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We study a selection game between two committee members (the players). They interview
candidates sequentially and have to decide, after each interview, whether to hire the
candidate or to interview the next candidate. Each player can either accept or reject the
candidate, and if he rejects the candidate while the other accepts her, he can cast a veto.
The candidate is hired if accepted by at least one player and not vetoed. The total number
of vetoes available for each player are fixed in advance.
We prove the existence of a subgame perfect equilibrium if there are a finite number of
candidates types. For a general candidate distribution we prove the existence of a subgame
perfect ε-equilibrium. We exhibit situations in which a player prefers that the other player
would have an extra veto, and even prefers to give one of his vetoes to the other player.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Candidates for various positions, both in the private and public sectors, are often chosen by committees. Sometimes the
committee interviews the candidates sequentially (‘on-line’) and has to decide, after each interview, whether the current
candidate is acceptable or not; in the latter case, the candidate “disappears,” and cannot be selected in the future if it turns
out that she has been the best candidate. Such a case occurs, e.g., in the selection of juries in the American legal system,
in which both sides have the right to veto candidates, or when a couple looks for an apartment to rent when demand far
exceeds supply, and apartments are rented within hours.

In the present paper we study an on-line selection game between two committee members, who interview candidates
sequentially and have to decide, after each interview, whether to accept the current candidate or to reject her. We model
the process by which the committee decides on each candidate as follows. First one of the committee members, the leader,
decides whether to accept or reject the candidate, and then the second member, the follower, observing the decision of the
leader, decides whether to accept or reject the candidate. If both members rejected the candidate then she is not hired;
if both members accepted the candidate then she is hired; if one of the players accepted the candidate while the other
rejected her, the member who rejected the candidate has the right to cast a veto, in which case the candidate is not hired.
If no veto was cast, the candidate is hired. We assume that the number of vetoes of each member is given in advance, as
occurs, e.g., in jury selection (see Brams and Davis, 1976, 1978; DeGroot and Kadane, 1980). In many cases the number of
vetoes that a member has is not fixed explicitly, yet, successive vetoes often raise pressure from other committee members
against more vetoes. Thus, the number of vetoes of a member measures his relative strength, both his mental strength and
his position within the organization.
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Each candidate is characterized by two numbers, her utility to each committee member, which are termed together the
type of the candidate. The full type is known to both players. The goal of each player is to maximize his own expected
utility from the selected candidate.

Our model is a game theoretic extension of the well-known “secretary problem” (see, e.g., Ferguson, 1989, 2001; Eriksson
et al., 2007), in which quality, rather than rank of quality, is optimized, and each player’s utility is his evaluation of the hired
candidate. A different game variant of the “secretary problem,” in which various employers compete on employees who are
observed sequentially, was studied by, e.g., Enns and Ferenstein (1987), Ramsey and Szajowski (2005) and Sakaguchi (2005).

Our model is also related to the selection problem studied in DeGroot and Kadane (1980). The main difference is that
whereas they study jury selection problems, and therefore allow only two actions (veto or no veto), we study an employee
selection problem, and therefore allow three actions (accept, reject with veto, and reject without veto). As we show below,
the two models exhibit quite a different behavior.

Our model was introduced in Alpern and Gal (2008), who proved that if a player’s veto rights increase (while the other’s
remains fixed), then his equilibrium payoff cannot decrease. Alpern and Gal (2008) also presented a detailed analysis of
this game for uniformly distributed candidate types, and established the existence of equilibria in threshold strategies for
the game with no vetoes. Additionally, they study a discounted version of the game, and in this case they determined the
optimal number of vetoes that a social planner should give the players, if the social planner’s goal is to maximize the
expected sum of utilities of both players.

In this paper we show that when there are finitely many types of candidates, a subgame perfect equilibrium in Marko-
vian strategies always exists, while when there are infinitely many types of candidates, an equilibrium may fail to exist, yet
a subgame perfect ε-equilibrium in Markovian strategies exists for every ε > 0. We then study the structure of Markovian
equilibria, distinguishing between two types of equilibria: progressive equilibria and helpful equilibria. In a progressive equi-
librium each player prefers that the other player would have fewer vetoes, and even accepts bad (to him) candidates in
order to force the other player to “waste” a veto. In a helpful equilibrium players prefer the other to have more vetoes and
hence reject candidates that the other player would otherwise have to veto.

We also present surprising phenomena that may occur in our games. DeGroot and Kadane (1980) present an example
of selecting a jury of two participants, in which one of the committee members prefers to give his veto right to the other
member. This phenomenon is called the “paradox of redistribution” by Fisher and Schotter (1978) or the “donation paradox”
(see Felsenthal and Machover, 1995; Kadane et al., 1999; Holler and Napel, 2004). DeGroot and Kadane (1980, Theorem 3)
prove that if the committee has to choose a single candidate, then the donation paradox cannot occur. Surprisingly, as we
show by an example, a donation paradox may occur in our game. We also provide an example that shows that a worse
population (good candidates are rarer) may yield a better outcome.

The paper is organized as follows. Section 2 describes the model. Section 3 proves the existence of a subgame perfect
ε-equilibrium (SPE), in mixed Markovian strategies. Section 4 describes the structure of the equilibria in the game. Section 5
describes some counter-intuitive behavior of the game with no vetoes, including the donation paradox.

2. The model

We consider a sequential two-player selection game G(i, j), that is given by two non-negative integers i and j (the
number of vetoes of the two players) and a distribution F2 on the unit square (the distribution of candidate). At each
stage t , if the game has not terminated before, the players play the extensive form game that appears in Fig. 1: first Nature
chooses a candidate (x, y) ∈ [0,1]2 according to the distribution F2 independent of past play. Then player I decides whether
to Accept or to Reject the candidate. If player I decides to accept the candidate, and if j > 0, player II decides whether to
Veto the candidate, and then from the next stage on the game G(i, j − 1) is played, or whether Not to Veto the candidate,
in which case the game terminates with a terminal payoff x to player I and y to player II. If player I decides to Reject the
candidate, player II decides whether to Accept or to Reject the candidate. If player II decides to reject the candidate, the
stage ends, and the game continues to the next stage. If player II decides to accept the candidate, player I decides whether
to Veto the candidate, and then from the next stage on the game G(i −1, j) is played, or whether Not to Veto the candidate,
in which case the game terminates with a terminal payoff (x, y). If no candidate is ever hired, the payoff to both players
is 0. In Fig. 1, the actions Accept, Reject, Veto and No Veto are abbreviated to a, r, v and n respectively.

A strategy for a player is a rule that indicates how to play at each stage given any past history. A strategy is Markovian
if the mixed action to be played after every given history depends only on the type of the current candidate and on the
number of vetoes left for both players.

