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We provide a bound for the variation of the function that assigns to every
competitive Markov decision process and every discount factor its discounted
value. This bound implies that the undiscounted value of a competitive Markov
decision process is continuous in the relative interior of the space of transition
rules.
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1. INTRODUCTION

A Markov Decision Process (MDP) is given by (i) a finite set of states S
and an initial state s1 ¥ S, (ii) a finite set of actions A, (iii) a cost function
c: S×AQ R, and (iv) a transition rule p: S×AQ D(S), where D(S) is the
space of probability distributions over S.

At every stage n ¥ N, where N is the set of positive integers, the process
is in some state sn ¥ S. The decision maker chooses an action an ¥ A, and a
new state sn+1 ¥ S is chosen according to p( · | sn, an). It is assumed that the
decision maker remembers the sequence of states the process visited and his
past actions.

Denote by H=1n ¥ N (S×A)n−1×S the set of all finite histories, where
by convention, B0=” for every finite set B and we identify ”×S with S.
A plan of the decision maker is a function s which assigns to every finite
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history h ¥H a probability distribution over A. Every plan s, together with
the initial state s1 and the transition rule p, induces a probability distribu-
tion Ps1, p, s over the space of infinite histories (S×A)N. The corresponding
expectation operator is Es1, p, s.

For every discount factor l ¥ (0, 1], the discounted cost of a plan s (at
the initial state s1, given the transition rule p and the cost function c) is

cl(s1, p, c; s)=Es1, p, s 5l C
n ¥ N
(1−l)n−1 c(sn, an)6 ,

whereas the undiscounted cost is

c0(s1, p, c; s)=Es1, p, s 5lim sup
NQ.

1
N

C
N

n=1
c(sn, an)6 .

The l-discounted value (at the initial state s1, given the transition rule p and
the cost function c) is

Vl(s1, p, c)=inf
s
cl(s1, p, c; s), (1)

and the undiscounted value is

V0(s1, p, c)=inf
s
c0(s1, p, c; s). (2)

Every plan s that achieves the infimum in (1) (resp. (2)) is l-discounted
optimal (resp. optimal).

A plan s is deterministic if for every finite history h ¥H, s(h) gives
unit weight to some action in A. It is stationary if s(h) depends only on the
last state of h, for every h ¥H. A stationary plan can be identified with a
vector x=(xas )

a ¥ A
s ¥ S ¥ (D(A))S, with the understanding that xas is the proba-

bility by which the action a is chosen whenever the process visits the state s.
It is well known (see, e.g., Ref. 2, Theorems 2.1 and 4.3) that there
are optimal and l-discounted optimal plans which are deterministic and
stationary. Moreover, V0(s1, p, c)=limlQ 0 Vl(s1, p, c) for every initial
state s1, every transition rule p and every cost function c (see, e.g., Ref. 2,
Corollary 4.1).

The assumption that the set of available actions is independent of the
state simplifies the notations, and is without loss of generality when one is
interested in the value function. Indeed, if this is not the case, one can add
an absorbing state in which all actions yield an extremely high cost, and, in
every state which has ‘‘too few’’ actions, add actions that yield extremely

832 Solan

File: KAPP/860-jotp/16-4 477736(15p) - Page : 2/15 - Op: SD - Time: 08:34 - Date: 17:11:2003



high cost, and lead deterministically to the new absorbing state. This con-
struction does not affect the discounted or the undiscounted value of the
MDP.

Let P=(D(S))S×A denote the space of all transition rules. Define an
equivalence relation over P as follows. For every p, pŒ ¥P, p ’ pŒ if and
only if for every (t, s, a) ¥ S2×A, p(t | s, a) > 0Z pŒ(t | s, a) > 0. Let D be
the partition of P into equivalence classes. D contains (2 |S|−1) |S|× |A| sets.2

2 Indeed, for every (s, a) ¥ S×A and every p ¥P denote supp(p( · | s, a))={t ¥ S | p(t | s, a)
> 0}. Then p ’ pŒ if and only if supp(p( · | s, a))=supp(pŒ( · | s, a)) for every (s, a) ¥ S×A.
Since supp(p( · | s, a)) is a non-empty subset of S for every (s, a) ¥ S×A, and since there are
2 |S|−1 such subsets, the number of equivalence classes is (2 |S|−1) |S|× |A|.

