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Abstract

A quitting game is a sequential game where each player has two actions: to continue
or to quit, and the game continues as long as no player quits.

For every continuation payoff x we assign a one-shot game, where the payoff if
everyone continues is x. We study the dynamics of the correspondence that assigns to
every continuation payoff the set of equilibrium payoffs in the corresponding one shot
game.

The study presented here has an implication on the approach one should take in
trying to prove, or disprove, the existence of an equilibrium payoff in n-player stochastic
games. It also shows that the minimal length of the period of a periodic δ-equilibrium
in 3-player quitting games needs not be uniformly bounded for δ > 0.
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1 Introduction

Whether or not any n-player undiscounted stochastic game admits a uniform equilibrium
payoff is still an open problem, even though a lot of progress was achieved in recent years.
Mertens and Neyman (1981) proved the existence of the value in zero-sum games. Existence
of an equilibrium payoff was proved by Vrieze and Thuijsman (1989) for two-player non
zero-sum absorbing games,1 by Vieille (2000) for two-player stochastic games, and by Solan
(1999) for three-player absorbing games.

In all of these existence proofs one approximates the game by a sequence of auxiliary
games that admit a stationary equilibrium. By studying the asymptotic behavior of a se-
quence of stationary equilibria in the auxiliary game, as the approximation becomes better,
one constructs an equilibrium payoff in the original undiscounted game.

Flesch et al (1997) studied an example of a three-player quitting game,2 that admits no
stationary ε-equilibrium, and the only equilibria in this game have a periodic flavor. As
it turns out, periodic equilibria are a very useful concept, that helped solving a couple of
classes of stochastic games. It was used in Solan’s (1999) study of three-player absorbing
games, and in Solan and Vieille’s (1998) study of quitting games.

Solan and Vieille (1998) studied an example of a four-player quitting game where the
approximation technique fails. Nevertheless, they have succeeded to prove that a class of
n-player quitting games admits an equilibrium payoff using the following technique. With
every vector x ∈ Rn associate the one shot game G(x) with continuation payoff x; that
is, if everyone continues, the payoff is given by x. For every ε > 0 let Eε(x) be the set of
all ε-equilibrium payoffs in G(x), where the corresponding ε-equilibrium strategy profile is
terminating with probability at least ε; that is, the probability that everyone continues is
smaller than 1 − ε. Solan and Vieille proved that, given any periodic point of Eε, one can
construct an ε1/6-equilibrium in the original quitting game. They also found conditions on
the payoff function that ensure that such a periodic point exists.

Since the method of approximating games is seemingly not powerful enough to deal with
general n-player stochastic games, one needs to develop new techniques, and the approach
used in Solan and Vieille (1998) may serve as a starting point.

In the present note we restrict ourselves to quitting games, and we study the dynamics
of the correspondence E0; that is, the correspondence that assigns to every vector x ∈ Rn

the set of equilibrium payoffs in the one shot game with continuation payoff x.
If x is large enough (that is, xi is large for every i), then the profile “everyone continues”

is an equilibrium in G(x), and therefore x is a fixed point of E0. Nevertheless, the profile
“everyone continues” needs not be an equilibrium in the original quitting game.

A sequence x1, x2, . . . , xK = x1 of vectors in Rn is a period of E0 if xk ∈ E0(xk+1) for
every k = 1, 2, . . . , K (addition modulo K). It is a non trivial period if for at least one index
k, in the equilibrium strategy profile in G(xk+1) that yields payoff xk at least one player quits

1Absorbing games are stochastic games where all states but one are absorbing.
2Quitting games are absorbing games where each player has two possible actions, to continue or to quit,

and the game is absorbed with probability 1 once at least one player quits.
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with positive probability. It is easy to verify that every non trivial period of E0 corresponds
to an equilibrium in the quitting game. Thus, if one’s goal is equilibrium payoffs in the
original quitting game, one should look for non trivial periods of E0.

More generally, one should look for non trivial inverse iterates; that is, sequences (xk)k∈N

such that (i) xk ∈ E0(xk+1) for every k ∈ N, and (ii) if for every k ∈ N αk is an equilibrium
strategy profile in G(xk+1) that yields payoff xk, then the strategy profile (αk)k∈N in the
original quitting game is terminating with probability 1.