A special class of strategies is the class of threshold strategies: accept a candidate if her worth for you is at least some
threshold α, and reject her otherwise. In general the threshold α may be history dependent. If the player mixes when the
worth of the candidate (for him) is equal to α, and accepts (respectively rejects) the candidate if her worth for him is higher
(respectively lower) than α, we say that the strategy is a weak threshold strategy.

We study Markovian strategies, so the continuation payoffs in G(i, j − 1) and G(i − 1, j) are independent of past play.
We denote the continuation payoff in G(i, j − 1) by (u+, v−), and the continuation payoff in G(i − 1, j) by (u−, v+).

Every pair of strategies (σ , τ ) induces an (undiscounted) expected payoff for each player k ∈ {I, II}, which we denote
by γ k(σ , τ ). For every ε � 0, an ε-equilibrium (σ , τ ) is a pair of strategies such that no player can profit more than ε by
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Fig. 1. Reduced tree for G(i, j).

deviating. A pair of strategies is a subgame-perfect ε-equilibrium if for every finite history, the pair of strategies, restricted to
the continuation game after this history occurs, is an ε-equilibrium.

Since the game is a game of perfect information (that is, there are no simultaneous moves, and all past moves are
observed), it follows from Mertens (1987) that for every ε > 0 an ε-equilibrium exists. The construction of Mertens (1987)
uses threats of punishment, and therefore it does not yield a subgame-perfect ε-equilibrium.

As we show below, the game can be reduced to a stopping game. Recently Mashiach-Yakovi (2008) proved that every
stopping game admits a subgame-perfect ε-equilibrium. However, the subgame-perfect ε-equilibrium that is constructed by
Mashiach-Yakovi (2008) need not be Markovian.

3. Existence of a subgame perfect equilibrium

Let W ⊆ [0,1]2 be the support of F2, that is, the set of all possible types (x, y) of the candidates. When (x, y) is the type
of a candidate, x (respectively y) is the worth of the candidate for player I (respectively II). The following example shows
that in general a subgame perfect 0-equilibrium may not exist.

Example 1. Suppose F2 is the uniform distribution on the diagonal of the unit square; that is, the interval whose extreme
points are (0,0) and (1,1). We claim that the game G(0,0) has no subgame perfect 0-equilibrium (σ , τ ). Indeed, assume
to the contrary that such a pair exists. Since F2 is symmetric, the continuation payoff to both players is the same, say
α ∈ [0,1].

Since the players have no vetoes, the behavior of player II after a candidate was accepted by player I does not affect the
outcome. Therefore, when player II decides whether to accept a candidate or to reject her, he compares his continuation
payoff α to the candidate’s type. Hence τ is a weak threshold strategy with threshold α.

When player I decides whether to accept a candidate or reject her, and knowing τ , he will compare his continuation
payoffs: if he accepts the candidate his payoff will be the worth of the candidate (to either player), whereas if he rejects
the candidate his payoff will be the maximum between α and the candidate’s worth. Hence σ must be a weak threshold
strategy with threshold α as well.

If both players use a weak threshold strategy with threshold α, and if α < 1, then the expected payoff is 1+α
2 . Since the

unique solution of 1+α
2 = α is α = 1, there cannot be a SPE in weak threshold strategies with threshold lower than 1. If

both players use a weak threshold strategy with threshold 1, since F2 is the uniform distribution over the diagonal of the
unit square, with probability 1 no candidate will be hired, and the expected payoff is 0. This shows that the game indeed
does not have any subgame-perfect 0-equilibrium.

Observe that in this example there is a subgame perfect ε-equilibrium for every ε > 0: player I (respectively player II)
accepts a candidate (x, y) if and only if x � 1 − ε (respectively y � 1 − ε).

Remark 2. The distribution F2 in Example 1 is not absolutely continuous with respect to the Lebesgue measure. One can
obtain the same result by “fattening” the support of F2; for example, by letting F2 be the uniform distribution over the
polytope whose extreme points are (0,0), (0, c), (c,0), (1,1), where 0 < c < 1

2 . The calculations are tedious and not inspiring
and therefore omitted.

In the present section we prove the following two results.

Theorem 3. If F2 has finite support, the game G(i, j) admits a subgame-perfect 0-equilibrium in Markovian strategies.

Theorem 4. For every distribution F2 , the game G(i, j) admits a subgame-perfect ε-equilibrium in Markovian strategies, for every
ε > 0.
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Before proving the two theorems, we show that there may be equilibria which are not in Markovian strategies, and
equilibria which need not be in threshold strategies.

Example 5. Let F2 be the uniform distribution over a set of four atoms: ( 1
2 , 1

2 ), ( 1
2 ,0), (0, 1

2 ), and (1,1). Consider the
following strategy σp , where p ∈ [0,1]: accept a candidate if her type is (1,1) or ( 1

2 ,0); accept her with probability p

if her type is ( 1
2 , 1

2 ). Let τq be the symmetric strategy for player 2. For every p,q ∈ [0,1] the strategy pair (σp, τq) is
a subgame perfect 0-equilibrium with expected payoff ( 1

2 , 1
2 ). However, only for p = q = 1 these strategies can be called

threshold strategies. Now, suppose that at every stage, if no candidate was chosen so far, the players choose p and q
according to some (non-stationary) rule, and use σp and τq at that stage. Then the resulting strategy pair is a subgame
perfect 0-equilibrium, but it is not Markovian.

Proof of Theorem 3. The proof is by induction over i + j. We assume that G(i − 1, j) and G(i, j − 1) admit subgame-perfect
0-equilibria in Markovian strategies with expected payoff (u−, v+) and (u+, v−) respectively, and we study the part of the
game G(i, j), until either a candidate is hired (and then the game terminates), or some player casts a veto (and then the
game terminates, with a terminal payoff that is either (u−, v+) or (u+, v−), depending on the player who cast the veto).
Denote this part of the game by Γ (i, j). To accommodate the case in which a player has no vetoes, if i = 0 we set u− = −1,
if j = 0 we set v− = −1, and if i = j = 0 we also set u+ = v+ = −1.

The game Γ (i, j) can be described as follows: before a candidate is chosen, each player chooses, for each type (x, y),
whether he will accept such a type (A), reject such a type and cast a veto if needed (RV), or reject such a candidate and
not cast a veto (RN). Thus, we can describe the game as a repeated game with absorbing entries, where the set of pure
strategies of each player is the set of functions from the finite support W of F2 to {A,RV,RN}. The payoff, as a function of
the type of the chosen candidate, is described in Fig. 2(left). An empty entry in this figure indicates that the game continues
if the entry is chosen.