For every stationary plan x and every initial state s1, the function
(l, p, c)W cl(s1, p, c; x) is continuous over (0, 1]×P×RS×A. Indeed, for
every state s ¥ S and every n ¥ N, the function pW Ps1, p, x(sn=s) is contin-
uous over P, and moreover

cl(s1, p, c; x)=C
.

n=1

1l(1−l)n−1 C
(s, a) ¥ S×A

Ps1, p, x(sn=s)×x
a
s ×c(s, a)2

[ C
.

n=1
l(1−l)n−1 ||c||.=||c||..

Since S and A are finite, ||c||.=max(s, a) ¥ S×A |c(s, a)| <+., so that the
Weierstrass M-test yields uniform convergence implying that the function
(l, p, c)W cl(s1, p, c; x) is continuous.

Since there is a l-discounted optimal deterministic stationary plan, and
since the number of deterministic stationary plans is finite, it follows that
the function (l, p, c)W Vl(s1, p, c), as the minimum of finitely many con-
tinuous functions, is continuous over (0, 1]×P×RS×A.

Now we return to the undiscounted case. For every cost function c,
every stationary plan x, and every initial state s1, the function pW
c0(s1, p, c; x) is continuous over every P ¥D. Indeed, x induces a
Markov chain over S with transition rule q that is defined by q(t | s)=
; a ¥ A x

a
sp(t | s, a). The ergodic structure of the induced Markov chain is

constant over every P ¥D, and therefore, by Schweitzer, (11) the stationary
distribution ms1, p determined by the initial state s1 is a continuous function
of p over every P ¥D. Finally,

c0(s1, p, c; x)= C
(s, a) ¥ S×A

ms1, p[s]×x
a
s ×c(s, a).

Since there is an optimal deterministic stationary plan, it follows that
the function pW V0(s1, p, c) is continuous over every P ¥D.
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As the following example shows, the function pW V0(s1, p, c) is not
continuous over all of P. Take S={s, sŒ}, A={a}, c(s, a)=1 and
c(sŒ, a)=0. Define for every k ¥ N a transition rule pk by pk(sŒ | s, a)=1/k
and pk(sŒ | sŒ, a)=1. The sequence (pk)k ¥ N converges to the transition rule
p that is defined by p(s | s, a)=p(sŒ | sŒ, a)=1. However, V0(s, pk, c)=0 for
every k ¥ N, while V0(s, p, c)=1.

The goal of the present article is to extend this line of investigation to
competitive Markov decision processes, or stochastic games.

Definition 1. A competitive Markov decision process (or a stochastic
game) is a tuple C=(S, s1, A, B, p, c), where (i) S is a finite set of states,
and s1 ¥ S is the initial state, (ii) A and B are two finite sets of actions for
the two decision makers DM1 and DM2 respectively, (iii) p: S×A×B
Q D(S) is a transition rule, and (iv) c: S×A×BQ R is a cost function.

The process proceeds as follows. At every stage n ¥ N, knowing the
past history (s1, a1, b1, s2, a2, b2,..., sn), the two decision makers choose,
independently and simultaneously, actions an ¥ A and bn ¥ B respectively.
DM1 pays DM2 the amount c(sn, an, bn), and a new state sn+1 is chosen
according to the probability distribution p( · | sn, an, bn).

Competitive MDPs are useful to model situations when two (or more)
strategic decision makers control the evolution of a system. They have been
applied in various contexts, ranging from arms races (14) to optimal inspec-
tion models (5) and resource extraction models. (1, 8)

A plan of DM1 is a function s from the set of all finite histories
H=1n ¥ N (S×A×B)n−1×S to D(A). Plans of DM2 are functions
y: HQ D(B). A plan s (resp. y) is stationary if s(h) (resp. y(h)) depends
only on the last state of h, for every h ¥H. Stationary plans of the two
decision makers are denoted by x ¥ (D(A))S and y ¥ (D(B))S respectively.

