂−i, ai)) < deg(w(x̂)). Then

lim
θ→1

ṽθ(x̂
−i(θ), ai) = lim

θ→1
u(x̂−i(θ), ai).
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Proof: By the assumption and Lemma 4.18 it follows that deg(w(x̂−i, ai)) <
deg(w(x̂)) ≤ 1. By a second use of Lemma 4.18 it follows that limθ→1 αθ(x̂

−i(θ), ai) =
0. The result follows by (53).

By (53) and since αβ(x) is continuous at β = 1 for any absorbing mixed
action combination x it follows that:

Corollary 4.20 If w(x̂(1)) > 0 then

lim
θ→1

ṽiθ(x̂(θ)) = ui(x̂(1)) =

∑
ai∈supp(x̂i(1)) x̂

i
ai(1)w(x̂−i(1), ai)ui(x̂−i(1), ai)

w(x̂(1))
.

A Puiseux stationary profile x̂ is absorbing if for every θ sufficiently close
to 1, x̂(θ) is an absorbing stationary profile.

Let x̂ be an absorbing Puiseux stationary profile. For every L ⊆ N and
bL ∈ AL we define the Puiseux function x̂bL by:

x̂bL = Πi∈Lx̂
i
bi .

Define the probability distribution µx̂ over B(x̂(1)) as follows:

µx̂(b
L) = lim

θ→1

x̂bL(θ)w(x̂−L(1), bL)∑
aT∈B(x̂(1)) x̂aT (θ)w(x̂−T (1), aT )

.

Lemma 4.21 If x̂ is absorbing but x̂(1) is non-absorbing then

lim
θ→1

u(x̂(θ)) =
∑

bL∈B(x̂(1))

µx̂(b
L)u(x̂−L(1), bL).

Proof: Define

x̂?−L(θ) = Πi 6∈L

 ∑
ai∈supp(x̂i(1))

x̂iai(θ)

 .
x̂?−L(θ) is the probability that the realized action of every player i ∈ N \ L
is in supp(x̂i(1)), given the players N \L play the mixed action combination
x̂−L(θ).

For every mixed action combination x, let

B0(x) = {bL ∈ AL | L ⊆ N,w(x−L, bL) > 0}.
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Note that B0(x) ⊇ B(x) for every x ∈ X. By the definition of B, if bL ∈
B0(x̂(1))\B(x̂(1)) then there exists aT ∈ B(x̂(1)) such that limθ→1

w(x−L(θ),bL)
w(x−T (θ),aT )

=
0.

By re-ordering the summation in (6)

u(x̂(θ)) =
∑

bL∈B0(x̂(1))

x̂bL(θ)x̂?−L(θ)w(x̂−L(1), bL)u(x̂−L(1), bL)∑
aT∈B0(x̂(1)) x̂aT (θ)x̂?−T (θ)w(x̂−T (1), aT )

.

Since x̂?−L(1) = 1 for every L ⊂ N , taking the limit as θ → 1, and using
Lemma 2.2, yields

lim
θ→1

u(x̂(θ)) = lim
θ→1

∑
bL∈B(x̂(1))

x̂bL(θ)w(x̂−L(1), bL)u(x̂−L(1), bL)∑
aT∈B(x̂(1)) x̂aT (θ)w(x̂−T (1), aT )

=
∑

bL∈B(x̂(1))

µx̂(b
L)u(x̂−L(1), bL)

as desired.

4.6 A Preliminary Result

In this section we prove that there exists a mixed action combination that
satisfies some “nice” properties. This mixed action combination is used in the
following sections to construct perturbed equilibria in three player repeated
games with absorbing states, and in repeated team games with absorbing
states.

Lemma 4.22 There exist x ∈ X, g ∈ RN , µ ∈ ∆(B(x)) and d : ∪iAi →
[0,∞) that satisfy:

a) gi ≥ Ei(x) for every player i ∈ N .

b) At least one of the following holds:

i) w(x) = 0 and h(x) ≥ g.

ii) w(x) > 0, u(x) = g and ui(x−i, ai) = gi for every player i and
every action ai such that w(x−i, ai) > 0.

iii) 1) w(x) = 0.
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2)
∑
bL∈B(x) µ(bL)u(x−L, bL) ≥ g.

3) For every player i and every action ai 6∈ supp(xi)

∑
bL | i∈L,bi=ai

µ(bL)ui(x−L, bL) =

 ∑
bL | i∈L,bi=ai

µ(bL)

 gi.
4) If there is strict inequality in (b).iii(2) then

∑
i∈L d(bi) = 1 for

every bL ∈ supp(µ).

Note that the second condition in (b).ii follows from the third condition in
(b).ii.

Condition (a) states that g is a “good” payoff vector, that is, no player
can profit by deviating and being punished forever from the second stage.
Condition (b).i states that x is non-absorbing and the non-absorbing payoff
is “good” for all the players. Condition (b).ii states that x is absorbing, the
absorbing payoff is “good” for all the players and the players are indifferent
between their actions. Condition (b).iii states that x is non-absorbing, the
average of the payoff in the absorbing neighbors of x is “good”, while this
average is equal to the average given any player i plays an action which is not
one of his “main” actions. The last condition in (b).iii, which is technical, is
essential for later results.
Proof: The idea is to consider a sequence of β-discounted stationary equi-
libria in the auxiliary game G̃, that converges to a limit. The values of x,
g, µ and d are derived from this sequence, and conditions (a) and (b) are
proven using various inequalities that discounted equilibria satisfy, and by
taking the limit β → 1.

Step 1: Definition of a Puiseux stationary profile x̂
Consider the set

E =
{

(β, x) ∈ (0, 1)×X | ṽiβ(x) ≥ ṽiβ(x−i, yi) ∀i ∈ N, yi ∈ X i
}
. (55)

(β, x) ∈ E if and only if x is a β-discounted stationary equilibrium profile in
G̃.

Note that E is semi-algebraic. Indeed, using the recursive formula of the
discounted payoff (44) the condition a = vβ(x) (as vectors) is a system of
equations between polynomials in β, a and x. Therefore E is a projection
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of a semi-algebraic set, and in particular it is semi-algebraic (Benedetti and
Risler [3]).

By Lemma 4.14 the projection of E over the first coordinate is the interval
(0, 1). By Theorem 2.5 there exists a Puiseux stationary profile x̂ such that
(β, x̂(β)) ∈ E for every β ∈ (0, 1).

Step 2: Definition of x, g, µ, d
Define x = x̂(1), g = limβ→1 ṽβ(x̂(β)), µ = µx̂ and d(ai) = deg(x̂iai) for every
ai ∈ ∪iAi.

Since ṽiβ(x̂(β)) is a Puiseux function, g is well defined. By Lemmas 3.6
and 4.13

g = lim
β→1

ṽβ(x̂(β)) ≥ lim
β→1

c̃(β) = c. (56)

Step 3: Assertion (a) holds
Fix a player i and an action ai ∈ Ai. If w(x̂−i(1), ai) = 0 then (a) follows from
(56). If, on the other hand, w(x̂−i(1), ai) > 0 then limβ→1 αβ(x̂−i(β), ai) = 0.
Since x̂i(β) is a best reply against x̂−i(β), by (53) and the continuity of u at
absorbing mixed action combinations, it follows that

gi = lim
β→1

ṽiβ(x̂(β)) ≥ lim
β→1

ṽiβ(x̂−i(β), ai) = lim
β→1

ui(x̂−i(β), ai) = ui(x̂−i(1), ai).

(57)
Assertion (a) follows from (56), (57) and the definition of Ei.

Step 4: The distinction between the possibilities in (b)
Denote q = limβ→1 αβ(x̂(β)). Substituting x̂(β) instead of x in (53) and
taking the limit as β → 1 yields, by the continuity of h̃ and (56),

c ≤ g = lim
β→1

ṽβ(x̂(β)) = qh̃(x̂(1)) + (1− q) lim
β→1

u(x̂(β)). (58)

If q = 1 then h(x̂(1)) ≥ h̃(x̂(1)) = g and w(x̂(1)) = 0. Therefore (b).i
holds.

If w(x̂(1)) > 0 then q = 0 and the second claim in (b).ii holds. In Step 5
we prove that in this case (b).ii holds.

Otherwise q < 1 and w(x̂(1)) = 0. Therefore x̂ is absorbing. Since
h̃(x) ≤ c, it follows by (58) that limβ→1 u(x̂(β)) ≥ g, and by Lemma 4.21,
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(b).iii(2) holds. We shall later see that in this case (b).iii holds.

Step 5: If w(x̂(1)) > 0 then assertion (b).ii holds
Let i ∈ N and ai ∈ supp(xi) such that w(x−i, ai) > 0. Then limβ→1 αβ(x̂−i(β), ai) =
1 and, by the optimality of x̂i(β),

ui(x−i, ai) = lim
β→1

ṽiβ(x̂−i(β), ai) ≤ lim
β→1

ṽiβ(x̂(β)) = gi. (59)

By corollary 4.20 there is an equality in (59), as desired.

From now on we assume that q < 1 and w(x̂(1)) = 0.

Step 6: Assertion (b).iii(3) holds
Let i ∈ N be fixed. For every ai ∈ Ai, denote B(µ, ai) = {bL ∈ supp(µ) | i ∈
L, bi = ai}.

By Lemma 4.19 it follows that

gi = lim ṽiβ(x̂(β))

= α lim
β→1

ṽiβ(x̂−i(β), x̂i(1)) +
∑

ai 6∈supp(x̂i(1))

αai lim
β→1

ṽiβ(x̂−i(β), ai) (60)

where αai = (1 − q)
∑
bL∈B(µ,ai) µ(bL), and α = 1 − ∑

ai 6∈supp(x̂i(1)) αai . By
the optimality of x̂i(β) it follows that ṽiβ(x̂−i(β), ai) = gi for every ai 6∈
supp(x̂i(1)).

Step 7: Assertion (b).iii(4)
If there is strict inequality in (b).iii(3) then q ∈ (0, 1). Hence, by Lemma
4.18, deg(w(x̂(β))) = 1. Therefore, for every bL ∈ supp(µ),∑

i∈L
d(bi) =

∑
i∈L

deg(x̂ibi) = deg(w(x̂(β))) = 1.

4.7 Three Players Repeated Games with Absorbing
States

The main result of this section is:
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Theorem 4.23 Every three-player repeated game with absorbing states has
a perturbed equilibrium payoff.