A RV RN

A (x, y) (u+, v−) (x, y)

RV (u−, v+)

RN (x, y)

A R

A a(x, y) a(x, y)

R b(x, y)

Fig. 2. The game Γ (i, j) (left) and its simplified version (right).

The game Γ (i, j) is terminated once at least one player accepts a candidate. In equilibrium, the decision whether to cast
a veto is dictated solely by the comparison between the worth of the candidate to the player and the continuation payoff:
it affects the terminal payoff but not the termination of the game.

Let a(x, y) be the terminal payoff if player I accepts (x, y); it is either (x, y) or (u+, v−), depending on which one
player II prefers:

a(x, y) =
{

(x, y), y � v−,

(u+, v−), y < v − .
(1)

Let b(x, y) be the terminal payoff if player I rejects a candidate (x, y) and player II accepts her; it is either (x, y) or
(u−, v+), depending on which one player I prefers:

b(x, y) =
{

(x, y), x � u−,

(u−, v+), x < u − .
(2)

For the search of an equilibrium, we can use the functions a and b to simplify the game Γ (i, j) as follows. We assume
that at each round, each of the players chooses, for each candidate, whether to accept her or reject her, and the payoff (as
a function of the candidate’s type) is given in Fig. 2(right).

Note that the only (possible) discontinuities of a(x, y) and b(x, y) are on the horizontal interval Ix = {(x, v−),0 � x � 1}
and the vertical interval I y = {(u−, y),0 � y � 1}.

To prove that the game G(i, j) admits a subgame perfect Markovian equilibrium, it is sufficient to prove that the game
Γ (i, j) admits a stationary equilibrium. Indeed, by concatenating a stationary equilibrium in Γ (i, j) with subgame perfect
equilibria in G(i − 1, j) and in G(i, j − 1), which exists by induction, we obtain a Markovian subgame perfect equilibrium
in G(i, j).

The game Γ (i, j) is a recursive absorbing game (see, e.g., Flesch et al., 1996); that is, a stochastic game with one non-
absorbing state, such that the payoff in non-absorbing states is 0. Flesch et al. (1996) proved that every two-player recursive
absorbing game admits a stationary ε-equilibrium, yet, since our game has sequential moves, this result does not imply the
existence of a SPE in Γ (i, j). Our proof uses ideas from Vrieze and Thuijsman (1989) and Solan and Vieille (2002).

A mixed action for player I is a probability distribution over pure actions. By Kuhn’s theorem it is equivalent to a function
σ : W → [0,1] that assigns to each type (x, y) the probability that it will be accepted, which is denoted by σ(x, y) ∈ [0,1].
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Mixed actions τ for player II are defined analogously. Every mixed action is identified with the stationary strategy that plays
it at every stage.

For every pair (σ , τ ) of stationary strategies, the probability of per-stage absorption is

p(σ , τ ) :=
∑

(x,y)∈W

F2(x, y)
(
σ(x, y) + (

1 − σ(x, y)
)
τ (x, y)

)
.

The pair (σ , τ ) is called absorbing if p(σ , τ ) > 0, and non-absorbing otherwise. Denote by γ (σ , τ ) the expected payoff under
the pair of strategies (σ , τ ). Then

γ (σ , τ ) =
{

(0,0), (σ , τ ) is non-absorbing,∑
(x,y)∈W F2(x,y)(σ (x,y)a(x,y)+(1−σ (x,y))τ (x,y)b(x,y))∑

(x,y)∈W F2(x,y)(σ (x,y)+(1−σ (x,y))τ (x,y))
, otherwise.

(3)

Since the payoff function γ is the ratio of two polynomials in σ and τ , and since the denominator is positive whenever
(σ , τ ) is absorbing, we deduce that γ is continuous at every absorbing pair (σ , τ ).

Let S and T be the sets of all mixed actions for the two players respectively. Let Sε be the set of all mixed actions σ of
player I that satisfy the following condition:

• σ(x, y) ∈ [ε,1 − ε] for each (x, y) ∈ W : player I accepts every type with probability at least ε, and rejects every type
with probability at least ε.

The condition that σ(x, y) � ε ensures that whatever player II plays, the game is bound to be absorbed, and therefore
the payoff is continuous over Sε × T ; the condition that σ(x, y) � 1 − ε ensures that each candidate is not hired with
positive probability, and so every decision point of player II is reached with positive probability: a best response of player II
to a strategy in Sε cannot use punishments that hurt player II.

Observe that Sε is convex, compact, and non-empty (assuming ε < 1
2 ). Let Γε(i, j) be the recursive absorbing game

Γ (i, j), in which the mixed-action space of player I is Sε , and the mixed-action space of player II is T (only player I is
restricted).

For every (σ , τ ) ∈ Sε × T , the game is bound to be absorbed. Since Sε and T are convex and compact, the standard
argument of Shapley (1953) implies that the game Γε(i, j) has a 0-equilibrium in stationary strategies.

Lemma 6. Let (σε, τε) be a stationary 0-equilibrium in Γε(i, j). For every type (x, y),

1. τε(x, y) is a best reply (for player II) given the two possible continuation payoffs (b(x, y) and γ (σε, τε)): it chooses an action that
attains the maximum max{bII(x, y), γ II(σε, τε)}.

2. σε(x, y) is the best reply (for player I, in the range [ε,1 − ε]) between the two continuation payoffs a(x, y) and τε(x, y)b(x, y)+
(1 − τε(x, y))γ (σε, τε).

Proof. We only prove the first statement. An analogous argument proves the second statement. Since σε(x, y) � 1 − ε, the
type (x, y) has a positive probability to be realized and accepted by player I. If τε does not choose the higher continuation
payoff, player II could gain by deviating. �

By compactness, there is a sequence (εk)k∈N that converges to 0 such that (a) the sequence (σεk , τεk )k∈N converges to a
limit (σ∗, τ∗), (b) the set of types (x, y) for which τεk (x, y) is positive is independent of k, and (c) the corresponding payoffs
(γ (σεk , τεk ))k∈N converge to a limit γ∗ . Eq. (3) implies that γ∗ is a weighted average of (a(x, y),b(x, y))(x,y)∈W :

γ∗ =
∑

(x,y)∈W

(
α(x, y)a(x, y) + β(x, y)b(x, y)

)
, (4)

where, for every (x, y) ∈ W ,

α(x, y) = lim
k→∞

F2(x, y)σεk (x, y)∑
(x′,y′)∈W F2(x′, y′)(σεk (x′, y′) + (1 − σεk (x′, y′))τεk (x′, y′))

,

β(x, y) = lim
k→∞

F2(x, y)(1 − σεk (x, y))τεk (x, y)∑
(x′,y′)∈W F2(x′, y′)(σεk (x′, y′) + (1 − σεk (x′, y′))τεk (x′, y′))

,

and these limits exist without loss of generality.
We now prove that the game Γ (i, j) admits a stationary equilibrium. We first deal with the case that (σ∗, τ∗) is absorb-

ing.