Every pair of plans (s, y), together with an initial state s1 ¥ S and a
transition rule p, induces a probability measure Ps1, p, s, y over the space
(S×A×B)N of infinite histories. The corresponding expectation operator is
Es1, p, s, y.

For every pair of plans (s, y), and every discount factor l ¥ (0, 1], we
define the l-discounted cost (at the initial state s1, given the transition rule p
and the cost function c) by

cl(s1, p, c; s, y)=Es1, p, s, y 5l C
n ¥ N
(1−l)n−1 c(sn, an, bn)6 , (3)

and the undiscounted cost by

c0(s1, p, c; s, y)=Es1, p, s, y 5lim sup
NQ.

1
N

C
N

n=1
c(sn, an, bn)6 . (4)
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If for a given initial state s1, transition rule p and cost function c the
equality

inf
s

sup
y

cl(s1, p, c; s, y)=sup
y

inf
s

cl(s1, p, c; s, y) (5)

holds, then the common value is the l-discounted value and it is denoted by
vl(s1, p, c). Similarly, if for a given initial state s1, transition rule p and cost
function c the equality

inf
s

sup
y

c0(s1, p, c; s, y)=sup
y

inf
s

c0(s1, p, c; s, y) (6)

holds, then the common value is the undiscounted value and it is denoted by
v0(s1, p, c).

The assumption that the action sets are independent of the state is
without loss of generality when one studies the value of competitive MDPs
as well; one first adds an absorbing state that yields extremely high cost,
and adds actions to DM1 that lead deterministically to this absorbing state,
and then one adds another absorbing state that yields extremely low cost,
and adds actions to DM2 that lead deterministically to the second absorb-
ing state.

Shapley (12) proved that for every discount factor l ¥ (0, 1], the
l-discounted value exists, and that moreover both decision makers have
optimal stationary plans; that is, a stationary plan s (resp. y) that achieves
the infimum in the left-hand side (resp. the supremum in the right-hand
side) in (5) for every initial state s1.

The first step towards studying continuity properties of the discounted
value was done by Bewley and Kohlberg. (3) Their analysis implies that for
every initial state s1 the function (l, p, c)W vl(s1, p, c) is semi-algebraic
over (0, 1]×Pg×RS×A×B, where Pg=(D(S))S×A×B is the space of transi-
tion rules. In particular, this function is piecewise continuous.

Filar and Vrieze (Ref. 6, Eq. (4.19)) proved that for every initial state s1,
every pair of transition rules (p, pŒ), every pair of cost functions (c, cŒ), and
every pair of discount factors l, lŒ ¥ (0, 1],3

3 Filar and Vrieze use the quantity b=1−l rather than l. Also, the metric they use to
measure the distance between transition rules is slightly different than the L1-norm.

|vl(s1, p, c)−vlŒ(s1, pŒ, cŒ)|

[ ||c−cŒ||.+
1−l
l
||p−pŒ||1×||cŒ||.+2

|l−lŒ|
l
||cŒ||.. (7)

In particular, for every initial state s1, the function (l, p, c)W vl(s1, p, c) is
continuous over (0, 1]×Pg×RS×A×B.
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Milman (10) further studied continuity properties of the value function.
He proved that | “vl(s1, p, c)

“l | [ ||c||. f(p)

l
1−1/M , where M is some positive integer that

depends on |S|, |A|, and |B|, and f is some positive (but not necessarily
bounded) function.

The carryover of such continuity results to the undiscounted case
would seem promising, since Mertens and Neyman (9) proved that for every
initial state s1, every transition rule p, and every cost function c, the undis-
counted value exists, and that moreover

v0(s1, p, c)=lim
lQ 0
vl(s1, p, c). (8)

But since in (7) the discount factor appears in the denominator, (7) and (8)
together do not imply that for a given initial state s1 and a given cost func-
tion c the function pW v0(s1, p, c) is continuous over every P ¥Dg, where
Dg is the partition of the space of transition rules which is analogous to D.

One application of (7) is in estimating the discounted value of a com-
petitive MDP, for which the data are not precisely known, due to, e.g.,
rounding errors, since the model under consideration is a simplification of
a more complex model, or since the data are estimated by various statistical
methods. Equation (7) relates, in such a case, the precision of the data to
the precision of the value. Unfortunately, for any fixed level of desired
precision in the discounted value, the required precision in l and p accord-
ing to (7) increases as the discount factor goes to 0. Furthermore, Eq. (7)
cannot be used to estimate the undiscounted value when the data are not
precisely known.