Recall that Bi(x) is the set of single absorbing neighbors of player i w.r.t.
x.

For the proof we need the following lemma:

Lemma 4.24 Let x ∈ X, g ∈ RN , µ ∈ ∆(B(x)) and d : ∪iAi → [0,∞)
satisfy condition 4.22(b).iii. At least one of the following hold.

a) There exists a probability distribution ν ∈ ∆(B(x)) such that supp(ν) ⊆
supp(µ), for every player i∑

bL∈supp(ν)

ν(bL)ui(x−L, bL) ≥ gi (61)

and for every player i such that Bi(x)∩supp(ν) 6= ∅ there is an equality
in (61).

b) For every player i there exists yi ∈ ∆(Bi(x)) such that supp(yi) ⊂
supp(µ) and (u(x−1, y1), u(x−2, y2), u(x−3, y3)) are positive cyclic vec-
tors.

The proof of the lemma is postponed to section 4.10.

Proof of Theorem 4.23:
Theorem 4.23 is an immediate consequence of Lemmas 4.1, 4.2, 4.4, 4.8, 4.22
and 4.24.

Indeed, 4.22(b).i and 4.22(a) imply that the conditions of Lemma 4.2 hold.
4.22(b).ii and 4.22(a) imply that the conditions of Lemma 4.1 hold. 4.24(b)
and 4.22(a) imply that the conditions of Lemma 4.4 hold, while 4.24(a) and
4.22(a) imply that the conditions of Lemma 4.8 hold.

4.8 More Than Three Players

Unfortunately, our approach cannot be generalized for more than three play-
ers. In our proof we construct for every ε > 0 and a sequence of discounted
equilibria in the auxiliary game that converges to a mixed action combina-
tion x, an (x, ε)-perturbed equilibrium profile. Such a construction need not
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be possible for games with more than three players, as can be seen by the
following four-player game:

1

1

1

1

22

3

4

1, 4, 0, 0∗
0, 0, 0, 0

1, 1, 0, 0∗
4, 1, 0, 0∗

1, 0, 0, 1∗
0, 0, 4, 1∗

1, 1, 0, 1∗
0, 1, 0, 1∗

1, 0, 1, 0∗
0, 0, 1, 4∗

1, 1, 1, 0∗
0, 1, 1, 0∗

1, 0, 1, 1∗
0, 0, 1, 1∗

1, 1, 1, 1∗
0, 1, 1, 1∗

In this game player 1 chooses a row, player 2 chooses a column, player 3
chooses either the top two matrices or the bottom two matrices, and player
4 chooses either the left two matrices or the right two matrices.

Note that the auxiliary game is essentially the same as the original game,
and that there are the following symmetries in the payoff function: for every
4-tuple of actions (a, b, c, d) we have:

v1(a, b, c, d) = v2(b, a, d, c),

v3(a, b, c, d) = v4(b, a, d, c) and

v1(a, b, c, d) = v3(c, d, a, b).

For every λ ∈ [0, 1], let T iβ(λ) be the set of all the best replies of player i in
the β-discounted game if the other three players play the stationary strategy
(λ, 1− λ). By the symmetries of the game it follows that T iβ(λ) = T jβ(λ) for
each pair of players i and j.

Every fixed point λ of the correspondence T iβ is a stationary equilibrium
for the β-discounted game, where all the players play the same mixed action
(λ, 1− λ).

Note that λ = 0 is a fixed point of T iβ, and λ = 1 is not a fixed point. We
shall see that there is a fixed point λ(β) ∈ (0, 1) such that limβ→1 λ(β) = 1.

Fix β ∈ (0, 1), and assume that players 2,3 and 4 play (λ, 1−λ), where λ ∈
(0, 1). If player 1 plays the bottom row then his expected payoff is 1, while
if he plays the top row then his expected payoff is g1 = 4λ2(1− λ) + βλ3g1.
Player 1 is indifferent between his two actions if g1 = 1, hence if

fβ(λ)
def
=(4− β)λ3 − 4λ2 + 1 = 0. (62)
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We claim that (62) has a solution λ(β) ∈ (0, 1) such that limβ→1 λ(β) = 1.
Indeed, fβ(1) > 0 for every β ∈ (0, 1), and fβ(β2) < 0 for β sufficiently close
to 1. The claim follows since fβ is continuous and limβ→1 β

2 = 1.
However, the conditions of Lemmas 4.1, 4.2, 4.4 and 4.8 are not satisfied

for the non-absorbing cell. Moreover, the conditions of Lemma 4.9 are not
satisfied as well. It is clear that the condition of Lemma 4.1 is not satisfied
for the non-absorbing cell, and Lemma 4.2 is irrelevant for this cell.

It is easily checked that the only convex combinations z of the four vectors
a1 = (1, 4, 0, 0), a2 = (4, 1, 0, 0), a3 = (0, 0, 1, 4) and a4 = (0, 0, 4, 1) such that
zi = 1 if ai has a positive weight in the combination are the four combinations
that include only a single vector ai. Therefore the conditions of Lemma 4.4
are not satisfied for the non-absorbing cell. Moreover, if the conditions of
Lemma 4.9 hold, then at every phase only a single player perturbs (rather
than a subset of the players).

We now prove that the conditions of Lemma 4.9 do not hold when a single
player perturbs in every phase.

Assume to the contrary that g = (g1, g2, g3, g4) ≥ (1, 1, 1, 1) is such an
equilibrium payoff, that player 1 is the first player to perturb, γ > 0 is
the overall probability in which player 1 perturbs in the first phase, and
f = (f 1, f 2, f 3, f 4) is the expected payoff for the players given player 1 did
not perturb in the first phase.

Clearly g = γ(1, 4, 0, 0)+(1−γ)f , hence f 3, f 4 > 1 and f 1 = 1. Therefore
the only player that can perturb after player 1 has finished his perturbations
is player 2. Let y = (y1, y2, y3, y4) be the expected payoff for the players after
player 2 has finished his phase of perturbations. Since f 1 = 1 it follows that
y1 < 1, a contradiction to the individual rationality of the strategy.

It is a little more technical to show that such a construction is not possible
if the future expected payoff of the players should be at least 1 − ε at each
stage (given absorption has not occurred) instead of 1.
Remark: Recently Solan and Vieille [29] found an example of a four-player
repeated game with absorbing states that has no perturbed equilibrium pay-
off.

4.9 Repeated Team Games with Absorbing States

Definition 4.25 An n+m-player repeated game with absorbing states is a
repeated team game with absorbing states if hi = hj and ui = uj whenever
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1 ≤ i, j ≤ n or n+ 1 ≤ i, j ≤ n+m.

Let G be a repeated team game with absorbing states. We denote by N
and M the two sets of players in each team, hence n = |N | and m = |M |.

Let

di =

{
maxj∈N c

j i ∈ N
maxj∈M cj i ∈M

It is clear that for any equilibrium payoff g = (gi)i∈N∪M , gi = gj whenever
i, j ∈ N or i, j ∈ M . Moreover, gi ≥ ci for every i ∈ N ∪M , and therefore
gi ≥ di for every i ∈ N ∪M .

The main result of this section is:

Theorem 4.26 Every repeated team game with absorbing states has a per-
turbed equilibrium payoff.

Proof: For every i ∈ N , define h̃i : X → R by

h̃i(x) = min{hi(x), di}.

By the remark following the proof of Lemma 4.13, it follows that Lemma
4.22 holds for G. Let (x, g, µ, d) satisfy the conclusion of Lemma 4.22. We
prove that x is a base of a perturbed equilibrium.

Note that since h̃i(x) = h̃j(x) whenever 1 ≤ i, j ≤ n or n + 1 ≤ i, j ≤
n+m, it follows that gi = gj whenever 1 ≤ i, j ≤ n or n+ 1 ≤ i, j ≤ n+m.

We have 4 cases:

1) x is absorbing.

2) x is non-absorbing and h(x) ≥ g.

3) x is non-absorbing, and there exists a single absorbing neighbor bi0 ∈
B(x) such that u(x−i0 , bi0) ≥ g.

4) Non of the first three cases hold.

In case 1, condition 4.22(b).ii holds, and, together with condition 4.22(a)
implies that the conditions of Lemma 4.2 hold.

In case 2, condition 4.22(b).i holds, and, together with condition 4.22(a)
implies that the conditions of Lemma 4.1 hold.
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In case 3, the assumption and condition 4.22(a) imply that the conditions
of Lemma 4.4 hold w.r.t. the probability distribution that gives probability
1 to bi0 .

Assume now that neither case 1 nor cases 2 or 3 hold. We prove that in
this case the conditions of Lemma 4.4 hold.

Since cases 1 and 2 do not hold it follows that condition 4.22(b).iii holds.
Let bi0 ∈ supp(µ) be any single absorbing neighbor. By condition 4.22(b).iii(3),

ui0(x−i0 , bi0) = gi0 , and since the game is a team game, ui(x−i0 , bi0) = gi for
every player i of the same team as i0. Since case 3 does not hold, there exists
a player i of the opposing team such that ui(x−i0 , bi0) < gi, and therefore
ui(x−i0 , bi0) < gi for every player i in the opposing team. In particular, if
∩iBi(x) ∩ supp(µ) 6= ∅ then∑

∩iBi(x)∩supp(µ)

µ(bL)ui(x−L, bL) ≤ gi for every i ∈ N ∪M (63)

and ∑
∩iBi(x)∩supp(µ)

µ(bL)u(x−L, bL) 6= g. (64)

Let C = {bL ∈ supp(µ) | |L| ≥ 2}. By condition 4.22(b).iii(2), (63) and
(64), it follows that C 6= ∅ and

∑
bL∈C µ(bL) > 0.

Let ν be the induced probability distribution of µ over C. By condition
4.22(b).iii(2), (63) and (64) we have:∑

bL∈C
ν(bL)ui(x−L, bL) ≥ gi for every i ∈ N ∪M. (65)

Since |L| ≥ 2 for every bL ∈ supp(ν), condition 4.22(a) and (65) imply that
the conditions of Lemma 4.4 hold w.r.t. C and ν.