We show, by studying an example of a three-player quitting game, that the correspon-
dence E0 needs not have non-trivial inverse iterates, even when the game admits an equi-
librium payoff. In particular, it follows that three-player quitting games do not necessarily
admit 0-equilibria.

This result shows that a simpler technique than the one used in Solan and Vieille (1998),
namely, the search for a non trivial periodic point of E0, is bound to fail. Thus, the result
is useful both for those who try to prove that every stochastic game admits an equilibrium
payoff, as well as for those who look for a counter example. For the first group it says
that looking for non-trivial periods of the correspondence E0 is probably not the right path,
whereas for the second group it says that even if E0 does not have a non-trivial period, the
game may still admit a uniform equilibrium payoff.

Our result also complements that of Solan (1999, 2000). Solan (1999) proves that every
three-player absorbing game admits a δ-equilibrium where the equilibrium path is periodic,
and Solan (2000) proves that every absorbing team game3 admits a δ-equilibrium where the
equilibrium path is periodic, and the length of the period is 1 or 2. Our example shows that
in three-player absorbing games the length of the period cannot be uniformly bounded (even
if payoffs are bounded).

2 The Example

For every ε ≥ 0, let Gε be a three-player quitting game with the following payoff matrix:

Q

C

C Q C Q
C Q

1, 3, 0 ∗
0, 0, 0

1 + ε, 0, 1 ∗
0, 1, 3 ∗

0, 1, 1 + ε ∗
3, 0, 1 ∗

0, 0, 0 ∗
1, 1 + ε, 0 ∗

Figure 1

An asterisked entry is absorbing with probability 1, and the non-asterisked entry is
absorbing with probability 0.

The game Gε is a perturbation of the game G0, which was studied by Flesch et al (1997).

3A team game is a game where the set of players is divided into two subsets, and the payoffs of players
in the same subset coincide.
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A strategy for player i in Gε is a sequence (αi
k)k∈N, where αi

k is the probability that
player i quits at stage k, provided the game has not terminated before. A strategy profile is
a vector of strategies, one for each player.

For every continuation payoff y ∈ R3, let Gε(y) be the one-shot game derived from Gε

with a continuation payoff y; that is, a one-shot game where each player has two possible
actions, to continue or to quit, the payoff if everyone continues is y, and all other payoffs are
as appears in Figure 1. Let Eε(y) be the set of all Nash equilibria of the game Gε(y).4

A mixed strategy for player i in Gε(y) is represented by a number αi ∈ [0, 1], which is
the probability that player i quits. A mixed strategy profile is a vector α = (αi)3

i=1 ∈ [0, 1]3.
A sequence (y(k), α(k))k∈N where for every k ∈ N, y(k) ∈ R3 and α(k) ∈ [0, 1]3 is

admissible in Gε if for every k ∈ N, α(k) is an equilibrium in the game Gε(y(k + 1)) that
yields payoff y(k). It is admissible for y in Gε if it is admissible in Gε and y = y(1). It is
completely absorbing if

∏
k∈N

∏3
i=1(1− αi(k)) = 0.

Let
Fε = {y ∈ R3 | There is an admissible sequence for y in Gε}.

In words, Fε is the set of all vectors in R3 that are the first element in some inverse iterate
of Eε. By definition, if (y(k), α(k))k∈N is an admissible sequence in Gε then y(k) ∈ Fε for
every k ∈ N. Note that there may be several admissible sequences in Gε for the same vector
y ∈ R3.

A vector y ∈ Fε is trivial (in Gε) if every corresponding admissible sequence is not
completely absorbing; that is, for every admissible sequence (y(k), α(k))k∈N for y in Gε,∏

k∈N

∏3
i=1(1− αi(k)) > 0.

One can verify that for every ε > 0, any vector y ∈ (1 + ε,∞)3 is trivial in Gε. Indeed,
such a y is in Eε(x) if and only if x = y, and the corresponding equilibrium is α = (0, 0, 0).

It is clear that every non-trivial vector y ∈ Fε corresponds to (at least one) equilibrium
in Gε; if (y(k), α(k))k∈N is a completely absorbing admissible sequence for y in Gε, then
the strategy profile (α(k))k∈N is an equilibrium in Gε, and y = y(1) is the corresponding
equilibrium payoff.