Define a function d: Pg×Pg
Q [0,+.] as follows. For every

p, pŒ ¥Pg

d(p, pŒ)=max 3 p(t | s, a, b)
pŒ(t | s, a, b)

,
pŒ(t | s, a, b)
p(t | s, a, b)

| s, t ¥ S, a ¥ A, b ¥ B4−1, (9)

where by convention x/0=+. for x > 0, and 0/0=1. A few simple
properties of the non-negative valued function d( · , · ) are:

(A.i) d(p, pŒ)=0 if and only if p=pŒ,
(A.ii) d(p, pŒ)=d(pŒ, p),

(A.iii) d(p, pŒ) <+. if and only if p and pŒ lie in the same element
of Dg, and

(A.iv) d(pn, p)Q 0, whenever p, (pn)n ¥ N lie in the same element of
Dg and pn Q p in the Euclidean norm.

As the following example shows, d( · , · ) is not a metric.
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Example 1. Let S={s, sŒ}, and take |A|=|B|=1, so that the com-
petitive MDP is reduced to a Markov chain. Fix E ¥ (0, 1/7). For k=
1, 2, 5, define a transition rule pk: SQ D(S) by: pk(s | t)=1−pk(sŒ | t)=kE
for each t ¥ S. Since E ¥ (0, 1/7) one has d(p1, p2)=1, d(p2, p5)=3/2, and
d(p1, p5)=4, so that d(p1, p2)+d(p2, p5) < d(p1, p5), and d( · , · ) is not a
metric.

The main result to be presented below is that for every initial state s1,
every pair of transition rules (p, pŒ), every pair of cost functions (c, cŒ), and
every l ¥ [0, 1] (including the case l=0)

−4 |S| d(p, pŒ) ||c||.−||c−cŒ||. [ vl(s1, pŒ, cŒ)−vl(s1, p, c)

[
4 |S| d(p, pŒ)

(1−2 |S| d(p, pŒ))+
||c||.+||c−cŒ||., (10)

where, for every x ¥ R, x+=max{x, 0}, +.+x=+., and +.×0=1.
The proof of (10) uses a graph-theoretic approach, initiated by Friedlin and
Wentzell (7) for MDPs with rare transitions, rather than the matrix analysis
approach, which is the standard approach to studying Markov chains.

The estimate given in (10) is uniform over l ¥ [0, 1]. We show below
that this, together with (7) and (8), implies that the function (l, p, c)W
vl(s1, p, c) is continuous over [0, 1]×P×RS×A×B, for every P ¥Dg. As
Milman (10) remarks, our analysis can be used to improve his results.
Finally, observe that (10) is neither stronger nor weaker than (7).4

4 Indeed, when c, cŒ, p and pŒ are fixed, the bound in (10) is independent of l, whereas, if
p ] pŒ, the bound in (7) goes to+. as l goes to 0. Hence (10) is not weaker than (7). On the
other hand, one may find two transition rules p and pŒ such that d(p, pŒ) \ 1 (see the transi-
tion rules in Example 1). In such a case, when c ] 0, the upper bound in (10) is infinite, while
the bound in (7) is finite, so that (10) is not stronger than (7).

2. ON MARKOV CHAINS

In the present section we recall a result due to Freidlin and Wentzell, (7)

and we apply it to competitive MDPs.

2.1. A Result of Freidlin and Wentzell

Let (S, q) be a Markov chain; that is, S is a finite set of states, and
q: SQ D(S) is a transition function. Let s1 ¥ S be the initial state.
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Let C be a proper subset of S. Denote by eC=min{n ¥ N | sn ¨ C} the
first hitting time of the complement of C.5 Recall that SC={f: CQ S} is

5 By convention, the minimum of an empty set is+..

the set of all functions from C to S. Every f ¥ SC naturally defines a
directed graph over S: the graph contains the edge (sQ sŒ) if and only if
sŒ=f(s). We set af=1 if this directed graph has no directed cycles, and
af=0 if it has at least one directed cycle. Since f is a function, there is
exactly one directed path that leaves each s ¥ C. For every s ¥ C and every
sŒ ¥ S we set bf(sQ sŒ)=1 if the directed path that leaves s in the directed
graph induced by f reaches sŒ, and bf(sQ sŒ)=0 otherwise.