Lemma 7. If (σ∗, τ∗) is absorbing, then it is a stationary equilibrium in Γ (i, j).
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Proof. We only prove that player I cannot profit by deviating; the proof that player II cannot profit by deviating is analogous.
Let σ be an arbitrary strategy of player I in Γ (i, j). Assume first that according to τ∗ there is a type that is accepted

with positive probability. In particular, (σ , τ∗) is absorbing. We approximate σ by strategies in Sεk . Define for every k ∈ N a
strategy σ̂k as follows:

σ̂k(x, y) =
⎧⎨⎩

εk, σ (x, y) < εk,

σ (x, y), σ (x, y) ∈ [εk,1 − εk],
1 − εk, σ (x, y) � 1 − εk.

Note that σ = limk→∞ σ̂k . By the continuity of γ at absorbing strategy pairs we deduce that

γ I(σ , τ∗) = lim
k→∞

γ I(σ̂k, τεk ). (5)

From Eq. (5), since (σεk , τεk ) is an equilibrium in Γε(i, j) for every ε, and since (σ∗, τ∗) is absorbing, we obtain:

γ I(σ , τ∗) = lim
k→∞

γ I(σ̂k, τεk ) � lim
k→∞

γ I(σεk , τεk ) = γ I∗ = γ I(σ∗, τ∗), (6)

so that player I does not profit by deviating to σ .
Suppose now that according to τ∗ all types are rejected. If (σ , τ∗) is absorbing, then once again by continuity arguments

it follows that γ 1(σ , τ∗) � γ I∗ = γ (σ∗, τ∗). If, on the other hand, (σ , τ∗) is non-absorbing, then since payoffs are non-
negative we obtain:

γ I(σ , τ∗) = 0 � γ I∗ = γ (σ∗, τ∗),
so that in this case as well player I does not profit by deviating to σ . �

We now deal with the case that (σ∗, τ∗) is not absorbing.

Lemma 8. If (σ∗, τ∗) is non-absorbing, then there is a type (x, y) and a stationary equilibrium in Γ (i, j), such that on the equilibrium
path both players accept only (x, y).

Proof. We first show that for every type (x, y) ∈ W we have

aI(x, y) � γ I∗. (7)

Indeed, since player I accepts the type (x, y) with a probability that goes to 0, by Lemma 6 we have for k large enough:

aI(x, y) � τεk (x, y)bI(x, y) + (
1 − τεk (x, y)

)
γ I(σεk , τεk ). (8)

Since (σ∗, τ∗) is non-absorbing, τ∗ rejects all candidates, so that limk→∞ τεk (x, y) = 0 for every type (x, y). Taking the limit
as k goes to infinity in (8), we obtain

aI(x, y) � lim
k→∞

γ I(σεk , τεk ) = γ I∗, (9)

and therefore (7) holds.
We now argue that for every type (x, y) ∈ W we have

bII(x, y) � γ II∗ , (10)

with an equality whenever τεk (x, y) > 0 for every k.1 Since (σ∗, τ∗) is non-absorbing, σ∗ rejects all candidates, so that
limk→∞ σεk (x, y) = 0 for every type (x, y). By Lemma 6 we obtain:

bII(x, y) � γ II(σεk , τεk ). (11)

By taking the limit as k goes to infinity we obtain (10).
Suppose that there exists a type (x0, y0) ∈ W such that bI(x0, y0) � γ I∗ and bII(x0, y0) = γ II∗ . Consider the stationary

strategy pair (σ̂ , τ̂ ) in Γ (i, j) in which player I accepts the type (x0, y0) (and any type (x, y) with x > x0, which may arrive
with probability 0) and rejects any other type, and player II accepts any type (x, y) such that y = y0 (and any type (x, y)

with y > y0) and rejects any other type. It follows that γ (σ̂ , τ̂ ) = (x, y), and using (7) and (10) one can verify that (σ̂ , τ̂ )

is a stationary equilibrium in Γ (i, j).
If there is a type (x0, y0) ∈ W such that aI(x0, y0) = γ I∗ and aII(x0, y0) � γ II∗ , then the following stationary strategy pair

is a stationary equilibrium in Γ (i, j): player I accepts the type (x0, y0) (and any type (x, y) with x > x0, which may arrive
with probability 0) and rejects any other type, and player II accepts any type (x, y) such that y = y0 (and any type (x, y)

with y > y0) and rejects any other type.

1 Recall that by the definition of (εk)k∈N , the set of types (x, y) for which τεk (x, y) > 0 is independent of k.
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Fig. 3. The partition of [0,1]2 into nine parts.

To conclude the proof, we suppose now that the conditions given in the previous two paragraphs do not hold, and we
will derive a contradiction. Since the conditions given in the previous two paragraphs do not hold, for every type (x, y) at
least one of the following conditions hold:

C1. bI(x, y) < γ I∗ or bII(x, y) < γ II∗ ;

C2. aI(x, y) < γ I∗ or aII(x, y) < γ II∗ .

By Lemma 6, if bII(x, y) < γ II∗ then τεk (x, y) = 0 for every k sufficiently large, whereas if aI(x, y) < γ I∗ then σεk (x, y) = 0
for every k sufficiently large. In other words, if bII(x, y) < γ II∗ then under τ∗ the candidate (x, y) is not accepted by player II,
so that β(x, y) = 0. Similarly, if aI(x, y) < γ I∗ then α(x, y) = 0.

Finally, by Eq. (4), γ∗ is a weighted average of {a(x, y),b(x, y), (x, y) ∈ W } with weights {α(x, y), β(x, y), (x, y) ∈ W }.
The discussion above implies that if α(x, y) > 0 then aI(x, y) = γ I∗ and aII(x, y) < γ II∗ , while if β(x, y) > 0 then bI(x, y) < γ I∗
and bII(x, y) = γ II∗ . However, any weighted average that satisfies these condition must yield to at least one of the players a
payoff which is strictly lower than his payoff in γ∗ , a contradiction. This contradiction implies that there exists a stationary
equilibrium in which a single type is accepted by both players, as desired. �

So Theorem 3 is proved. �
We now turn to prove Theorem 4.

Proof of Theorem 4. Along the proof we use the same notations as in the proof of Theorem 3. We prove the theorem
by induction on i + j. We assume that G(i − 1, j) and G(i, j − 1) admit a subgame perfect ε

6 -equilibrium in Markovian
strategies for every ε > 0, and we denote by (u−, v+) and (u+, v−) corresponding ε

6 -equilibrium payoffs in Markovian
strategies in these games. As in the proof of Theorem 3, if i = 0 we set u− = −1, if j = 0 we set v− = −1, and if i = j = 0
we also set u+ = v+ = −1.