Recalling the notion of equilibrium payoff (see, e.g., Mertens, Sorin and Zamir (1994,
Section VII.4)), one can provide a stronger definition for trivial vectors: a vector y ∈ Fε is
trivial if there exists δ > 0 such that every admissible sequence (y(k), α(k))k∈N for y in Gε

satisfies
∏

k∈N

∏3
i=1(1 − αi(k)) > δ. The results remain valid with this stronger definition.

However, since it is not clear whether an analogue of Lemma 3.2 below is still valid, the
proofs of the theorems is more involved.

Our first result is:

Theorem 2.1 For every ε > 0 sufficiently small, Fε contains only trivial vectors.

Recall that by Solan (1999), the game Gε admits a uniform equilibrium payoff. Thus, even
if the game admits an equilibrium payoff, Eε needs not have a non trivial inverse iterate.

4The correspondence Eε is the correspondence E0 that was mentioned in the introduction for the game
Gε.
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In all the classes of non zero-sum stochastic games where the existence of an equilibrium
payoff was proven, one can find δ-equilibrium strategy profiles where the equilibrium path
is periodic. For absorbing team games one can even find δ-equilibria where the length of
the period is bounded by 2 (see Solan (2000)). It is therefore natural to ask whether the
minimal length of the period can be uniformly bounded in other classes of stochastic games
as well. As our second theorem claims, this is not the case in three-player quitting games.

For every ε > 0 and every δ > 0, let d(ε, δ) be the minimal period of a periodic δ-
equilibrium of Gε.

Theorem 2.2 For every ε > 0 sufficiently small, lim infδ→0 d(ε, δ) = +∞.

Since the proof of Theorem 2.2 is similar in spirit to that of Theorem 2.1, we only provide
a rough sketch for it.

3 Analysis

Flesch et al (1997) studied the game G0. The following Lemma summarizes several of their
results that are used below.

Lemma 3.1 Let (y(k), α(k))k∈N be an admissible sequence (not necessarily completely ab-
sorbing) in G0. Then

1. If αi(k) ∈ (0, 1) for each i = 1, 2, 3 then mini{yi(k + 1)} < mini{yi(k)}.

2. There is k ∈ N such that either α1(k) = 0, or α2(k) = 0, or α3(k) = 0.

3. If αi(k) = 0 for some i = 1, 2, 3 then there exists j 6= i such that αj(k) = 0 as well.

Moreover,

4. For every δ > 0 sufficiently small, the game G0 does not admit any stationary δ-
equilibrium.

Lemma 3.2 If (y(k), α(k))k∈N is a completely absorbing admissible sequence in Gε, then for
every n ∈ N, the sequence (y(k), α(k))∞k=n is a completely absorbing admissible sequence for
y(k), provided ε is sufficiently small.

Proof: By definition, (y(k), α(k))∞k=n is an admissible sequence for y(k). Since (y(k), α(k))k∈N

is completely absorbing, it is sufficient to prove that αi(k) < 1 for every i = 1, 2, 3 and every
k ∈ N. Assume to the contrary that αi(k) = 1 for some i, k. Then α(k) is a 3ε-equilibrium
in Gε, hence a 4ε-equilibrium in G0, which contradicts Lemma 3.1(4) if ε is sufficiently small.

The following two lemmas are easy. The first is a simple matter of continuity, while the
second follows from the payoff matrix in Figure 1.
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Lemma 3.3 Let (εn, xn, yn, αn)n∈N be a sequence such that (i) εn ∈ (0, 1), xn, yn ∈ R3, αn ∈
[0, 1]3 for every n ∈ N, (ii) the limits x = limn→∞ xn, y = limn→∞ yn and α = limn→∞ αn

exist, while limn→∞ εn = 0, and (iii) for every n ∈ N, αn is an equilibrium in Gεn(xn) that
yields payoff yn. Then α is an equilibrium in G0(x) that yields payoff y.

Lemma 3.4 Let x, y ∈ R3, ε ∈ [0, 1) and α be an equilibrium in Gε(x) that yields payoff y.
If αi > 0 for every i = 1, 2, 3 then yi < 1 + ε for every i = 1, 2, 3.

Lemma 3.5 If x < (1, 1, 1) then for every ε ∈ (0, 1/3) and every y ∈ Eε(x), y < (1, 1, 1).