The following lemma is a special case of a result due to Freidlin and
Wentzell (7) (see also Ref. 4).

Lemma 2 (Ref. 10, Lemma 6.3.3). Let (S, q) be a Markov chain,
and let C be a proper subset of S such that Ps, q(eC <+.) > 0 for every
s ¥ C. Then for every initial state s1 ¥ C, and every r ¨ C,

Ps1, q(seC=r)=
;f ¥ SC (bf(s1 Q r)< s ¥ C q(f(s) | s))

;f ¥ SC af < s ¥ C q(f(s) | s)
. (11)

We now show that the hypothesis that Ps, q(eC <+.) > 0 for every
s ¥ C ensures that the denominator in (11) is positive. Since all terms in the
summation of the denominator in (11) are non-negative, it suffices to
exhibit an fg ¥ SC with afg=1 that satisfies < s ¥ C q(fg(s) | s) > 0.

Let s ¥ C be arbitrary. Since Ps, q(eC <+.) > 0, there is K > 1 and a
sequence s=s1, s2,..., sK such that s2,..., sK−1 ¥ C, sK ¨ C, and q(sk+1 | sk)
> 0 for k=1,..., K−1. Denote by Ks the length of a shortest such
sequence. Then either (i) Ks=2, so that there exists r ¨ C with q(r | s) > 0,
or (ii) Ks > 2, which implies that there exists r ¥ C such that q(r | s) > 0 and
Ks=Kr+1. We set fg(s)=r, where if Ks=2 then r is any state in S0C
that satisfies q(r | s) > 0, and if Ks > 2 then r is any state in C that satisfies
q(r | s) > 0 and Ks=Kr+1.

Since s is arbitrary, fg is a function from C to S, and by construction
< s ¥ C q(fg(s) | s) > 0. Since for every s ¥ C, if fg(s) ¥ C then Kfg(s)+1
=Ks, it follows that the directed graph induced by fg has no cycles, that is,
afg=1.
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2.2. The Mean Discounted Time

For every discount factor l ¥ (0, 1] and every state s ¥ S, the mean
l-discounted time the process spends in state s, if the initial state is s1 and
the transition function is q, is given by:

tl(s1, q; s)=Es1, q 5l C
n ¥ N
(1−l)n−1 1sn=s6 ,

where 1sn=s is the indicator function.
Our basic observation is the following.

Proposition 3. For every initial state s1, every state s ¥ S, and every
discount factor l ¥ (0, 1], there exist two polynomials h1(q) and h2(q) in
the |S|2 variables (q(t | r))r, t ¥ S that satisfy (i) both polynomials have degree
at most |S| and non-negative coefficients, and (ii) tl(s1, q; s)=h1(q)/h2(q)
for every transition function q over S.

Proof. Fix l ¥ (0, 1], but do not yet fix s1 or s. Define an auxiliary
Markov chain (Ŝ, q̂) as follows.

1. The state space is Ŝ=SŒ 2 Sœ, where SŒ and Sœ are two disjoint
copies of S. For every s ¥ S, we denote by sŒ and sœ the corresponding
states in SŒ and Sœ respectively.

2. Every state sœ ¥ Sœ is absorbing: q̂(sœ | sœ)=1 for every sœ ¥ Sœ.

3. The transition function from every state sŒ ¥ SŒ is as follows.

q̂(sœ | sŒ)=l,

q̂(tŒ | sŒ)=(1−l) q(t | s) -t ¥ S, and

q̂(tœ | sŒ)=0 -t ¥ S0{s}.

We first claim that

tl(s1, q; s)=PsŒ1, q̂(seSŒ=sœ) -s, s1 ¥ S. (12)

Indeed, one can verify that for every s ¥ S, both (tl(s1, q; s))s1 ¥ S and
(PsŒ1, q̂(seSŒ=sœ))s1 ¥ S are solutions of the system of linear equations

x(s1)=l1s1=s+(1−l) C
r ¥ S
q(r | s1) x(r) -s1 ¥ S.