4.10 Proof of Lemma 4.24

In this section we prove Lemma 4.24. The proof is technical, and its general
idea is as follows. Let r be the number of players that have single absorbing
neighbors of x with positive weight according to µ. We divide the proof into
4 cases, according to the value of r. If r = 0 then 4.24(a) holds trivially. If
r is positive and 4.24(b) does not hold, we need to construct the probability
distribution ν. The method is to different when r = 1 and when r > 1.
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When r = 2, by changing the weights of the single absorbing neighbors of
the various players in a certain way, we can obtain a probability distribution
ν over B(x) that satisfies 4.24(a).

When r = 3, there can be two sub-cases. Either 4.24(b) holds, or, as
when r = 2, by changing the weights of the single absorbing neighbors of the
various players in a certain way, we can obtain a probability distribution ν
over B(x) that satisfies 4.24(a).

When r = 1 one constructs the desired probability distribution ν in a
different manner, by changing the weights of all the absorbing neighbors of
x.

The rest of the section is arranged as follows. We first deal with the case
r = 1. Then we prove two lemmas, that show how one can change the weights
of single absorbing neighbors in order to get a new probability distribution
for which there is an equality in (61) for one more player. These two lemmas
are then applied to prove the case r = 2, and finally, the case r = 3.

For the rest of the section we fix x ∈ X and g ∈ R3 for which there exist
µ ∈ ∆(B(x)) and d : ∪Ai → [0,∞) such that 4.22(b).iii holds for (x, g, µ, d).

For every vector 0 < λ ∈ R3
+, the normalization of λ, denoted by λ̄, is

defined by:

λ̄i =
λi∑3
j=1 λj

.

Let z ∈ R3. The signed form of z is the vector of the signs of the values
of (z1− g1, z2− g2, z3− g3). If zi− gi = 0 then the ith coordinate of the sign
vector is 0.

LetMD = {(µ, d) | µ ∈ B(x), d : ∪iAi → [0,∞) and 4.22(b).iii holds for
(x, g, µ, d)}. We denote byM the projection ofMD over the first coordinate.
By the assumption, MD 6= ∅. From now on we fix a pair (µ, d) ∈MD such
that µ has a minimal support among the elements in M.

Let R = {i ∈ N | Bi(x) ∩ supp(µ) 6= ∅}. R is the set of players that
have single absorbing neighbors in supp(µ). We denote r = |R|. The proof
of Lemma 4.24 is divided into several cases, according to the value of r.

If r = 0 or there is an equality in 4.22(b).iii(2) then 4.24(a) holds trivially.
From now on we assume that

∑
i∈L d(bi) = 1 for every bL ∈ supp(µ). In

particular, d(ai) = 1 for every player i ∈ N and single absorbing neighbor
ai ∈ Bi(x) ∩ supp(µ).
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For every i ∈ R we define yi ∈ X i as follows:

yiai =

 0 d(ai) 6= 1
µ(ai)∑

bi∈Bi(x)
µ(bi)

d(ai) = 1

Note that for every ai ∈ supp(yi), w(x−i, ai) > 0 and, by 4.22(b).iii(3),
ui(x−i, ai) = gi.

If 1 ∈ R and the signed form of u(x−1, y1) is (0,+,+) then y1, viewed as
a probability distribution over B(x), satisfies 4.24(a). By the minimality of
µ, it follows that u(x−1, y1) does not have the signed form (0,−,−). Hence
we assume that if 1 ∈ R then u(x−1, y1) has the signed form (0,+,−) or
(0,−,+). Symmetric assumptions are made for players 2 and 3.

For every function ρ : B(x) → [0,∞) and player j ∈ N we define

supp(ρ)
def
= {bL ∈ B(x) | ρ(bL) 6= 0} and

〈ρ, uj〉 =
∑

bL∈B(x)

ρ(bL)uj(x−L, bL).

Recall that B(ρ, ai) = {bL ∈ B(x)∩supp(ρ) | i ∈ L, bi = ai} for every ai ∈ Ai.
Denote

〈ρ, uj, ai〉 =
∑

bL∈B(ρ,ai)

ρ(bL)uj(x−L, bL).

Note that for every i ∈ N , 〈ρ, uj〉 =
∑
ai∈Ai〈ρ, uj, ai〉.

Lemma 4.27 If r = 1 then assertion 4.24(a) holds.

Proof: Assume that R = {1}. Clearly if there exists ν ∈ ∆(B(x)) such that
supp(ν) ⊂ supp(µ), supp(ν)∩Bi(x) = ∅ and 〈ν, uj〉 ≥ gj for j = 2, 3 then the
lemma holds. Indeed, if such ν exists then by the minimality of µ it follows
that 〈ν, u1〉 < g1, and therefore there exists a convex combination of µ and
ν that satisfies 4.24(a).

By 4.22(b).iii(3),

〈µ, u2, a2〉 = g2
∑

bL∈B(µ,a2)

µ(bL) ∀a2 6∈ supp(x2). (66)

By the above discussion it follows that for every a2 6∈ supp(x2) with B(µ, a2) 6=
∅

〈µ, u3, a2〉 < g3
∑

bL∈B(µ,a2)

µ(bL). (67)
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Similarly,

〈µ, u3, a3〉 = g3
∑

bL∈B(µ,a3)

µ(bL) ∀a3 6∈ supp(x3) (68)

and if B(µ, a3) 6= ∅ we have

〈µ, u2, a3〉 < g2
∑

bL∈B(µ,a3)

µ(bL). (69)

Define

ν(bL) =

{
d(b1)µ(bL) bL ∈ B(x) and 1 ∈ L
0 Otherwise.

Since supp(µ)∩B1(x) 6= ∅ it follows that
∑
bL∈B(x) ν(bL) > 0. By 4.22(b).iii(2)

and 4.22(b).iii(4)

gi ≤
∑

bL∈B(x)

µ(bL)ui(x−L, bL)

=
∑

bL∈B(x)

µ(bL)ui(x−L, bL)
∑
j∈L

d(bj)

=
∑
a1∈A1

〈ν, ui〉+
∑
a2∈A2

d(a2)〈µ, ui, a2〉+
∑
a3∈A3

d(a3)〈µ, ui, a3〉

=
∑
a1∈A1

〈ν, ui〉+
∑

a2 6∈supp(x2)

d(a2)〈µ, ui, a2〉+
∑

a3 6∈supp(x3)

d(a3)〈µ, ui, a3〉

where the last equality holds since d(ai) = 0 whenever ai ∈ supp(xi). By
(66), (67), (68) and (69) it follows that 〈ν̄, ui〉 ≥ gi for i = 2, 3, where ν̄ is
the normalization of ν.

Moreover,
〈ν, u1〉 =

∑
a1∈A1

d(a1)〈µ, u1, a1〉.

By condition 4.22(b).iii(3), 〈µ, u1, a1〉 = g1 whenever d(a1) > 0. Therefore
〈ν̄, u1〉 = g1, and ν̄ is the desired probability distribution.

The following two lemmas assert that if 2 ∈ R then we can assume w.l.o.g.
that 〈µ, u3〉 = g3.

67



Lemma 4.28 If 2 ∈ R and u(x−2, y2) has the signed form (−, 0,+) then there
exists ν ∈M such that supp(µ) = supp(ν) and 〈ν, u3〉 = g3. Furthermore, if
〈µ, u2〉 = g2 then 〈ν, u2〉 = g2.

Proof: For every t ∈ [0, 1] define:

νt(b
L) =

{
tµ(bL) bL ∈ supp(B2(x))
µ(bL) Otherwise

i.e. as t decreases we decrease the weight of the single absorbing neighbors
of player 2. Clearly ν1 = µ, for every t ∈ [0, 1] conditions 4.22(b).iii(3) and
4.22(b).iii(4) hold w.r.t. ν̄t and 4.22(b).iii(2) holds w.r.t. ν̄t for i = 1, 2.
For every t such that 〈ν̄t, u3〉 ≥ g3 condition 4.22(b).iii(2) holds w.r.t. ν̄t
for i = 3 too. Since µ has a minimal support, there is t0 ∈ (0, 1] such that
〈ν̄t0 , u3〉 = g3. For every t, 〈µ, u2〉 = 〈ν̄t, u2〉 and therefore ν̄t0 is the desired
vector.

Lemma 4.29 If 2 ∈ R and u(x−2, y2) has the signed form (+, 0,−) Then
there exists a vector ν ∈ M such that supp(µ) = supp(ν) and 〈ν, u3〉 = g3.
Furthermore, if 〈µ, u2〉 = g2 then 〈ν, u2〉 = g2.

Proof: For every t ∈ [1,∞) define:

νt(b
L) =

{
tµ(bL) bL ∈ supp(B2(x))
µ(bL) Otherwise

i.e. as t increases we increase the weight of the single absorbing neighbors
of player 2. Clearly ν1 = µ, for every t ∈ [1,∞) conditions 4.22(b).iii(3)
and 4.22(b).iii(4) hold w.r.t. ν̄t and 4.22(b).iii(2) holds w.r.t. ν̄t for i = 1, 2.
For every t such that 〈ν̄t, u3〉 ≥ g3 condition 4.22(b).iii(2) holds w.r.t. ν̄t for
i = 3 too. Since u(x−2, y2) has the signed form (+, 0,−), for t sufficiently
large 〈ν̄t, u3〉 < g3. Therefore there is t0 ∈ [1,∞) such that 〈ν̄t0 , u3〉 = g3.
For every t, 〈µ, u2〉 = 〈ν̄t, u2〉 and therefore ν̄t0 is the desired vector.

Lemma 4.30 If r = 2 then there exists ν ∈M such that 4.24(a) holds.
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Proof: Assume w.l.o.g. that R = {2, 3}. By either Lemma 4.28 or Lemma
4.29, according to the signed form of u(x−3, y3), we can assume that 〈µ, u2〉 =
g2. By a second use of either Lemma 4.28 or Lemma 4.29, according to the
signed form of u(x−2, y2), we can assume w.l.o.g. that 〈µ, ui〉 = gi for i = 2, 3,
as desired.

Lemma 4.31 If r = 3 and (u(x−1, y1), u(x−2, y2), u(x−3, y3)) are not positive
cyclic vectors, then there exists ν ∈M such that 4.24(a) holds.

Proof: Up to symmetries we can assume that u(x−1, y1) has the signed form
(0,+,−) and u(x−2, y2) has the signed form (−, 0,+).