Proof: Assume to the contrary that the lemma is not true, and let x, y ∈ R3 and ε ∈ (0, 1/3)
satisfy (i) x < (1, 1, 1), (ii) y ∈ Eε(x), and (iii) y1 ≥ 1. Let α ∈ [0, 1]3 be an equilibrium in
Gε(x) that yields payoff y.

Since xi < 1 for every i = 1, 2, 3, it cannot be the case that at most two players quit with
positive probability under α. Indeed, if a single player i quits with positive probability, this
player expects to receive xi < 1 by continuing and 1 by quitting. If two players quit with
positive probability, say players i and i + 1 mod 3, then player i expects to receive at least
1 by quitting, and less than 1 by continuing.

Thus, αi ∈ (0, 1) for every i. Since y1 ≥ 1 and α1 ∈ (0, 1), we get

x1(1− α2)(1− α3) + 3(1− α2)α3 + α2α3 = (1− α3) + εα2(1− α3) ≥ 1.

Since x1 < 1 and ε > 0 the left hand-side equality implies that 1−α2 +2α3−α2α3 > 1−α3,
while the right hand-side inequality implies that εα2(1 − α3) ≥ α3. These two inequalities
imply that 3α3/(1 + α3) > α2 ≥ α3/ε(1 − α3), and therefore 1/3 > ε > ε(1 − α3) >
(1 + α3)/3 > 1/3, a contradiction.

Note that if y ∈ Fε is not trivial, then y is in the convex hull of the payoffs in the entries
of the matrix in the game Gε. In particular,5

3∑
i=1

yi ≤ 4 and 0 ≤ yi ≤ 3 ∀i. (1)

Let F be the limit set of all non trivial vectors in Fε. That is,

F = {y ∈ R3 | y = lim
n→∞

yn, yn ∈ Fεn is non trivial, εn → 0}.

To prove Theorem 2.1, it is sufficient to prove that F = ∅. Note that by (1), for every
y ∈ F ,

∑3
i=1 yi ≤ 4, and 0 ≤ yi ≤ 3 for each i = 1, 2, 3.

Define ∆ =
{
y ∈ R3 | ∑3

i=1 yi = 4
}
. Our next goal is to prove:

5Actually, for every ε ≥ 0, the stationary strategy αi = 1/2 guarantees player i an expected payoff 1/2.
It follows that the max-min value of each player is at least 1/2. In particular yi ≥ 1/2 for every player i and
every non-trivial vector.
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Lemma 3.6 F ⊆ ∆.

Proof: Assume to the contrary that there is y ∈ F such that
∑3

i=1 yi < 4 − 4ρ, for some
ρ > 0.

Let yn → y be a sequence such that yn ∈ Fεn is non trivial and εn → 0. For every n ∈ N,
let (yn(k), αn(k))k∈N be a completely absorbing admissible sequence for yn in Gεn . By taking
a subsequence, assume w.l.o.g. that

∑3
i=1 yi

n < 4− 4ρ for every n ∈ N.

We first claim that if y is chosen appropriately, we can assume w.l.o.g. that α1
n(1), α2

n(1) ≥
ρ/4 for every n ∈ N.

To prove this claim, we will find (i) y′ ∈ F \ ∆ such that d(y′, ∆) ≥ ρ2/16 (y′ may be
different from y), (ii) some sequence (y′n)n∈N such that y′n ∈ Fεn and y′n → y′, and (iii) for
every n ∈ N a completely absorbing admissible sequence (y′n(k), α′n(k))k∈N for y′n in Gεn ,
such that α′1n (1), α′2n (1) ≥ ρ/4.

For every n ∈ N let πn be the probability that under (αn(k))k∈N, in the stage of absorp-
tion at least two players play Q.

If for every k ∈ N, αi
n(k) ≥ ρ/4 for at most one player i, then πn < 4 × ρ/4 = ρ. In

particular, it follows that
∑3

i=1 yi
n > 4− 4ρ — a contradiction.

Therefore, for every n ∈ N there is kn ∈ N such that αi
n(kn) ≥ ρ/4 for at least two

players.
Define for every n ∈ N an admissible sequence (y′n(k), α′n(k))k∈N by y′n(k) = yn(kn+k−1)

and α′n(k) = αn(kn + k − 1). Since (yn(k), αn(k)) is completely absorbing, and by Lemma
3.2, (y′n(k), α′n(k)) is completely absorbing as well.