Consider now the game Γ (i, j) that was defined in the proof of Theorem 3. The idea of the proof is to approximate the
game Γ (i, j) (with a distribution F2 that need not be finite), by a game with a distribution F̂2 that has finite support, to
argue that by Theorem 3 the approximating game admits a subgame perfect 0-equilibrium, and finally to prove that every
subgame perfect 0-equilibrium of the approximating game is a subgame perfect ε-equilibrium of Γ (i, j).

We now turn to the formal proof. We start by defining an ε
6 -discretization F̂2 of F2. The construction is a little involved

since we need to preserve continuity of payoffs, while the functions a and b have discontinuities. Split [0,1]2 into the
following nine parts (see Fig. 3):{

(x, y), u− < x � 1, v− < y � 1
}
,

{
(x, y), u− < x � 1,0 � y < v−}

,
{
(x, y),0 � x < u−, v− < y � 1

}
,{

(x, y),0 � x < u−,0 � y < v−}
,

{
(x, v−),0 � x < u−}

,
{
(x, v−), u− < x � 1

}
,{

(u−, y),0 � y < v−}
,

{
(u−, y), v− < y � 1

}
and (u−, v−).

We partition each part (except the last part which is a single point) into finitely many sets such that each of the overall
L resulting sets A1, A2, . . . , AL, has diameter at most ε

6 :

sup
(x,y),(x′,y′)∈Al

d
(
(x, y), (x′, y′)

)
� ε

6
, ∀l,

and for each l, 1 � l � L, there is (xl, yl) ∈ Al such that F̂2(xl, yl) = F2(Al). (That is, let F̂2 be the atomic distribution that is
defined as follows: for each l = 1,2, . . . , L, choose (xl, yl) ∈ Al and set F̂2(xl, yl) = F2(Al).) Observe that the functions a and
b are continuous over each Al .

We are going to consider three games, G1, G2, and G3. These are recursive games, in which at every stage a candidate
is chosen according to some distribution, then player I, upon observing the candidate’s type, decides whether to accept the
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candidate or reject her, and then player II, after observing the candidate’s type and player I’s decision, decides whether to
accept her or reject her. The game continues once at least one player accepts a candidate (there is no opportunity to cast
vetoes), and the games only differ in the underlying distribution according to which candidates are chosen and by their
absorbing payoffs.

• In the game G1 the candidates’ distribution is F2 and the absorbing payoff is a(x, y) (respectively b(x, y)) if (x, y) is
accepted by player I (respectively player II). Thus, G1 is equal to Γ (i, j).

• In the game G2 the candidates’ distribution is F2. If (x, y) ∈ Al is accepted by player I (respectively player II), the
absorbing payoffs is a(xl, yl) (respectively b(xl, yl)).

• In the game G3 the candidates’ distribution is F̂2 and the absorbing payoffs is a(xl, yl) (respectively b(xl, yl)) if (x, y) ∈
Al is accepted by player I (respectively player II).

As mentioned in the proof of Theorem 3, a 5ε
6 -equilibrium in the game G1 can be turned into an ε-equilibrium in G(i, j),

by supporting it with ε
6 -equilibria in G(i − 1, j) and G(i, j − 1) that yield payoff (u−, v+) and (u+, v−) respectively if one

of the players casts a veto. Denote by γ1(σ , τ ), γ2(σ , τ ) and γ3(σ , τ ) the payoff functions in these three games. Since the
absorbing payoffs in G1 and in G2 differ by at most ε

6 , we have∥∥γ1(σ , τ ) − γ2(σ , τ )
∥∥ � ε

6
, ∀σ ,∀τ . (12)

Fix a strategy pair (σ , τ ). Let σ3 be the strategy that is defined as follows:

σ3(x, y) =
∫

Al
σ(x′, y′)dF2(x′, y′)

F2(Al)
if (x, y) ∈ Al. (13)

This is the average probability to accept (x, y) under σ , provided it is in Al . We define this strategy only for (x, y) ∈ Al such
that F2(Al) > 0. Let τ3 be the analogous strategy for player II:

τ3(x, y) =
∫

Al
(1 − σ(x′, y′))τ (x′, y′)dF2(x′, y′)∫

Al
(1 − σ(x′, y′))dF2(x′, y′)

if (x, y) ∈ Al. (14)

This is the probability that player II accepts (x, y) if player I rejected it, conditional on (x, y) ∈ Al , and it is defined only for
(x, y) ∈ Al such that the denominator is not zero. If the denominator is zero, then I will aways accept a candidate it Al , so
the definition of τ3 does not matter. Suppose also that under σ3 player I vetoes a candidate accepted by player II with the
probability which is the conditional probability he would have vetoed her under σ (conditional on Al), and similarly for
player II. Since the diameter of each Al is at most ε

6 ,∣∣γ2(σ , τ ) − γ3(σ3, τ3)
∣∣ � ε

6
, ∀σ ,∀τ . (15)

This holds only if τ or σ (or both) depend on (x, y) only through the atom that contains it. Let now (σ3, τ3) be a subgame-
perfect 0-equilibrium in G3. Since F̂2 has a finite support, as we exhibited in the proof of Theorem 3 such an equilibrium
exists. Let σ ∗ and τ ∗ be the strategies that are defined as follows: as long as no player casts a veto, σ ∗ follow σ3 and τ ∗
follows τ3. Once player I (respectively player II) casts a veto, (σ ∗, τ ∗) coincides with a subgame-perfect ε

6 -equilibrium in
Markovian strategies in G(i − 1, j) (respectively in G(i, j − 1)) with corresponding payoff (u−, v+) (respectively (u+, v−)).

The strategies σ ∗ and τ ∗ are Markovian. We now argue that (σ ∗, τ ∗) is a subgame-perfect ε-equilibrium in G(i, j). We
only prove that player I cannot gain more than ε by deviating. Fixing τ ∗ , player I’s maximization problem reduces to a
Markov decision problem, and therefore he has an optimal strategy σ which is Markovian. Let σ1 be the strategy that σ
induces on G1, and let σ3 be the corresponding discretized strategy defined above. Let σ ∗

1 and τ ∗
1 be the strategies that σ ∗

and τ ∗ induce in G1, that is, σ ∗
1 (x, y) = σ ∗

1 (x1, y1) whenever (x, y) ∈ Al . Let τ ∗
3 be the strategy defined in (14) with respect

to τ ∗ . Since σ ∗ plays an ε
6 -equilibrium once one of the players casts a veto, by (12), (15), and since (σ3, τ3) is a subgame

perfect 0-equilibrium in G3:

γ I(σ ,τ ∗) � γ I
1

(
σ1, τ

∗
1

) + ε

6
� γ I

2

(
σ1, τ

∗
1

) + 2ε

6
(16)

� γ I
3

(
σ1, τ

∗
1

) + 3ε

6
� γ I

3

(
σ ∗

1 , τ ∗
1

) + 3ε

6
(17)

� γ I
2

(
σ ∗

1 , τ ∗
1

) + 4ε

6
� γ I

1

(
σ ∗

1 , τ ∗
1

) + 5ε

6
(18)

� γ I(σ ∗, τ ∗) + ε, (19)

so that indeed player I cannot gain more than ε by deviating. �
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Fig. 4. Progressive equilibrium for G(i, j).