Moreover, this system of linear equations has a unique solution. Indeed, let
x=(x(r))r ¥ S and y=(y(r))r ¥ S be two solutions of this system. Choose
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s1 ¥ S such that the quantity |x(s1)−y(s1)| is maximal, and set
d=|x(s1)−y(s1)|. Since both x and y are solutions, and by the triangle
inequality,

0 [ d=|x(s1)−y(s1)| [ (1−l) C
r ¥ S
q(r | s1) |x(r)−y(r)|

[ (1−l) C
r ¥ S
q(r | s1) d=d(1−l). (13)

Since l > 0, (13) implies that d=0, so that the two solutions coincide. In
particular (12) holds.

We now claim that PsŒ, q̂(eSŒ <+.) > 0 for every sŒ ¥ SŒ. Indeed, since
q̂(sœ | sŒ)=l, and since sœ ¨ SŒ,

PsŒ, q̂(eSŒ <+.) \ PsŒ, q̂(eSŒ=2)=q̂(sœ | sŒ)=l > 0.

By the last claim one can apply Lemma 2 with C=SŒ, which implies
the result. Indeed, the terms af and bf(s1 Q r) in (11) are independent of q,
and the two products in (11) each contain |C|=|S| terms of the form q̂(t̂ | ŝ)
for ŝ, t̂ ¥ Ŝ. The result follows by the definition of q̂. i

Corollary 4. For every initial state s1 ¥ S, every discount factor
l ¥ (0, 1], and every collection of non-negative scalars (hs)s ¥ S, the function
qW; s ¥ S hstl(s1, q; s) is the ratio of two polynomials in the variables
(q(t | r))r, t ¥ S of degree at most |S| with non-negative coefficients.

Proof. By Proposition 3, for every s ¥ S the function qW tl(s1, q; s) is
the ratio of two polynomials in (q(t | r))r, t ¥ S. By Lemma 2 and the proof of
Proposition 3, all these ratios have the same denominator; it has non-nega-
tive coefficients and degree at most |S|, as do each of the numerators. Since
(hs)s ¥ S are non-negative scalars the result follows. i

3. COMPETITIVE MARKOV DECISION PROCESSES

Throughout this section we fix the set of states S, the initial state
s1 ¥ S, and the sets of actions A and B.

Equations (3) and (4) and the definitions of the discounted value and
undiscounted value readily imply that the function cW vl(s1, p, c) is
Lipschitz-1 in the cost function for every l ¥ [0, 1] (including the case
l=0):
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Lemma 5. For every initial state s1, every transition rule p, every pair
of cost functions (c, cŒ), and every l ¥ [0, 1],

|vl(s1, p, c)−vl(s1, p, cŒ)| [ ||c−cŒ||..

Our main result is the following theorem. Note that the estimate
provided by the theorem is uniform for every l ¥ [0, 1] (including l=0).

Theorem 6. Let (S, s1, A, B, p, c) be a competitive MDP, let pŒ:
S×A×BQ D(S) be an arbitrary transition rule, and let cŒ: S×A×BQ R
be an arbitrary cost function. Then for every l ¥ [0, 1],

−4 |S| d(p, pŒ) ||c||.−||c−cŒ||. [ vl(s1, pŒ, cŒ)−vl(s1, p, c)

[
4 |S| d(p, pŒ)

(1−2 |S| d(p, pŒ))+
||c||.+||c−cŒ||.. (14)

We are going to use the following observation.

Lemma 7. Let f(x1,..., xk) be a polynomial in x1,..., xk with non-
negative coefficients and degree at most n, and let E \ 0. Let y, yŒ ¥ Rk be
two non-negative vectors such that 1/(1+E) [ yi/y

−

i [ 1+E for every
i=1,..., k. Then (1+E)−n [ f(y)/f(yŒ) [ (1+E)n.6

6 Recall that 00=1, so that yi=0 if and only if y −i=0. For the same reason, the Lemma tri-
vially holds when f is identically zero.