By taking a subsequence, we can assume w.l.o.g. that y′ = limn→∞ y′n(1) = limn→∞ yn(kn)
exists. Since α′in(1) ≥ ρ/4 for at least two players, and since

∑3
i=1 y′in(2) ≤ 4, it follows that∑3

i=1 y′in(1) ≤ 4− (ρ/4)2, and therefore d(y′, ∆) ≥ ρ2/16.
The claim now follows since the number of players is finite, and the games Gε are sym-

metric.

By taking a subsequence, we can assume w.l.o.g. that for every k ∈ N, y(k) = limn→∞ yn(k)
and α(k) = limn→∞ αn(k) exist. By Lemma 3.3, y(k) ∈ E0(y(k + 1)), and α(k) is the corre-
sponding equilibrium.

Since α1
n(1), α2

n(1) ≥ ρ/4 for every n ∈ N, α1(1), α2(1) ≥ ρ/4 as well. It follows from
Lemma 3.1(3) that α3(1) > 0. By Lemma 3.4, y(1) < (1, 1, 1).

Let k > 1 be the first stage such that αi(k) = 0 for at least one player i. By Lemma
3.1(2), such a finite k exists. By Lemma 3.1(3), αi(k) = 0 for at least two players, say 2 and
3. Moreover, by Lemma 3.1(1), yi(k) < 1 for some i.

In particular, it follows that α1(k) 6= 0 (otherwise, α(k) is not an equilibrium in G0(y(k+
1)): player i can profit by quitting). The payoff matrix in Figure 1 implies that y1(k) = 1
and 1 < y3(k). Since there is i such that yi(k) < 1, it follows that y2(k) < 1.

Since α(k) is an equilibrium in G0(y(k + 1)) in which only player 1 quits with positive
probability, it follows that

y2(k) = (1− α1(k))y2(k + 1) + 3α1(k), and
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y3(k) = (1− α1(k))y3(k + 1).

In particular, 1 > y2(k) > y2(k + 1), 1 < y3(k) < y3(k + 1), and y1(k) = 1 = y1(k + 1). It
follows that at stage k + 1, player 1 is the unique player who quits with positive probability.
Indeed, one can verify that if any other subset of players quit with positive probability, y(k)
cannot be an equilibrium payoff.

Similarly, in any stage l > k, α2(l) = α3(l) = 0 and α1(l) > 0.
For every l ≥ k, α(l) is an equilibrium in G0(y(l + 1)) that yields expected payoff y(l).

It follows that y2(l) ≥ 1− α1(l). In particular, for every l ≥ k we have α1(l) ≥ 1− y2(l) ≥
1−y2(k) > 0, hence (y(k), α(k))k∈N is completely absorbing. It follows that y3(k) = 0, hence
player 3 can quit at stage k and profit, contradicting the fact that α(k) is an equilibrium in
G0(y(k + 1)).

Proof of Theorem 2.1: Assume to the contrary that the theorem does not hold. Then
there exists a sequence εn → 0 and a sequence (yn)n∈N such that yn ∈ Fεn . For every n ∈ N
let (yn(k), αn(k)) be a completely absorbing admissible sequence for yn in Gεn . By Lemma
3.6, we can assume w.l.o.g. that d(yn, ∆) < ρ for every n ∈ N, where ρ ∈ (0, 1) is arbitrary.

Lemmas 3.3 and 3.6 imply that it cannot be the case that for every n ∈ N there is kn ∈ N
such that αi

n(kn) > 0 for all i. Indeed, otherwise, any accumulation point y of the sequence
yn(kn), as n goes to infinity, is in F . By Lemma 3.3

∑3
i=1 yi ≤ 3, which contradicts Lemma

3.6.