4. Behavior in equilibrium

In general, for every continuation payoffs (u+, v−) and (u−, v+) there may be many equilibria in G(i, j). In this section
we single out two types of equilibria, progressive equilibria and helpful equilibria. These equilibria represent the typical
behavior of the players (see Remark 11 in this section). They also help us explain why one of the players may prefer
that the other player would become more powerful in some situations, such as the donation paradox that we present in
Section 5.1 below.

Definition 9. Let (σ , τ ) be a Markovian subgame perfect equilibrium in G(i, j) with continuation payoff (u+, v−) (respec-
tively (u−, v+)) in G(i, j − 1) (respectively in G(i − 1, j)). (σ , τ ) is called progressive if u � u+, v � v+, and (in case of
equality) players choose to play the game in which the other player loses a veto rather than repeat the game G(i, j).

We emphasize that whether or not an equilibrium is progressive depends on the continuation payoffs, and therefore on
the continuation strategies in G(i − 1, j) and in G(i, j − 1).

In a progressive equilibrium a player does not profit from the fact that the other player has one extra veto, and therefore
he tries to make the other player use one veto.

Given the values u−, u, v−, v it is easy to derive the SPE strategies as a function of the candidate values x and y,
depending on which of the five partitioning rectangles A, B, C, D, E in Fig. 4 the point (x, y) belongs to.2 (To simplify the
discussion of ties, we assume these rectangles contain their left and bottom sides.)

Consider Fig. 4, and suppose y < v−, that is, (x, y) ∈ A. Such a candidate will never be hired, because player II will cast a
veto if necessary. The best player I can do is force player II to cast a veto. He does this by accepting the candidate. Similarly,
if (x, y) ∈ B , then player I will cast a veto if necessary. The best player II can do is to accept the candidate, thereby forcing
player I to cast a veto. If (x, y) ∈ C, neither player would cast a veto, and both prefer rejecting the candidate and replaying
the game. If (x, y) ∈ D ∪ E , the candidate will be hired, as at least one player prefers this to replaying G(i, j), and neither
player is willing to cast a veto. Denote by (u, v) the equilibrium payoff in G(i, j). Then

(u, v) = T (u, v),

where T (u, v) ≡ F2(A) · (u+, v−) + F2(B) · (u−, v+) + F2(C) · (u, v) +
∫

D∪E

(
x(z), y(z)

)
dF2(z).

Here, for every subset H ⊆ [0,1]2, F2(H) is the probability that (x, y) ∈ H . If F2 is the uniform distribution, then Lemma 16
of Alpern and Gal (2008) shows that, for any game G(i, j), T is a contraction map of the unit square, which implies the
existence of a unique progressive equilibrium (provided u+, u−, v+ and v− are given).

2 Recall that the inequalities u− � u and v− � v were established by Alpern and Gal (2008). Also note that the placement of the candidate (x, y) with
respect to (u+, v+) does not affect decisions.
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Fig. 5. A helpful equilibrium for G(1,0).

Note that if u < u+ and v < v+, then the equilibrium actions played in the interior of each of the sets A, B, C, D and E
in Fig. 4 are strictly dominant.

In order to illustrate the other types of equilibrium we first analyze the game G(1,0) for a symmetric F2 (this includes
the case in which x and y are i.i.d.). The game G(0,0) has been analyzed in Alpern and Gal (2008). They proved that if F2 is
symmetric, then there exists a symmetric equilibrium. Denote the expected payoff to each player in G(0,0) by u0. We now
consider the possibility of an equilibrium for G(1,0) with equilibrium values (u, v) with u � u0 and v � u0. Previously we
had assumed an extra veto for player I would hurt player II, with v < u0. If v > u0, player II would rather replay G(1,0) and
get v than go to G(0,0) and get u0. So player I will never use his veto, as in such a case player II would previously have
rejected the candidate. We call such an equilibrium helpful. (To simplify the discussion of ties, we assume the rectangles in
Fig. 5 contain their left and bottom sides.)

We now consider the general situation.

Definition 10. Let (σ , τ ) be a Markovian subgame perfect equilibrium in G(i, j) with continuation payoff (u+, v−) (respec-
tively (u−, v+)) in G(i, j − 1) (respectively in G(i − 1, j)). (σ , τ ) is called helpful if u > u+ and v > v+.

As in the case of progressive equilibrium, the property of being helpful depends on the continuation payoffs in G(i −1, j)
and in G(i, j − 1), and therefore on the continuation strategies in these games.

An equilibrium is helpful if each player loses when the other player casts a veto. In such a case, in equilibrium a player
will not accept a candidate that the other player does not like, so that the other player will not be forced to use his veto
power.

A helpful equilibrium has the profile depicted in Fig. 6. (To simplify the discussion of ties, we assume these rectangles
contain their left and bottom sides. Also, player II accepts a candidate in E if y � v and rejects her if y < v .)

Indeed, consider a candidate (x, y). If y < v− player II will cast a veto. Since u < u+ player I prefers that player II would
not cast a veto, hence he will reject such a candidate (region A in Fig. 6). For an analog reason both players reject the
candidate if (x, y) ∈ B . The behavior of the players in regions C , D and E is as in a progressive equilibrium. Thus, the payoff
(u, v) that corresponds to an helpful equilibrium is a fixed point

(u, v) = T (u, v),

where

T (u, v) = F2(A ∪ B ∪ C) · (u, v) +
∫

D∪E

(
x(z), y(z)

)
dF2(z).

Note that if u > u+ and v > v+, then the actions in each region in Fig. 6 are strictly dominant.
There can also be a mixed equilibrium, in which u < u+ but v > v+ or u > u+ but v < v+ .