Proof. Denote f(x)=;I
i=1 ai <ni

j=1 xki, j , where I ¥ N, and for every
i=1,..., I, ai \ 0, 0 [ ni [ n, and 1 [ ki, j [ k for each j=1,..., ni. By
assumption, for every i=1,..., I,

1
(1+E)n

D
ni

j=1
y −ki, j [ D

ni

j=1
yki, j [ (1+E)

n D
ni

j=1
y −ki, j . (15)

Since (ai)
I
i=1 are non-negative, multiplying (15) by ai and summing over

i=1,..., I yields the desired result. i

Proof of Theorem 6. In view of Lemma 5, it is sufficient to prove that

−4 |S| d(p, pŒ) ||c||. [ vl(s1, pŒ, c)−vl(s1, p, c) [
4 |S| d(p, pŒ)

(1−2 |S| d(p, pŒ))+
||c||..

(16)
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This inequality trivially holds when d(p, pŒ) \ 1/2 |S|. Indeed, in this case
the denominator in the right-hand side vanishes, while the left-hand side is
at most −2 ||c||., which is a lower bound for vl(s1, pŒ, c)−vl(s1, p, c).

We therefore assume from now on that d(p, pŒ) < 1/2 |S| < 1. In par-
ticular, p and pŒ lie in the same element of the partition Dg.

We first prove that if the cost function is positive, then for every
l ¥ [0, 1],

(1−d(p, pŒ))2 |S| [
vl(s1, pŒ, c)
vl(s1, p, c)

[
1

(1−d(p, pŒ))2 |S|
. (17)

Note that when the cost function is positive, vl(s1, p, c) \ min{c(s, a, b) |
(s, a, b) ¥ S×A×B} > 0, so that the denominator in (17) is positive.

Every pair of stationary plans (x, y) naturally defines a Markov chain
over S with transition rule q that is defined by

q(t | s)=C
a ¥ A

C
b ¥ B
xasy

b
sp(t | s, a, b). (18)

In particular, for every l ¥ (0, 1],

cl(s1, p, c; x, y)=C
s ¥ S

1 tl(s1, p, x, y; s) C
a, b
xasy

b
s c(s, a, b)2 , (19)

where tl(s1, p, x, y; s) is the mean discounted time spent at s in the Markov
chain induced by (p, x, y). By (19) and Corollary 4, with hs=
; a, b x

a
sy
b
s c(s, a, b),

cl(s1, pŒ, c; x, y)
cl(s1, p, c; x, y)

=
g1(p)
g1(pŒ)

×
g2(pŒ)
g2(p)

, (20)

where g1(p), g2(p) are polynomials in (p(t | s, a, b))(t, s, a, b) ¥ S2×A×B of degree
at most |S| with non-negative coefficients.

Set E=d(p, pŒ) < 1/2 |S| < 1. By the definition of d(p, pŒ), for every
(t, s, a, b) ¥ S2×A×B the two quantities p(t | s, a, b)

p −(t | s, a, b) and p −(t | s, a, b)
p(t | s, a, b) are between

1
1+E and 1+E. It follows by (20) and Lemma 7, with k=|S|2×|A|× |B|, that

(1+d(p, pŒ))−2 |S| [
cl(s1, pŒ, c; x, y)
cl(s1, p, c; x, y)

[ (1+d(p, pŒ))2 |S|.
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Since for every x ¥ [0, 1] one has 1−x [ 1/(1+x) and 1+x [ 1/(1−x),
one has

(1−d(p, pŒ))2 |S| [
cl(s1, pŒ, c; x, y)
cl(s1, p, c; x, y)

[
1

(1−d(p, pŒ))2 |S|
. (21)

For l ¥ (0, 1], (17) follows from (21) and the existence of stationary
l-discounted optimal plans. For l=0, (17) follows now from (8).

To finish the proof of the theorem, let r < 0 satisfy r < c(s, a, b) for
every (s, a, b) ¥ S×A×B. Then c−r is a positive cost function. By (17)

1−2 |S| d(p, pŒ)

[ (1−d(p, pŒ))2 |S| [
vl(s1, pŒ, c−r)
vl(s1, p, c−r)

[
1

(1−d(p, pŒ))2 |S|
[

1
1−2 |S| d(p, pŒ)

=1+
2 |S| d(p, pŒ)
1−2 |S| d(p, pŒ)

.