Using Lemma 4.28 twice, once with u(x−1, y1) and then with u(x−2, y2),
we can assume that 〈µ, ui〉 = gi for i = 2, 3. If 〈µ, u1〉 = g1 we are done.
Hence assume 〈µ, u1〉 > g1.

Case 1: 〈µ, u3〉 has the signed form (+,−, 0).
Let α, β > 0 solve the equations

u3(x−1, y1) + αu3(x−2, y2) = (1 + α)g3

u2(x−1, y1) + βu2(x−3, y3) = (1 + β)g2. (70)

Since (u(x−1, y1), u(x−2, y2), u(x−3, y3)) are not positive cyclic it follows that

αu1(x−2, y2) + βu1(x−3, y3) ≤ (α + β)g1. (71)

Let ν : B(x)→ [0,∞) be defined as follows:

ν(bL) =


µ(bL) bL ∈ B1(x) ∩ supp(µ)
αµ(bL) bL ∈ B2(x) ∩ supp(µ)
βµ(bL) bL ∈ B3(x) ∩ supp(µ)
0 Othewise.

By (70), 〈ν̄, ui〉 = gi for i = 2, 3. If there is an equality in (71) then
〈ν̄, u1〉 = g1, and ν̄ is the desired vector. Otherwise 〈ν̄, u1〉 < g1. Let ρ
be the convex combination of µ and ν that satisfies 〈ρ, u〉 = g. Then ρ sat-
isfies 4.24(a), as desired.

Case 2: u(x−3, y3) has the signed form (−,+, 0).
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Let α, β > 0 solve the equations

u3(x−1, y1) + αu3(x−2, y2) = g3

u2(x−1, y1) = βu2(x−3, y3). (72)

For every t ≥ 0 define

νt(b
L) =


µ(bL) + t bL ∈ B1(x) ∩ supp(µ)
µ(bL) + tα bL ∈ B2(x) ∩ supp(µ)
µ(bL) + tβ bL ∈ B3(x) ∩ supp(µ)
µ(bL) Otherwise.

Note that
∑
bL∈B(x) νt(b

L) = 1 + tq, where

q =
∑

bL∈B1(x)

µ(bL) + α
∑

bL∈B2(x)

µ(bL) + β
∑

bL∈B3(x)

µ(bL).

For every t ≥ 0 we have by (72):

〈νt, u3〉 = 〈µ, u3〉+ t(u3(x−1, y1) + αu3(x−2, y2)) + tβg3
∑

bL∈B3(x)

µ(bL) =

g3(1 + tq)

〈νt, u2〉 = 〈µ, u2〉+ t(u2(x−1, y1) + βu2(x−3, y3)) + tαg2
∑

bL∈B2(x)

µ(bL) =

g2(1 + tq)

〈νt, u1〉 = 〈µ, u1〉+ t(αu1(x−2, y2) + βu1(x−3, y3)) + t
∑

bL∈B1(x)

µ(bL).

Clearly 〈ν0, u
1〉 = 〈µ, u1〉 > g1. Since u1(x−i, yi) < gi for i = 1, 2, there

exists t0 > 0 such that 〈ν̄t0 , u1〉 = g1. Then ν̄t0 is the desired probability
distribution.
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5 Recursive Games with the Absorbing Prop-

erty

In this section we prove that every two-player stochastic game with two non-
absorbing states has an equilibrium payoff. We use Vieille’s reduction [33, 34]
that claims that it is sufficient to prove the existence for positive recursive
stochastic games with the absorbing property.

We begin by an equivalent formulation of recursive games (section 5.1),
provide an example of such a game, and show some of the equilibrium payoffs
and the corresponding ε-equilibrium profiles (section 5.2). We then introduce
two sufficient conditions for existence of an equilibrium payoff in recursive
games (section 5.3), and after proving some preliminary results (section 5.4),
we introduce the approximating games and derive several results on these
games (section 5.5). We end by proving the main result (section 5.6) and
by explaining why our approach cannot be generalized for games with more
than two non-absorbing states (section 5.7).

5.1 An Equivalent Formulation

Let G = (N,S, (Ai)i∈N , h, w) be a two-player stochastic game, that is, |N | =
2. For simplicity we denote by A and B the sets of actions available for the
two players, and by X and Y the spaces of stationary strategies. Strategies
of the two players are denoted by σ and τ .

Let T ⊆ S be the set of all the absorbing states.

Definition 5.1 The game is positive if h2(s, a, b) > 0 for every absorbing
state s ∈ T and every pair of actions (a, b) ∈ A×B. It is recursive if
hi(s, a, b) = 0 for every non-absorbing state s 6∈ T , every pair of actions
(a, b) ∈ A×B and every player i = 1, 2. It satisfies the absorbing property
if for every fully mixed stationary strategy y of player 2, every strategy σ of
player 1 and every initial state s ∈ S,

Prs,σ,y (∃t ∈ N s.t. st ∈ T ) = 1

where st is the state of the game at stage t.

In [34] Vieille proves that in order to prove existence of an equilibrium
payoff in every two-player stochastic game, it is sufficient to prove the exis-
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tence for every positive recursive game with the absorbing property. Follow-
ing closely the proof of Vieille reveals that he proves even more:

Theorem 5.2 If every positive recursive game with the absorbing property
and at most n non-absorbing states has an equilibrium payoff, then every
stochastic game with at most n non-absorbing states has an equilibrium pay-
off.

From now on we fix a positive recursive game that satisfies the absorbing
property.

Note that since the game is positive and recursive, limt(r
i
1 + · · · + rit)/t

exists. Since the game satisfies the absorbing property, the min-max value of
player 2 is positive, hence any ε-equilibrium profile, for ε sufficiently small,
must be absorbing with high probability.

As in section 4.1, we assume w.l.o.g. that h(s, ·, ·) is constant over each
absorbing state s ∈ T , and denote this constant value by u(s).

For every subset C ⊂ S and every triplet (s, a, b) ∈ S × A×B we denote
wC(s, a, b) =

∑
s′∈C ws′(s, a, b).

For every (a, b) ∈ A×B and every function g : S → R2 we define

ψg(s, a, b) =
∑
s′∈S

ws′(s, a, b)g(s′). (73)

ψg(s, a, b) is the expected payoff for the players if the game is in state s,
they play the pure actions (a, b), and the continuation payoff is given by
g. Note that for every fixed triplet (s, a, b), the function ψg(s, a, b) is linear
in g, and therefore continuous. The multi-linear extension of ψg(s, ·, ·) over
∆(A)×∆(B) is denoted also by ψg(s, ·, ·).
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5.2 An Example

Consider the following positive recursive game:

B

T

L C R

B

T

L R

state 1 state 2

1

1

4, 21/3

22/3
∗

1

1

3, 11/2

21/2
∗

1

0, 1 ∗

0, 1 ∗
1

A boldfaced letter means a transition to a state with no daily payoff. As
before, an asterisk means transition to an absorbing state with the indicated
absorbing payoff. If the transition is probabilistic, the probability appears to
the left.

Note that if player 2 plays a fully mixed stationary strategy then the
game is bound to be eventually absorbed, whatever player 1 plays. Hence
the game satisfies the absorbing property.

One equilibrium payoff is ((2, 1), (1, 1)). An ε-equilibrium strategy profile
(for every ε > 0) is:

• In state 1 the players play the mixed actions (T, (1− ε)L+ εR).

• In state 2 both players play the mixed actions (1
2
, 1

2
).

• If any player plays an action which has probability 0 to be played, then
both players play the pure actions (T, L) in both states forever (this
part of the strategy serves as a punishment strategy).

It is easy to verify that no player can profit more than ε by any deviation,
and that this strategy profile yields the players the desired payoff.

Another equilibrium payoff is ((2, 21/17), (1, 19/17). An ε-equilibrium
strategy profile for this payoff is more complex. Let n1 ∈ N and ε1 < ε such
that (1− ε1)n1 = 1/2. Define the following strategy profile:

• In state 2, the players play the mixed actions (1
2
, 1

2
).
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• Assume the game moves to state 1 at stage t0. The players play as
follows:

– The players play the mixed actions ((1−ε1)T+ε1B, (1−ε1)L+ε1C).
The players play these mixed actions until player 2 played the
action C for n1 times since stage t0, or until both players played
(B,C) at the same stage (and the game leaves state 1).

– If player 2 played the action C for n1 times since stage t0, then
the players play the mixed actions (T, (1− ε)L+ εR) until player
2 plays the action R (and the game leaves state 1).

– If any player plays an action which has probability 0 to be played,
the players play the pure actions (T, L) in both states forever.

Note that if the players follow this profile, then the probability that the
game leaves state 1 through (B,C) is 1/2, as is the probability that the
game leaves state 1 through (T,R). In particular the game is bound to be
eventually absorbed.

Assume that the players follow the above profile, and let g = (gis) be the
payoff that the players receive. Clearly no player can deviate and gain in
state 2, and gi2 = 1

2
(0, 1) + 1

2
gi1 for i = 1, 2.

Moreover, we have:

g1 =
1

2

(
1

3
(4, 2) +

2

3
g2

)
+

1

2

(
1

2
(3, 1) +

1

2
g2

)
and therefore g1 = (2, 21/17).

We shall now verify that no player can profit more than ε by deviating
in state 1. Indeed, if player 2 deviates in state 1, then his expected payoff is
bounded by 1 (since after the punishment begins, his expected payoff is at
most 1). Given the players follow the above profile, the initial state is 1, and
the first time the game leaves state 1 is through (B,C), the expected payoff
for player 1 is 2

3
+ 1

3
· 4 = 2, where if the first time the game leaves state 1

is through (T,R), the expected payoff of player 1 is 1
2

+ 1
2
· 3 = 2 as well.

Hence player 1 cannot profit by any deviation whenever the game is in state
1. Therefore this strategy profile is an ε-equilibrium, as desired.
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5.3 Sufficient Conditions for Existence of an Equilib-
rium Payoff

In this section we give two sets of sufficient conditions for existence of an
equilibrium payoff in positive recursive games with the absorbing property.

Definition 5.3 Let (x, y) be a stationary profile. A set C ⊆ S is stable
under (x, y) if wC(s, x, y) = 1 for every s ∈ C.