Fix n sufficiently large such that εn ∈ (0, (1− ρ)/3).
We will now show that there is a stage k such that αi

n(k) > 0 for exactly two players. As
discussed above, if n is sufficiently large then for every k ∈ N there is at least one player i
such that αi

n(k) = 0.
So assume that for every k ∈ N, for at most one player i we have αi

n(k) > 0. Since yn

is not trivial, there is a stage k such that at that stage one player, say player 1, quits with
positive probability. If player 1 is the only player who ever quits with positive probability
under αn, then, since yn is not trivial, y3

n(1) = 0, hence player 3 could have gained by quitting
at stage 1. Hence there is a first stage l such that α2

n(l) + α3
n(l) > 0. Since player 1 is the

only player who quits with positive probability until stage l, y1
n(l) = 1 and y3

n(l) > 1, which
implies by the payoff matrix in Figure 1 that α3

n(l) = 0, hence α2
n(l) > 0. However, in this

case player 1 can profit by quitting with probability 1 at stage l, and receiving more than 1.

By Lemma 3.2 we can assume w.l.o.g. that α1
n(1), α2

n(1) > 0, while α3
n(1) = 0. Indeed,

since yn(1) ∈ Fεn , yn(k) ∈ Fεn as well.
Let m be the minimal integer for which either α1

n(m) = 0, or α2
n(m) = 0, or both. Let

us first argue that such a m exists. Otherwise, for every m ∈ N, α1
n(m), α2

n(m) > 0, hence
α3

n(m) = 0. By the payoff matrix in Figure 1, the overall probability that under (αn(m))m∈N

player 1 will ever quit is at most 1/3 (otherwise, player 2 can profit by never quitting). In
particular, for some m, the overall probability that under αn player 1 will ever quit after
stage m is at most εn, while the overall probability that player 2 will ever quit after that
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stage is 1 (since the sequence is completely absorbing). In particular, player 1 is better of
by quitting at stage m + 1 with probability 1.

Thus, for every l such that 1 ≤ l < m, we have α1
n(l), α2

n(l) > 0, while α3
n(l) = 0.

Let p = 1 − ∏m−1
l=1 (1 − α2

n(l)) be the overall probability that player 2 quits during the
first m − 1 stages, provided player 1 does not quit. Since y1

n(1) > 1, y1
n(m) < 1 + εn,

and y1
n(1) = (1 − p)y1

n(m), it follows that p < εn/(1 + εn) < εn. Since d(yn(1), ∆) < ρ,
y1

n(1) < 1 + εn and y2
n(1) < 1, it follows that y3

n(1) > 2− ρ− εn. Since p < εn, and whenever
player 1 quits player 3 receives at most 1, it follows that y3

n(m) > 2− ρ− 2εn.
So we have asserted that y1

n(m) > 1, y2
n(m) < 1, and y3

n(m) > 2− ρ− 2εn. Let S = {i ∈
{1, 2, 3} | αi

n(m) > 0}. We will prove that S = ∅.
As already discussed, S 6= {1, 2, 3}. Since yi

n(m) 6= 1 for every i = 1, 2, 3, it cannot be
that |S| = 1. By the choice of m, S 6= {1, 2}. Since y2

n(m) < 1, S 6= {2, 3}. Since y1
n(m) > 1,

S 6= {1, 3}.
Thus, S = ∅, and therefore yn(m) = yn(m + 1). Since y2(m) < 1 player 2 can quit at

stage m and profit, contradicting the fact that αn(m) is an equilibrium in Gεn(yn(m + 1)).

Sketch of the Proof of Theorem 2.2: Assume to the contrary that for some fixed
ε > 0 sufficiently small, lim infδ→0 d(ε, δ) < +∞. Then there is K ∈ N and a sequence
δn → 0 such that for every n ∈ N there is a periodic δn-equilibrium in Gε with period K.
Let (αn(1), . . . , αn(K)) be the period of the δn-equilibrium, and let (yn(1), . . . , yn(K)) be the
corresponding sequence of payoffs. In particular, αn(k) is an ε-equilibrium in the one shot
game Gε(yn(k + 1)) (addition modulo K), that yields expected payoff yn(k).

By taking a subsequence, we can assume w.l.o.g. that the limits α(k) = limn→∞ αn(k)
and y(k) = limn→∞ yn(k) exist for every k = 1, . . . , K. By an analogue of Lemma 3.3,
(y(k), α(k))k∈N is an admissible sequence in G0, where for k > K, y(k) = y(k mod K) and
α(k) = α(k mod K).

As in the proof of Lemma 3.6 one can show that y(k) ∈ ∆ for every k ∈ N. A similar
analysis to that done in the proof of Theorem 2.1 leads to a contradiction.
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