In particular,

−2 |S| d(p, pŒ) vl(s1, p, c−r) [ vl(s1, pŒ, c−r)−vl(s1, p, c−r)

[
2 |S| d(p, pŒ)
1−2 |S| d(p, pŒ)

vl(s1, p, c−r).

Equation (16) follows, since vl(s1, p, c−r)=−r+vl(s1, p, c), since
vl(s1, pŒ, c−r)=−r+vl(s1, pŒ, c), since |vl(s1, p, c)| [ ||c||., since r can be
chosen arbitrarily close to −||c||., and since d(p, pŒ) < 1/2 |S|. i

Corollary 8. For every initial state s1 ¥ S, the function (l, p, c)W
vl(s1, p, c) is continuous over [0, 1]×P×RS×A×B, for every P ¥Dg.

Proof. Let (ln)n ¥ N, (pn)n ¥ N and (cn)n ¥ N be converging sequences (in
the Euclidean norm) of scalars in [0, 1], transition rules, and cost functions
respectively. Denote their limits by l, p and c respectively. Assume that p
and (pn)n ¥ N lie in the same element of Dg. By property (A.iv) of the func-
tion d( · , · ), limnQ. d(pn, p)=0.

By the triangle inequality,

|vl(s1, p, c)−vln (s1, pn, cn)|

[ |vl(s1, p, c)−vln (s1, p, c)|+|vln (s1, p, c)−vln (s1, pn, cn)|. (22)
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When l=0 the first term in the right-hand side of (22) goes to zero by (8).
When l > 0 it goes to zero by (7).7 The second term in the right-hand side

7 Alternatively, one can use (3) and the fact that there are stationary discounted optimal plans
instead of (7).

goes to zero by Theorem 6. i

Remark. In the representation of qW tl(s1, q; s) as a ratio of two
polynomials in (q(t | r))r, t ¥ S, l contributes to the coefficients of the two
polynomials. By adding l and b=1−l as (formally independent) variables
to these polynomials (so as to obtain polynomials still having non-negative
coefficients; see the proof of Proposition 3), one can obtain an estimate to
the difference vl(s1, p, c)−vlŒ(s1, pŒ, cŒ). The estimate is similar to (14), but
one should replace all appearances of d(p, pŒ) by d(p, pŒ)×d(l, lŒ), where
d(l, lŒ)=max{ l

l
− , l

−

l
, 1−l
1−l −
, 1−l

−

1−l }.

Remark. As Sylvain Sorin remarked, Theorem 6 applies also to the
case where the action sets A and B are Borel spaces, as long as the follow-
ing conditions hold: (a) the set of states S is finite, (b) for every discount
factor the discounted value exists, and both players have discounted sta-
tionary E-optimal plans, for every E > 0,8 (c) the undiscounted value exists

8 A plan s of player 1 is discounted E-optimal if supy cl(s1, p, c; s, y) [ vl(s1, p, c)+E. Dis-
counted E-optimal plans of player 2 are defined analogously.

and is the limit of the discounted value as the discount factor goes to 0, and
(d) the cost function is bounded. The model in this case is similar to the
one described in Section 1, except that the actions an and bn of the two
decision makers are chosen from Borel spaces A and B respectively. So that
the cost of a pair of plans is well defined, a plan of DM1 is a measurable
function s: HQ D(A), where D(A) is the space of probability distributions
over A. Plans of DM2 are defined analogously.

To deal with this more general setup, the proof should be amended as
follows. The max in (9) is replaced by sup, and summations in (18) and (19)
are replaced by integrals. The results in Section 2 are valid as long as S is
finite. The results in Section 3 are valid as long as (a)–(d) hold.

For more details on competitive MDPs with general action sets the
reader is referred to Sorin (Ref. 13, Chap. 5), where conditions under which
(b) holds are given. Conditions under which (c) holds are given in Mertens
and Neyman. (9) In the absence of (c), the bound (14) is still valid for
l ¥ (0, 1].
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