In the example presented in section 5.2, {s1} is stable, for example, under
((T, L), (·, ·)), and {s1, s2} is stable under ((T, L), (T,R)) and ((T, L), (B,L)),
as well as under ((1

2
T + 1

2
B,L), (T,R)).

Definition 5.4 Let (x, y) be a stationary profile and ε > 0. An ε-perturbation
is a stationary profile (x′, y′) such that ‖ x − x′ ‖< ε, ‖ y − y′ ‖< ε,
supp(x′s) ⊇ supp(xs) and supp(y′s) ⊇ supp(ys).

Note that if C is stable under an ε-perturbation (x′, y′) of (x, y), then in
particular C is stable under (x, y).

Definition 5.5 Let (x, y) be a stationary profile. A set C ⊆ S is commu-
nicating w.r.t. (x, y) if for every s ∈ C there exists an ε-perturbation (x′, y′)
of (x, y) such that C is stable under (x′, y′) and

Prs′,x′,y′(∃t ∈ N s.t. st = s) = 1 ∀s′ ∈ C.

In the example presented in section 5.2, {s1} is communicating w.r.t. ((T, L), (·, ·)),
((T,C), (·, ·)), ((B,L), (·, ·)) and ((B,R), (·, ·)).

A set C is communicating if the players, by changing their stationary
strategies a little, can reach from any state in C any other state in C, with-
out leaving the set. Note that if there exists an ε-perturbation (x′, y′) that
satisfies definition 5.5, then for every ε′ > 0 there exists an ε′-perturbation
that satisfies it.

Clearly every absorbing state defines a communicating set, that includes
only this state. We denote by C(x, y) the collection of all communicating sets
w.r.t. (x, y). Define for every communicating set C ∈ C(x, y) and s ∈ C

A1
s(C, y) = {a ∈ A | wC(s, a, ys) < 1} and (74)

B1
s (C, x) = {b ∈ B | wC(s, xs, b) < 1}.
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In the example presented in section 5.2, denote by (x?, y?) = ((T, L), (T, L)).
Then A1

s1
(s1, y

?) = ∅ and B1
s1

(s1, x
?) = {L}.

Definition 5.6 Let (x, y) be a stationary profile and C ∈ C(x, y). Every
triplet (s, x′s, ys), where s ∈ C and x′s ∈ ∆(A1

s(C, y)) is an exit of player 1
from C. Every triplet (s, xs, y

′
s), where s ∈ C and y′s ∈ ∆(B1

s (C, x)) is an
exit of player 2 from C. Every triplet (s, x′s, y

′
s) ∈ C × ∆(A)×∆(B) such

that supp(xs) ∩ supp(x′s) = supp(ys) ∩ supp(y′s) = ∅ is a joint exit from C if
wC(s, x′s, y

′
s) < 1 while wC(s, xs, y

′
s) = wC(s, x′s, ys) = 1.

In the example presented in section 5.2, {s1} ∈ C(x?, y?), (s1, T, R) is an exit
of player 2 from {s1} and (s1, B, C) is a joint exit from {s1}.

A joint exit (s, x′s, y
′
s) is pure if |supp(x′s)| = |supp(y′s)| = 1. An exit

(s, x′s, ys) of player 1 is pure if |supp(x′s)| = 1. Pure exits of player 2 are
defined analogously.

We denote by E1
C(x, y), E2

C(x, y) and E1,2
C (x, y) the sets of exits of player

1, player 2 and the joint exits from C respectively. Let

EC(x, y) = E1
C(x, y) ∪ E2

C(x, y) ∪ E1,2
C (x, y)

be the set of all exits from C and E0
C(x, y) be the set of all pure exits from

C. We denote by s(e), x(e) and y(e) the three coordinates of any exit e.
For any exit e, we define the support of e by:

supp(e) = supp(x(e))× supp(y(e)).

Note that any two exits e1, e2 ∈ E0
C(x, y) have disjoint supports.

For simplicity we write s ∈ C(x, y) whenever {s} ∈ C(x, y). In this case
we write Es(x, y) instead of E{s}(x, y).

Let R = S \T be the set of non-absorbing states, and recall that c = (cis)
is the min-max value of the players.

Lemma 5.7 Let (x, y) be a stationary profile such that R ∈ C(x, y). Assume
that there exists an exit e ∈ ER(x, y) and g = (gs)s∈S ∈ R2|S| such that

1) gs is constant over R, gs = u(s) for every absorbing state s ∈ T , and
gs = ψg(e) for every non-absorbing state s ∈ R.

2) g1
s ≥ ψ1

c (s, a, ys) for every s ∈ R and a ∈ A.

76



3) g2
s ≥ ψ2

c (s, xs, b) for every s ∈ R and b ∈ B.

4) If e ∈ E1
R(x, y) then g1 = ψ1

g(s(e), a, ys(e)) for every a ∈ supp(x(e)).

5) If e ∈ E2
R(x, y) then g2 = ψ2

g(s(e), xs(e), b) for every b ∈ supp(y(e)).

Then g is an equilibrium payoff.

Note the similarity between the conditions of Lemma 5.7 and Lemma 4.4.
Proof: Fix ε > 0. As in section 4.2, the ε-equilibrium profile that we
construct (both here and in the proof of the next sufficient condition) is
defined by a profile σ that satisfies ‖ σ(h0) − (x, y) ‖≤ ε for every finite
history h0 ∈ H0, supplemented with a statistical test.

Let δ ∈ (0, ε) be sufficiently small, and (x′, y′) be an ε-perturbation of
(x, y) such that

Prs′,x′,y′(∃t ∈ N s.t. st = s(e)) = 1 ∀s′ ∈ R.

Since R ∈ C(x, y), such a perturbation exists.
Define a profile σ as follows:

• Whenever the game is in state s(e) the players play the mixed action
combination ((1− δ)xs(e) + δx(e), (1− δ)ys(e) + δy(e)).

• Whenever the game is in a state s 6= s(e) the players play the mixed
action combination (x′s, y

′
s).

If the players follow σ then the game is bound to exit R through e, and
to be absorbed. Hence, by condition 1, the expected payoff for the players is
gs, where s is the initial state.

In order to prevent the players from deviating, we choose t1 ∈ N suf-
ficiently large and define the following statistical test. At each stage t the
players check the following.

1) Both players check whether the realized action of their opponent is
compatible with σ.

2) If e ∈ E2
R(x, y) and the game visited the state s(e) at least t1 times, then

player 2 checks whether the distribution of the realized actions of player
1, whenever the game is in s(e), is δ-close to xs(e). If e ∈ E1

R(x, y), then
player 1 employs a symmetric test.
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3) If e ∈ E1,2
R (x, y) and the game visited the state s(e) at least t1 times,

then player 1 checks whether the realized actions of player 2, whenever
the game is in the state s(e), restricted to supp(y(e)), is δ-close to y(e).
Player 2 employs a symmetric test.

If a player fails one of these tests, this player is punished by his opponent
with an ε-min-max strategy forever.

Since player 1 may profit by causing the game never to be absorbed, we
add one more test. Let t2 ∈ N be sufficiently large such that if no deviation
is detected then absorption occurs before stage t2 with probability greater
than 1− ε. We add the following test to σ:

4) At stage t2 both players switch to an ε-min-max strategy.

The constants δ and t1 are chosen as in the proof of Lemma 4.4, in such
a way that the probability of false detection of deviation is bounded by ε,
and no player can profit more than 2εR by any kind of deviation. Thus g is
an (x, y)-perturbed equilibrium payoff.

Lemma 5.8 Let (x, y) be a stationary profile, and g = (gs)s∈S ∈ R2|S|. As-
sume that the following conditions hold:

1) gs = u(s) for every absorbing state s ∈ T .

2) g1
s ≥ ψ1

c (s, a, ys) for every s ∈ R and a ∈ A.

3) g2
s ≥ ψ2

c (s, xs, b) for every s ∈ R and b ∈ B.

4) For every s ∈ R \ C(x, y) the following hold:

a) g1
s = ψ1

g(s, a, ys) for every a ∈ supp(xs).

b) g2
s = ψ2

g(s, xs, b) for every b ∈ supp(ys).

5) For every s ∈ R∩C(x, y) there exist two exits e1 = e1(s) and e2 = e2(s)
in Es(x, y) and α = α(s) ∈ [0, 1] that satisfy the following:

a) ψ1
g(ej) = g1

s for each j = 1, 2, and g2
s = αψ2

g(e1) + (1− α)ψ2
g(e2).

b) If ej ∈ E1
s (x, y) then g1

s = ψ1
g(s, a, ys) for every a ∈ supp(x(ej)).
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c) If ej ∈ E2
s (x, y) then ψ2

g(s, xs, b1) = ψ2
g(s, xs, b2) ≥ ψ2

c (s, xs, b3) for
every b1, b2 ∈ supp(y(ej)) and b3 ∈ B.

d) At most one of e1 and e2 is an exit of player 2.

6) The Markov chain over S whose transition law is induced by (xs, ys) for
every s 6∈ C(x, y) and by α(s)e1(s)+(1−α(s))e2(s) for every s ∈ C(x, y)
is absorbing (i.e. for every initial state, an absorbing state is reached
with probability 1).

Then g is an equilibrium payoff.

Proof: Let ε > 0 be given. Let t1, t2 ∈ N be sufficiently large. These
two constants will be used in the statistical tests, but the profile σ that we
construct depend on them as well.

Define a profile σ as follows:

• Whenever the game is in a state s ∈ R\C(x, y) the players play (xs, ys).

In order to define σ at states s ∈ R ∩ C(x, y), we recall that to each such
state there exist two exits e1 = e1(s) and e2 = e2(s), and α = α(s) that
satisfy condition 5. If one of these exits is an exit of player 2, we assume it is
e2. Otherwise, we assume that ψ2

g(e1) ≤ ψ2
g(e2). We fix δ = δ(s) ∈ (0, 1/t1)

and n = n(s) ∈ N such that (1 − δ)n = 1 − α if e1 is a unilateral exit and
(1− δ2)n = 1− α if e1 is a joint exit.

The profile σ is defined at states s ∈ R ∩ C(x, y) as follows. Assume the
game moves to this state at stage t0.

• The players play the mixed action combination ((1−δ)xs+δx(e1), (1−
δ)ys+δy(e1)) for n stages or until an action combination in the support
of e1 is played.

• If no action combination in the support of e1 was played in the first n
stages, the players play ((1− δ)xs + δx(e2), (1− δ)ys + δy(e2)) until an
action combination in the support of e2 is played.