Remark 11. Note that if a ‘degeneracy,’ u = u+ or v = v+, does not occur, then, for any game G(i, j), i, j � 0, with an
absolutely continuous F2, there exist only pure equilibria (possibly more than one) which are either progressive or helpful
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Fig. 6. A helpful equilibrium for G(i, j).

or mixed. For example, assume that we found an equilibrium payoff (u, v) (either by a numerical scheme based on Section 3,
or by some theoretical analysis), and it turns out that u < u+ and v < v+. Then the only possible equilibrium strategies, are
given by the progressive equilibrium in Fig. 4, because the actions in this figure are strictly dominant. Similarly, if u > u+
and v > v+, then the only possible equilibria are given by helpful equilibria as in Fig. 6, because the actions in this figure
are strictly dominant. The mixed cases can be handled in a similar way.

5. Unexpected behavior of equilibria

If F2 is symmetric, e.g., if x and y are independent with the same distribution F , then the game G(0,0) always has a
symmetric SPE in threshold strategies (u0, u0), where 0 < u0 < 1 is the threshold of acceptance: a candidate is accepted
by a player if and only if her worth for that player is at least u0 (see Alpern and Gal, 2008). Simple as it looks, the game
G(0,0) displays some unexpected behavior. We first show that the number of equilibria is not bounded.

Example 12. Let n be a natural number. We construct a game G(0,0) with n threshold equilibria. Set

z0 = 0, zi = 1/(2 + ε)n−i, i = 1,2 . . . ,n. (20)

Let x and y be i.i.d. random variables with a discrete distribution: their support is {z0, z1, . . . , zn}. The probabilities p(zi) =
P (x = zi) = P (y = zi) satisfy

p(zi) � p(zi−1), i = 1,2 . . . ,n. (21)

That is, the first positive score is almost certainly z1, if not, then almost certainly z2, etc. We show that all positive zi ,
i = 1,2, . . . ,n can be threshold of symmetric equilibria.

Let 1 � i � n. If one player, say player I, uses a threshold strategy with threshold zi , and accepts a candidate if and only
if his worth is at least zi , then the payoff of each player is close to zi/2, and player II’s best response is to use a threshold
strategy with threshold zi as well. Indeed, if player II uses a higher threshold, then player I will almost surely stop before
player II, and player II’s payoff will be close to 0. If player II uses a lower threshold, then he would stop before player I, and
his payoff would be close to zi−1, which is smaller than zi/2.

It seems natural that the outcome is monotonic in the distribution of the population: if, say, one population is better
than a second population, that is, if the distribution of the first population stochastically dominates the distribution of the
second population, then the equilibrium payoff will be higher in the first population. The next example shows that this
is not the case. This phenomenon corresponds to the well-known non-monotonicity of the equilibrium correspondence in
one-shot games.

Example 13. Let x, y be i.i.d. r.v.s. with the following three atom distribution, where ε is a small positive real number:

z =
⎧⎨⎩

1 with probability ε,

d with probability ε, where d ∈ (0,1) and
0 with probability 1 − 2ε.
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We consider only SPE in threshold strategies, which always exists for G(0,0) with a symmetric F2, as mentioned above.
Two thresholds may produce a SPE, either 1 or d.

For threshold 1 to be a Nash equilibrium (NE) it is necessary and sufficient that 1
2 � 1+d

3 + O (ε) and for this NE to be

subgame perfect (SP) it is necessary and sufficient that d � 1
2 + O (ε) so threshold 1 is SPE if and only if 0 < d � 1

2 + O (ε).

For threshold d to be a NE it is necessary and sufficient that 1+d
4 + O (ε) � 1

3 and for this NE to be SP it is necessary and

sufficient that d � 1+d
4 + O (ε) so threshold d is SPE if and only if 1

3 + O (ε) � d < 1.

Thus, for 0 < d < 1/3 + O (ε) threshold 1 is the unique SPE with payoff to each player 1
2 + O (ε), while for 1

2 + O (ε) <

d < 1 threshold d is the unique SPE with payoff to each player 1+d
4 + O (ε) < 1

2 . Since any population with d > 1
2 stochasti-

cally dominates a population with d < 1
3 we obtain a non-monotonicity of the equilibrium payoffs.

5.1. Donation paradox

The donation paradox was introduced by Fisher and Schotter (1978), who called it the “paradox of redistribution,” in the
context of power indices of simple voting games. This paradox occurs when a player gives an apparently valuable prerogative
to another player, but ‘does better,’ according to some criterion. Specifically, when voting weights are reallocated, it may be
observed that the voting power of some members, as measured by the Shapley-Shubik and Banzhaf power indices, increases
while their voting weight decreases. (See also Felsenthal and Machover, 1995; Kadane et al., 1999; Holler and Napel, 2004.)
DeGroot and Kadane (1980) present an example of selecting a jury of two participants, in which one of the players prefers
to give his veto right to the other player, because such a move yields a better outcome for himself. However, Theorem 3 in
DeGroot and Kadane (1980) implies that if the (two) players have to choose only one candidate, a donation paradox cannot
occur: giving away one of your vetoes to the other player lowers the payoff of a player. It should be noted, though, that the
game presented by DeGroot and Kadane (1980) has a finite length, due to the rule of always accepting a candidate that was
not vetoed. This property simplifies the situation in their model. On the other hand, in our model, it is possible that both
players reject a candidate and the next candidate is called for. This introduces the inherent complexity of infinitely repeated
games into our model.

As we show now, a donation paradox may occur in our model. The number of vetoes each player has at the beginning of
the game measures, in a sense, its relative strength. Indeed, Alpern and Gal (2008) proved that in a Markovian equilibrium,
player I’s (respectively player II’s) expected payoff in G(i, j) is always at least as much as his expected payoff after he casts
a veto. We present an example in which player I prefers G(0,1) to G(1,0).3

Example 14. F2 has 3 types of candidates, as follows:

Type Probability

(b,b) 1 − 2ε
(1,0) ε
(1 − ε,1 − ε) ε

where 1
2 < b < 1 and ε � 1.

We argue that player I prefers G(0,1) to G(1,0). The intuition is as follows. There are three types of candidates:
(1) a type (b,b) which is mediocre for both players, (2) a type (1 − ε,1 − ε) which is excellent for both players, and
(3) a type (1,0) which is perfect for player I and bad for player II. The mediocre type arrives frequently, whereas the other
two types arrive rarely.

If player II cannot prevent player I from accepting the perfect-to-I-bad-for-II candidate, then he has to accept a mediocre
candidate. Therefore the SPE payoff in both G(0,0) and G(1,0) is close to the payoff from the mediocre type. In G(0,1), on
the other hand, player II can threaten player I, that if player I accepts the perfect-to-I-bad-for-II candidate type, then he will
cast a veto, and the outcome will be mediocre to both players. Therefore, player I will not accept this type, and the players
can end up with the excellent candidate. The formal calculations follow.