• If an action combination in the support of either e1 or e2 is played, but
the game remains in the same state, then the players act as if the game
has left the state s, and immediately returned to it.
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Fix an initial state s and assume that the players follow σ. By condition 6,
the game is bound to be eventually absorbed. Moreover, by the definition
of δ(s) and n(s), the probability to leave a state s ∈ R ∩ C(x, y) through
an action combination in the support of e1 is α(s), and through an action
combination in the support of e2 is 1−α(s). By conditions 1, 4 and 5(a) the
expected payoff for the players is gs.

We supplement σ with a statistical test. In order to prevent the players
from playing actions which are not compatible with σ, the players check, as in
lemma 5.7, that the realized action combination that is played is compatible
with σ.

Let k ∈ N be sufficiently large such that the number of times that the
game leaves a communicating state s ∈ R ∩ C(x, y) until absorption occurs
is smaller than k with probability of at least 1− ε.

Assume that the game moves to a state s ∈ C(x, y) at stage t0. Denote
e1 = e1(s), e2 = e2(s) and n = n(s). Each player checks his opponent’s
behavior as follows. At every stage t such that t0 < t < t0 + n, or until the
game leaves s:

1) If e1 ∈ E2
s (x, y) and t ≥ t0 + t1, then player 2 checks whether the

distribution of the realized actions of player 1 at stages t0, t0 +1, . . . , t−
1, restricted to supp(xs), is ε-close to xs. If e1 ∈ E1

s (x, y), then player
1 employs a symmetric test.

2) If e1 ∈ E1,2
s (x, y) and t ≥ t0 + t2, then both players check whether

the realized actions of their opponent at stages t0, t0 + 1, . . . , t − 1,
restricted to supp(x(e1)) and supp(y(e1)), is ε-close to x(e1) and y(e1)
respectively.

If a player fails one of these tests at a stage t0 ≤ t < t0 + n, this player is
punished with an ε-min-max strategy forever.

If no deviation is detected before stage t0 + n, then each player begins to
check, in a similar way, if his opponent continues to follow σ, until the game
leaves the state s (i.e. replace e1 by e2 in the statistical tests).

Let t3 be sufficiently large such that if no deviation is detected then
leaving s occurs in t3 stages with probability greater than 1− ε/k. As in the
proof of Lemma 5.7, at stage t0 + t3 both players switch to an ε-min-max
strategy.
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By conditions 2, 3 and 4, no player can deviate in any state s 6∈ C(x, y)
and profit more than εR.

The constants t1 and t2 = t2(δ) are chosen, as in the proof of Lemma 4.4,
in such a way that no player can profit more than 2εR by any deviation, and
the probability of false detection of deviation is bounded by ε. Thus g is an
(x, y)-perturbed equilibrium payoff.

5.4 Preliminary Results

A stationary profile (x, y) is absorbing if by playing it, the game is bound to
reach an absorbing state with probability 1.

For every state s ∈ S, let

vis(x, y) = Es,x,y

(
lim
t→∞

∞∑
t=1

rit/t

)

be the expected undiscounted payoff for player i if the initial state is s
and the players follow the stationary profile (x, y). The function v(x, y) =
(vs(x, y))s∈S ∈ R2|S| is harmonic over S w.r.t. the transition ps,s′ = ws′(s, xs, ys).
If (x, y) is absorbing then v(x, y) is the unique solution of the following system
of linear equations:

ξs = u(s) ∀s ∈ T
ξs = ψξ(s, xs, ys) ∀s ∈ R. (75)

Lemma 5.9 Let (x, y) be an absorbing stationary profile. Let g : S → R2 be
such that ψ2

g(s, xs, ys) ≤ g2
s for every s ∈ R and g2

s = u2(s) for every s ∈ T .
Then v2

s(x, y) ≤ g2
s for every s ∈ S

Proof: v2(x, y) is an harmonic function and g2 is a sub-harmonic function
over S that have the same values over T . Hence v2(x, y) − g2 is a super-
harmonic function that vanishes over T . Since (x, y) is absorbing, the result
follows.

Corollary 5.10 Let x be a stationary strategy of player 1. Let g : S → R2

satisfy for every stationary strategy y of player 2, (i) g2
s ≥ ψ2

g(s, xs, ys) for
every s ∈ R and (ii) g2

s = u2(s) for every s ∈ T . Then c2
s ≤ g2

s for every
s ∈ S.
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Proof: Since the game is a positive recursive game with the absorbing prop-
erty, the best reply of player 2 against the stationary strategy x is a stationary
strategy y such that (x, y) is absorbing. By Lemma 5.9, v2

s(x, y) ≤ g2
s for

every stationary strategy y such that (x, y) is absorbing and s ∈ S. Hence
c2
s ≤ g2

s .

A symmetric proof proves the following lemma:

Lemma 5.11 Let y be a fully mixed stationary strategy of player 2. Let g :
S → R2 satisfy for every stationary strategy x of player 1, (i) ψ1

g(s, xs, ys) ≤
g1
s for every s ∈ R and (ii) g1

s = u1(s) for every s ∈ T . Then c1
s ≤ g1

s for
every s ∈ S.

5.5 The ε-Approximating Game

5.5.1 The Game

Let ε? = 1
|B| . For every ε ∈ (0, ε?) define the set

Ys(ε) =

ys ∈ ∆(B) |
∑
b∈J

ybs ≥ ε|B|−|J | ∀J ⊆ B

 . (76)

Let Y (ε) = ×s∈SYs(ε). Every stationary strategy y ∈ Y (ε) is fully mixed.
Since the game satisfies the absorbing property, the payoff function v(x, y) is
continuous over X × Y (ε).

Define the ε-approximating game G′(ε) as a positive recursive game with
the absorbing property (S,A,B,w, u), where player 2 is restricted to strate-
gies in which the mixed action he plays whenever the game is in state s must
be in Ys(ε) (rather than in ∆(B)).

5.5.2 Existence of a Stationary Equilibrium

Note that X and Y (ε) (for every ε ∈ (0, ε?)) are non-empty, convex and
compact sets. Define the correspondence φ1

s,ε : X × Y (ε)→ ∆(A) by:

φ1
s,ε(x, y) = argmaxx′s∈∆(A)ψ

1
v(x,y)(s, x

′
s, ys) (77)

that is, player 1 maximizes his payoff locally — in every state s he chooses
a mixed action that maximizes his expected payoff if the initial state is s,
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player 2 plays the mixed action ys, and the continuation payoff is given by
v(x, y). Let φ1

ε = ×s∈Sφ1
s,ε.

Lemma 5.12 The correspondence φ1
ε has non-empty convex values and it is

upper semi-continuous.

Proof: Since ψ1
v(x,y)(s, x

′
s, ys) is linear in x′s for every fixed (s, x, y) and X

is convex and compact, φ1
ε has non-empty and convex values. By the con-

tinuity of v1 over the compact set X × Y (ε), it follows that φ1
ε is upper

semi-continuous.

Define the correspondence φ2
s,ε : X × Y (ε)→ Ys(ε) by:

φ2
s,ε(x, y) = argmaxy′s∈Ys(ε)ψ

2
v(x,y)(s, xs, y

′
s). (78)

Let φ2
ε = ×s∈Sφ2

s,ε. As in Lemma 5.12, since Ys(ε) is not empty, convex and
compact whenever ε ∈ (0, ε?), and v2 is continuous over X × Y (ε), we have:

Lemma 5.13 The correspondence φ2
ε has non-empty convex values and it is

upper semi-continuous.

Define the correspondence φε : X × Y (ε)→ X × Y (ε) by

φε(x, y) = φ1
ε(x, y)× φ2

ε(x, y).

By Lemmas 5.12, 5.13 and by Kakutani’s fixed point Theorem we get:

Lemma 5.14 For every ε ∈ (0, ε?) there exists (x(ε), y(ε)) ∈ X × Y (ε) that
is a fixed point of the correspondence φε.

5.5.3 Properties as n→ 0

Since the state and action spaces are finite, there exists sequences {εn}n∈N of
real numbers and {(x(n), y(n))}n∈N of stationary profiles such that εn → 0,
(x(n), y(n)) is a fixed point of φεn for every n ∈ N, and (x(n), y(n)) converge
to a limit (x(∞), y(∞)). Moreover, it can be assumed that supp(xs(n))
and supp(ys(n)) are independent of n. Thus, if for some fixed pair (s, a),
xas(n) > 0 for one n, this inequality holds for every n ∈ N.
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In the sequel, we need that various sequences that depend on {x(n)} and
{y(n)} have a limit. The number of those sequences is finite, hence, by taking
a subsequence we will assume that the limits exist.
Remark: Using Theorem 2.5 it can be proven that we can choose for every
ε > 0 a fixed point (x(ε), y(ε)) of φε such that x and y, as functions of ε, are
Puiseux functions, hence all the limits that we take exist.

We denote for every n ∈ N and s ∈ S, gs(n) = vs(x(n), y(n)). Denote
gs(∞) = limn→∞ gs(n). Define for every x ∈ X, every y ∈ Y and every
(s, b) ∈ S ×B

hbs(x, y) = ψ2
v(x,y)(s, xs, b).

hbs(x, y) is the expected payoff for player 2 if the initial state is s, the players
play the mixed action combination (xs, b) and the continuation payoff is given
by v(x, y).

Lemma 5.15 Let s1 ∈ S and b1, b2 ∈ B. If limn→∞
y
b1
s1

(n)

y
b2
s1

(n)
<∞ then for every

n sufficiently large

hb1s1(x(n), y(n)) ≤ hb2s1(x(n), y(n)).

Proof: By definition, y(n) is a best reply in Y (εn) against x(n). If the
lemma is not true, then for every n one can find a strategy y′(n) for player 2,
that is in Y (εn), and, for n sufficiently large, yields player 2 a better payoff
than does y(n) — a contradiction.

Assume that the lemma is not true. Then, by taking a subsequence,
hb1s1(x(n), y(n)) > hb2s1(x(n), y(n)) for every n ∈ N. Define for every n the
stationary strategy y′(n) for player 2 as follows:

y′bs (n) =


yb2s (n)/2 (s, b) = (s1, b2)
yb1s (n) + yb2s (n)/2 (s, b) = (s1, b1)
ybs(n) Otherwise.

Let us verify that y′s(n) ∈ Ys(εn) for every n sufficiently large. Otherwise, by
taking a subsequence, there exists a set J ⊆ B such that b2 ∈ J , b1 6∈ J and∑

b∈J
y′bs (n) < ε|B|−|J |n ∀n ∈ N. (79)
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In particular, lim y
b2
s (n)

ε
|B|−|J|
n

< ∞. By the assumption, lim y
b1
s (n)

ε
|B|−|J|
n

< ∞ as well.

Since
∑
b∈J y

b
s(n) + yb1s (n) ≥ ε|B|−|J |−1

n it follows that there exists b ∈ J \ {b2}
such that lim ybs(n)

ε
|B|−|J|−1
n

> 0 — a contradiction to (79).

However

ψ2
g(n)(s, xs(n), y′s(n))− ψ2

g(n)(s, xs(n), ys(n))

=
(
ψ2
g(n)(s, xs(n), b1)− ψ2

g(n)(s, xs(n), b2)
)
yb2s1(n)/2

=
(
hb1s1(x(n), y(n))− hb2s1(x(n), y(n))

)
yb2s1(n)/2 > 0,

which contradicts the optimality of y(n) against x(n).

By applying Lemma 5.15 in both directions, and taking the limit as
n→∞ we conclude that if player 2 plays two actions with the same or-
der of magnitude, then the corresponding limits of his continuation payoffs
are equal. We need a weaker result:

Corollary 5.16 Let b1, b2 ∈ B and s ∈ S. If limn→∞
y
b1
s (n)

y
b2
s (n)

∈ (0,∞) then

ψ2
g(∞)(s, xs(∞), b1) = ψ2

g(∞)(s, xs(∞), b2).

Since all the actions in the support of ys(∞) are played with the same
order of magnitude, we have:

Corollary 5.17 For every b ∈ supp(ys(∞))

ψ2
g(∞)(s, xs(∞), b) = g2

s(∞).

Proof:

g2
s(∞) = lim

n→∞
g2
s(n)

= lim
n→∞

ψ2
g(n)(s, xs(n), ys(n))

= ψ2
g(∞)(s, xs(∞), ys(∞))

=
∑

b∈supp(ys(∞))

ybs(∞)ψ2
g(∞)(s, xs(∞), b).

The result now follows from Corollary 5.16.
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By Lemma 5.15, Corollary 5.17 and the continuity of ψ it follows that

ψ2
g(∞)(s, xs(∞), b) ≤ g2

s(∞) ∀(s, b) ∈ S ×B. (80)

By Corollary 5.10 and (80) we have

g2
s(∞) ≥ c2

s ∀s ∈ S. (81)

Since x(n) is a best reply against y(n),

ψ1
g(n)(s, a, ys(n)) ≤ g1

s(n) ∀(s, a) ∈ S × A (82)

and equality holds whenever a ∈ supp(xs(n)). Taking a limit in (82) as
n→∞ we get

ψ1
g(∞)(s, a, ys(∞)) ≤ g1

s(∞) ∀(s, a) ∈ S × A (83)

and equality holds whenever xas(n) > 0 for every n.
By Lemma 5.11 and (82), c1

s ≤ g1
s(n) for every s ∈ S and n ∈ N, and by

taking the limit as n→∞, c1
s ≤ g1

s(∞) for every s ∈ S. Therefore,

ψ1
c (s, a, ys(∞)) ≤ g1

s(∞) ∀(s, a) ∈ S × A. (84)

To summarize, we have asserted that gis(∞) is greater than the min-max
value of player i, and that no player can receive more than gs(∞) by playing
any action in any state s and then be punished with his min-max value.

5.6 Existence of an Equilibrium Payoff

In this section we prove that if there are two non-absorbing states then
either the conditions of Lemma 5.7 hold or the conditions of Lemma 5.8
hold. Denote the two non-absorbing states by R = {s1, s2}.

In our proof we could have used Puiseux functions, as was done in Section
4. However, whereas there the degree of the function was used extensively,
here it is used only to simplify arguments. Therefore we decided to prove the
results using a convergent sub-sequence, as is done in the literature, including
the classical paper of Vrieze and Thuijsman [36].

Before going into the details of the proof, we explain the way we are
heading. The idea is, as in Section 4, to consider a sequence of stationary
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equilibria in the ε-approximating games that converges to a limit x. We
denote by g the limit of the equilibrium payoff in these ε-approximating
games.

If there is no communicating set w.r.t. x, it is easy to see that x is a
stationary absorbing equilibrium profile.

Assume now that there is a communicating set w.r.t. x that contains a
single state s. The idea is to find a pair of exits from the communicating set
{s} such that the continuation payoff of player 1 by both is equal to g1

s (that
is, the limit of the expected payoff for player 1 in the ε-approximating game
if the play leaves s through each of these exits), and the expected payoff
of player 2 if the first exit is used is more than g2

s , while if the second exit
is used is less than g2

s . Since there are only two non-absorbing states, the
other state either forms another communicating set, and we apply the same
argument, or it is transient w.r.t. x. Thus, we can apply Lemma 5.8, and
construct an equilibrium payoff. The problem arises when both states form
a single communicating set. In this case, there need not exist a pair of exits
as above. However, there always exists an exit that yields both player an
expected continuation payoff of at least gs (for any non-absorbing state s).
Since there is a unique communicating set, one can apply Lemma 5.7, and
construct an equilibrium payoff.

5.6.1 Exits from a State

Fix a state s ∈ S such that ws(s, xs(∞), ys(∞)) = 1. In particular, s ∈
C(x(∞), y(∞)). Since the game satisfies the absorbing property, Es(x(∞),y(∞))6=
∅.

Let

U =
{

(a, b) ∈ A×B | (a, b) ∈ supp(e) for some e ∈ E0
s (x(∞), y(∞))

}
.

U is the set of all pairs of actions that take part in one of the absorbing
neighbors of (x(∞), y(∞)). Note that not necessarily ws(s, a, b) < 1 for
every (a, b) ∈ U , and that E0

s (x(∞), y(∞)) induces naturally a partition on
U .

For every n ∈ N, the mixed action (xs(n), ys(n)) induces a probability
distribution over A×B. Since the game satisfies the absorbing property,
this probability distribution gives positive probability to the set U . Let ρn be
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the conditional probability induced by (xs(n), ys(n)) over E0
s (x(∞), y(∞)).

Define ρ∞
def
= limn ρn.

We define two additional subsets of A×B:

U1 = {(a, b) ∈ (A×B) \ U | ws(s, a, b) < 1}

and
U2 = {(a, b) ∈ (A×B) \ U | ws(s, a, b) = 1}.

U1 is the set of pairs where exiting {s} occurs with positive probability,
while U2 is the set of pairs that cause the play to stay in s with probability
1.

Any pair in U1 is dominated by a pair of actions in U : for every (a, b) ∈ U1

there exists a pair (a0, b0) ∈ U such that limn
xas (n)ybs(n)

x
a0
s (n)y

b0
s (n)

= 0. Clearly, if

(a, b) ∈ U2 then gs(n) = ψg(n)(s, a, b). Therefore

gs(n) =
∑

(a,b)∈A×B
xas(n)ybs(n)ψg(n)(s, a, b) =

∑
e∈E0

s (x(∞),y(∞))

ρn(e)ψg(n)(e) + o(1),

where o(1) means a function that converges to 0 as n→∞. The elements
in U contribute the first term on the right hand side, and the elements in
U1 contribute the second term. The elements in U2 are absorbed on the left
hand side.

By taking the limit as n→∞ we have:

gs(∞) =
∑

e∈E0
s (x(∞),y(∞))

ρ∞(e)ψg(∞)(e). (85)

This equation is the equivalent of Lemma 4.21 for communicating sets.
For every a ∈ supp(xs(n)) \ supp(xs(∞)) \ A1

s(s, y(∞)) we define

B(a) = {b ∈ B | (s, a, b) ∈ E0
s (x(∞), y(∞))}.

B(a) is the collection of the elements in U whose first coordinate is a. Note
that if b ∈ B(a) then (s, a, b) is a joint exit from s.

If
∑
b∈B(a) ρ∞(s, a, b) > 0 then we define an exit ea ∈ Es(x(∞), y(∞)) by:

ea =

(
s, a,

∑
b∈B(a) ρ∞(s, a, b) · b∑
b∈B(a) ρ∞(s, a, b)

)
.
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ea is not necessarily a pure exit. It is, in a sense, an exit that includes all the
exits from s where player 1 plays a.

Since for every n ∈ N and action a ∈ supp(xs(n)), ψ1
g(n)(s, a, ys(n)) =

g1
s(n), one can show as above that

ψ1
g(∞)(ea) = g1

s(∞). (86)

Recall that B1
s (s, x(∞)) is the set of all actions of player 2 that cause

the game to leave s with positive probability, given player 1 plays xs(∞). If∑
b∈B1

s (s,x(∞)) ρ∞(s, xs(∞), b) > 0, we define an exit e0 ∈ Es(x(∞), y(∞)) by:

e0 =

(
s, xs(∞),

∑
b∈B1

s (s,x(∞)) ρ∞(s, xs(∞), b) · b∑
b∈B1

s (s,x(∞)) ρ∞(s, xs(∞), b)

)
.

As above, since ψ1
g(n)(s, xs(∞), ys(n)) = g1

s(n) for every n ∈ N, one can show
that

ψ1
g(∞)(e0) = g1

s(∞). (87)

For every a ∈ A1
s(s, x(∞)) for which ρ∞(s, a, ys(∞)) > 0 define an exit

ea ∈ Es(x(∞), y(∞)) by:

ea = (s, a, ys(∞)).

By (83) we have
ψ1
g(∞)(ea) = g1

s(∞). (88)

The following lemma states that there always exists a pair of exits that
satisfy various properties, as described in the beginning of this section.

Lemma 5.18 There exist two exits e1, e2 ∈ Es(x(∞), y(∞)) and α ∈ [0, 1]
such that

1. g1
s(∞) = g1

s(ej) for j = 1, 2.

2. g2
s(∞) = αψ2

g(∞)(e1) + (1− α)ψ2
g(∞)(e2).