In G(0,0) no player has a veto. In a subgame perfect equilibrium each player accepts his most preferred type: player I
accept the type (1,0), while player II accepts the type (1 − ε,1 − ε). Since the average of these two vectors gives player II
a payoff 1−ε

2 < b, player II accepts the type (b,b) as well. Therefore the unique equilibrium payoff, γ0,0, is:

γ I
0,0 = (1 − 2ε)b + ε(1 − ε) + ε = b + ε(2 − 2b − ε) > b, (22)

γ II
0,0 = (1 − 2ε)b + ε(1 − ε) = b + ε(1 − 2b − ε) < b. (23)

3 Player II usually prefers G(0,1) to G(1,0). For example assume that there are just two types of candidates, (1,0) and (0,1), each with probability 1
2 .

If no player has a veto, then each of them accepts his preferred type, so that the unique SPE payoff in G(0,0) is ( 1
2 , 1

2 ). If one player has a single veto,
while the other has no veto, then in a SPE each player will accept his preferred type, and the player with veto will veto once the candidate preferred by
the other player. Therefore the unique SPE payoff in G(1,0) (respectively in G(0,1)) is ( 3

4 , 1
4 ) (respectively ( 1

4 , 3
4 )).
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Consider a SPE in G(1,0). As in G(0,0), player I accepts the type (1,0). Since γ I
0,0 > b player I will veto (b,b). We claim

that in a SPE player II will accept the type (b,b). Indeed, if he rejects this type, then the only types that can be hired are
(1,0) and (1 − ε,1 − ε), which arrive at the same frequency. Player I accepts the type (1,0), and player II will then accept
the type (1 − ε,1 − ε), since this type gives him the highest payoff. The payoff of player II would then be less than 1

2 , yet
γ II

0,0 � 1
2 , so that player II prefers to accept the type (b,b) (who will be rejected by player I) and continue to G(0,0) than

to reject her.
Since type (b,b) arrives frequently, the SPE payoff is close to (b,b), and therefore player I will accept the type (1 − ε,

1 − ε). This implies that the SPE payoff in G(1,0) is close to (b,b) for both players: with high probability the first candidate
has type (b,b); if player I casts a veto, the game moves to G(0,0), where, by (22) and (23), the unique SPE payoff is close
to (b,b); if player I does not cast a veto then player II will accept this candidate, since otherwise. Thus, in the unique SPE,
player I rejects the type (b,b), the other two types are hired, and the payoff γ1,0 is:

γ I
1,0 = (1 − 2ε)γ I

0,0 + ε(1 − ε) + ε = b + ε
(
4 − 2b + ε(−6 + 2ε + 4b)

)
> γ I

0,0,

γ II
1,0 = (1 − 2ε)γ II

0,0 + ε(1 − ε) = b + ε
(
2 − 4b + ε(−4 + 2ε + 4b)

)
< γ II

0,0.

Consider now an equilibrium in G(0,1). As in G(0,0) player II will accept the excellent type (1−ε,1−ε). Since γ II
0,0 < b,

player II will not veto (b,b); Since b is the minimal payoff to player I, it follows that player I will reject (b,b). Since γ II
0,0 > 0

player II will veto (1,0). Finally, player I will reject (1,0), since by accepting it he will get γ I
0,0, whereas by rejecting it he

will get 1 − ε. Therefore the unique equilibrium is that both players accept only (1 − ε,1 − ε), and the corresponding
equilibrium payoff is γ0,1 = (1 − ε,1 − ε).

As we see, player I’s expected payoff in G(0,1) is higher than his expected payoff in G(1,0), so that a donation paradox
occurs: player I prefers to give his veto to player II.

Note that in G(1,0) the unique Markovian SPE is progressive (v < v+, so that player II accepts the type (b,b) and forces
player I to use his veto). On the other hand, in G(0,1) the unique Markovian SPE is helpful (u > u+, so that player I does
not accept the type (1,0) that will make player II use his veto). This explains why player I prefers G(0,1) over G(1,0).

The donation paradox presented above cannot occur when F2 is symmetric, and, in particular, when x and y are i.i.d.

Theorem 15. Assume that F2 is symmetric. If the SPE of G(1,0) is unique, then player I never prefers G(0,1) to G(1,0).

Proof. Denote the unique equilibrium payoff of G(1,0) by (γ I
1,0, γ

II
1,0). By Alpern and Gal (2008, Theorem 9), there is a

symmetric threshold equilibrium in G(0,0). As we have seen in the proof of Theorem 3, every equilibrium payoff in G(0,0)

can be extended into a Markovian SPE in G(1,0). Since there is a unique equilibrium payoff in G(1,0), it follows that we
can assume that in the equilibrium in G(1,0) the continuation payoff is G(0,0) is symmetric.

One can verify that when one of the players does not have any veto rights, the order in which players play is irrelevant:
by properly re-defining the strategies, an equilibrium in G(0,1) can be turned into an equilibrium in G(1,0). It follows that
the unique equilibrium payoff in G(0,1) is (γ II

1,0, γ
I

1,0). We now show that γ I
1,0 � γ II

1,0.

Assume to the contrary that γ I
1,0 < γ II

1,0. We prove that if a candidate (x, y) with x < y is hired with positive probability,
then the candidate (y, x) is hired with probability 1. Since F2 is symmetric, and the continuation payoff if player I casts a
veto is symmetric, this will imply that γ I

1,0 � γ II
1,0, a contradiction. Now, if such a candidate (x, y) is accepted with positive

probability by player I then

y > x � γ I
1,0,

so that player I accepts (y, x) with probability 1. If the candidate is accepted with positive probability by player II (and not
vetoed by player I) then

y � γ II
1,0 > γ I

1,0,

so that (y, x) is accepted with probability 1 by player I. Since player II has no vetoes in G(1,0) the result follows. �
Remark 16. We end the paper by commenting on the monotonicity of the equilibrium payoff as a function of the number
of vetoes that the players have. Assume that x, y are i.i.d. with any non-constant distribution. Assume without loss of
generality that (1,1) is in the support of (x, y). Since one available strategy is to accept all candidates, all equilibrium
payoffs in G(0,0) are at least the expectation E(x) (for both players), and since x and y are non-constant, one can verify
that all equilibrium in G(0,0) are higher than E(x) (for both players). Also, in all equilibria in G(∞,0) player I obtains 1,
since he can reject all candidates except those whose worth for him is 1. Since player I is indifferent among all candidates
whose worth for him is 1, in G(∞,0) there may be multiple equilibria that differ in the payoff to player II. As we mentioned
before, it follows from Alpern and Gal (2008) that the payoff to player I in G(n,0) is monotonic increasing as a function
of n. On the other hand, if helpful equilibrium exists for some n, then the payoff to player II is not monotonic in n.
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