3. At most one of e1, e2 is a unilateral exit of player 2.

4. If there exists e ∈ supp(ρ∞) such that wT (e) > 0, then wT (e1) > 0.
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Proof: Consider the set E ′ that contains the exits e0 and {ea} that were
defined above. Note that the supports of these exits form a partition of U ,
which is coarser than the partition E0

s (x(∞), y(∞)). Thus, for every e′ ∈ E ′,

ρ∞(e′) =
∑
{ρ∞(e) | e ∈ E0

s (x(∞), y(∞)) and supp(e) ⊆ supp(e′)}.

By 85,
gs(∞) =

∑
e′∈E′

ρ∞(e′)ψg(∞)(e
′). (89)

Note that by (86), (87) and (88), g1
s(∞) = ψ1

g(∞)(e
′) for every e′ ∈ E ′.

We will now distinguish between two cases.
Case 1: If there exists e′ ∈ E ′ with wT (e′) > 0, we choose e1 to satisfy
wT (e1) > 0. If ψg(∞)(e1) = gs(∞) we are done (choose α = 1 and e2 = e1).
Otherwise, assume w.l.o.g. that ψ2

g(∞)(e1) > g2
s(∞). by (89) there exists

e2 ∈ E ′ with ψ2
g(∞)(e2) < g2

s(∞). α in, then, the unique number that satisfies
condition (2).
Case 3: Otherwise, by (89) it follows that there exist two exits e1, e2 ∈ E ′
and α ∈ [0, 1] such that condition (2) holds. By (86), (87) and (88) condition
(1) holds, by assumption condition (4) holds, and by the construction of E ′

condition (3) holds.

5.6.2 The Main Result

The proof of the main result is divided into two cases: whether R is commu-
nicating under (x(∞), y(∞)) or not.

Consider the following two conditions:

A.1. R is communicating under (x(∞), y(∞)).

A.2. For every s ∈ R such that s ∈ C(x(∞), y(∞)), and every e ∈ Es(x(∞), y(∞))
such that ρ∞(e) > 0 we have wT (e) = 0.

We shall prove that if conditions A hold then the conditions of Lemma
5.7 hold, while if they do not hold then the conditions of Lemma 5.8 hold.

Lemma 5.19 If conditions A hold then the conditions of Lemma 5.7 hold
w.r.t. (x(∞), y(∞)).
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Proof: By taking a subsequence and exchanging the names of s1 and s2 if
necessary, we can assume that exactly one of the following holds:

B.1. Either g2
s1

(n) > g2
s2

(n) for every n ∈ N.

B.2. Or, g2
s1

(n) = g2
s2

(n) and g1
s1

(n) > g1
s2

(n) for every n ∈ N.

B.3. Or, g2
s1

(n) = g2
s2

(n), g1
s1

(n) = g1
s2

(n) and wT (s1, xs1(n), ys1(n)) > 0 for
every n ∈ N.

Step 1: Construction of an exit.
Note that wT (s1, xs1(n), ys1(n)) > 0 for every n ∈ N. Otherwise, it follows
that gs1(n) = gs2(n) for every n ∈ N, which contradicts all of the assumptions
B.

Let A? be the set of all actions a ∈ A such that

i) wT (s1, a, ys1(n)) > 0 for every n.

ii) limn→∞
wT (s1,a,ys1 (n))

wT (s1,a′,ys1 (n))
> 0 for every a′ such that wT (s1, a

′, ys1(n)) > 0

for every n.

i.e. the actions of player 1 that are absorbing with highest order of magnitude
against ys1(n). Let B? be the set of all actions b ∈ B such that

• wT (s1, xs1(n), b) > 0 for every n.

• lim
ybs1 (n)

yb
′
s1

(n)
> 0 for every b′ such that wT (s1, xs1(n), b′) > 0 for every n.

i.e. the actions of player 2 that are absorbing against xs1(n) and player 2
plays with highest order of magnitude.

Since wT (s1, xs1(n), ys1(n)) > 0 for every n it follows that A?, B? 6= ∅.
Let x?s1(n) and y?s1(n) be the conditional probability distribution that is in-

duced by xs1(n) and ys1(n) overA? andB? respectively. Denote (x?s1(∞), y?s1(∞)) =
limn→∞(x?s1(n), y?s1(n)).

Let e = (s1, x
?
s1

(∞), y?s1(∞)). By the definition of A? and B? it follows
that supp(x?s1(∞)) = supp(x?s1(n)) and supp(y?s1(∞)) = supp(y?s1(n)) for ev-
ery n ∈ N. Therefore e is an exit from R.

Step 2: g2
s1

(∞) ≤ ψ2
g(∞)(e).
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Assume to the contrary that g2
s1

(∞) > ψ2
g(∞)(e). In particular, for n suffi-

ciently large, g2
s1

(n) > ψ2
g(n)(e). By the definition of A? and since g2

s1
(n) ≥

g2
s2

(n) it follows that g2
s1

(n) > ψ2
g(n)(s1, xs1(n), y?s1(n)) for n sufficiently large.

Since g2
s1

(n) = ψ2
g(n)(s1, xs1(n), ys1(n)), it follows that there exists an action

b0 ∈ B such that g2
s1

(n) < ψ2
g(n)(s1, xs1(n), b0) for n sufficiently large. By

Lemma 5.15, limn
y
b0
s1

(n)

ybs1 (n)
= ∞ for every action b ∈ B?, and by the definition

of B?, b0 6∈ B?. In particular, wT (s1, xs1(n), b0) = 0, which implies that for
every n, g2

s1
(n) ≥ ψ2

g(n)(s1, xs1(n), b0) — a contradiction.

Step 3: g1
s1

(∞) ≤ ψ1
g(∞)(e).

Assume to the contrary that g1
s1

(∞) > ψ1
g(∞)(e). In particular, g1

s1
(n) >

ψ1
g(n)(e) for n sufficiently large. We shall now prove that this implies that

g1
s1

(n) < g1
s2

(n) and there exists b0 ∈ B such that ws2(s1, x
?(∞), b0) > 0 and

limn
y
b0
s1

(n)

ybs1 (n)
= ∞ for every b ∈ B?. Indeed, otherwise it follows by the defini-

tion of B? that for every n sufficiently large, g1
s1

(n) > ψ1
g(n)(s1, x

?(n), y(n)),
which contradicts assumption C.1.

Hence B.1 holds, and therefore g2
s1

(n) > g2
s2

(n) for every n ∈ N. By the
definition of B?, wT (s1, xs1(n), b0) = 0 for every n, and therefore g2

s1
(n) >

ψ2
g(n)(s1, xs1(n), b0) for every n sufficiently large, and we get the same contra-

diction as in step 2.

Step 4: Definition of the equilibrium payoff.
Define z = (zs)s∈S ∈ R2|S| by:

zs =

 u(s) s ∈ T∑
s′∈T ws′ (e)u(s′)

wT (e)
s ∈ R

Step 5: The conditions of Lemma 5.7 hold w.r.t. (x(∞), y(∞)) and z.
Condition 1 of Lemma 5.7 follows from the definition of z. Condition 2 fol-
lows from Step 3 and (84) while condition 3 follows from Step 2, (80) and
(81). Condition 4 follows from (83) and condition 5 follows from Corollary
5.16.
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Lemma 5.20 If conditions A do not hold then the conditions of Lemma 5.8
hold w.r.t. (x(∞), y(∞)).

Proof: Define z = g(∞). We prove that the conditions of Lemma 5.8
hold w.r.t. (x(∞), y(∞)) and z. Condition 1 holds by the definition of
z. Condition 2 follows from (84) while condition 3 follow from (80) and
(81). Condition 4 follows from (83) and Corollary 5.17. Conditions 5(a) and
5(d) follow from Lemma 5.18, whereas condition 5(b) follows from (83) and
condition 5(c) follows from corollary 5.17, (80) and (81).

Since conditions A do not hold, it follows that condition 6 of Lemma 5.8
holds.

5.7 More Than Two Non-Absorbing States

Why does our approach fail for games with more than two non-absorbing
states ? The reason is that if conditions A hold then the equilibrium payoff
that we construct need not be equal to g(∞), and we run into a similar
problem as discussed in section 1.5.2.

As an example, consider the following positive recursive game with the
absorbing property and four non-absorbing states:

state 3

1/2

1/2

1/2 1/2

1, 3 ∗
1

1

1, 3 ∗

state 4

1/2

1/2

1/2 1/2

−1, 3 ∗
2

2

−1, 3 ∗

state 1

1
n

1− 1
n

1− 1
n

1
n

0, 6 ∗
2

3

1, 1 ∗

state 2

1
n

1− 1
n

1− 1
n

1
n

0, 5 ∗
1

4

−1, 0 ∗

Figure 1

93



Let (x(n), y(n)) be the stationary profile indicated in Figure 1. First let
us verify that (x(n), y(n)) is a fixed point of the correspondence φ1/n de-
fined in section 5.5. Indeed, both players are indifferent between their ac-
tions in states 3 and 4, and in states 1 and 2 player 2 must play each ac-
tion with a probability of at least 1/n. It can be checked that player 2
prefers to play in these two states L, hence his strategy is a best reply in
Y (1/n). The expected payoff for player 1 by this stationary strategy profile

is g1(n) = ( 1/n
2−1/n

, −1/n
2−1/n

, 1
2−1/n

, −1
2−1/n

). One can check that player 1 is indif-
ferent between his actions in states 1 and 2, and therefore his strategy is a
best reply against y(n).

Let C = {s1, s2}. Note that C is communicating w.r.t. (x(∞), y(∞)), and
that the exits from C w.r.t. (x(∞), y(∞)) are (s1, B, L), (s1, T, R), (s2, B, L)
and (s2, T, R). It turns out that ρ∞ is the uniform distribution over these
four exits and therefore

g1(∞) = g2(∞) =
1

4
(0, 6) +

1

4
(1, 1) +

1

4
(0, 5) +

1

4
(−1, 0) = (0, 3).

However, there does not exist any way to exit from C in such a way that
is individually rational for both players and yields the players an expected
payoff (0, 3).

The proof given by Vieille [35] for the existence of an equilibrium payoff in
positive recursive games with the absorbing property and arbitrary number
of non-absorbing states, uses different approximating games and best reply
correspondence. Moreover, after proving that the approximating game has a
stationary equilibrium, a lot of work is needed to construct an ε-equilibrium
profile in the original game. We hope that one can prove the existence of
an equilibrium payoff for an arbitrary number of non-absorbing states by
taking our approach, and finding another payoff function for player 2 or
other constraints on his strategy space (or both).
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