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Abstract

We show how a stochastic variation of a Ramsey’s theorem can be used to prove the existence
of the value, and to construct �-optimal strategies, in two-player zero-sum dynamic games that
have certain properties.
c© 2004 Elsevier B.V. All rights reserved.

Keywords: Dynamic games; Ramsey’s theorem; Value; Optimal strategies

1. Introduction

Competitive interaction between two players is quite common, and it is desirable to
know whether such interaction has a value. That is, whether there is some quantity
such that for every �¿ 0 the maximizing player can guarantee receiving, on average,
at least this quantity (up to �), and the minimizing player can guarantee paying, on
average, no more than this quantity (up to �). Once the value exists, 9nding �-optimal
strategies for the two players (which guarantee that they receive at least the value, or
pay no more than the value, up to �) is also desirable.

When the interaction lasts for a single stage, or for a bounded number of stages,
existence of the value is usually proven using a 9xed-point argument, and hinges on
the continuity of the payo: in the strategies of the players.
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When the duration of the interaction is long but not known in advance, it is con-
venient to assume that the interaction lasts for countably many stages (see Aumann
and Maschler, 1995, p. 143, and Neyman and Sorin, 2001, for justi9cation). However,
in this formulation, the payo: is often not continuous in the strategies of the players,
and therefore one cannot use standard 9xed-point theorems to prove the existence of
the value. Various techniques have been employed in the literature to handle this prob-
lem (see, e.g., Mertens and Neyman, 1981; Maitra and Sudderth, 1993, 1998; Nowak,
1985), but it seems that each technique can be applied to only some models, under
special conditions, or else is not constructive.

Here we present another tool for proving the existence of the value in in9nite-stage
competitive interactions, or two-player zero-sum dynamic games. We show how a
stochastic variation of Ramsey’s theorem 2 can be used to reduce the analysis of the
in9nite-stage interaction to the analysis of 9nite-stage interactions.

To exhibit the new technique, we apply it to the following generalization of stopping
games (see Dynkin, 1969). At the outset of the game, the state of the world is chosen
according to some known probability distribution, but is not revealed to the players.
At every stage of the game, the players gain some information about the state of the
world; both receive the same information. Then each player chooses an action. The pair
of actions, together with the state of the world, determines a probability of termination,
and a terminal payo: if the game terminates at that stage. If the game never terminates,
the payo: to both players is 0.

The goal of the maximizing player is to maximize the expected payo:, and the goal
of the minimizing player is to minimize this quantity.

The paper is arranged as follows. In Section 2 we formally present the model and
the main result, stating that in our model the value exists. In Section 3 we state the
stochastic variation of Ramsey’s theorem that we use, and we apply it to our model
to exhibit the new technique. Further discussion appears in Section 4.

2. The model and the main result

We consider in9nite-stage dynamic games in discrete time that are given by:

• A probability space (�;F;P) that captures the uncertainty of the state of the world.
We denote by E the expectation w.r.t. P.

• A 9ltration (Fn)n∈N that describes the information available to both players at
stage n.

• Two measurable spaces (A;A) and (B;B) of actions for the two players.
• For each n∈N, Fn ⊗A ⊗ B-measurable functions pn : � × A × B → [0; 1] and

gn : � × A × B → [−1; 1]; pn indicates the probability of termination, while gn
indicates the terminal payo:.

2 Ramsey (1930) proved that for every coloring of the complete in9nite graph by 9nitely many colors
there is a complete in9nite monochromatic sub-graph.
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The game is played as follows. At the outset, a state of the world !∈� is chosen
according to the probability measure P. At every stage n, the players independently and
simultaneously choose actions an ∈A and bn ∈B. These choices must be measurable
with regard to their information, namely, Fn and previously played actions. The game
terminates with probability pn(!; an; bn), and the terminal payo: is gn(!; an; bn). The
game continues to stage n + 1 with probability 1 − pn(!; an; bn).

Our model is a generalization of stopping games (see, e.g., Dynkin, 1969; Rosenberg
et al., 2001 or Touzi and Vieille, 2002). It is also closely related to general stochastic
games (see, e.g., Nowak, 1985 or Maitra and Sudderth, 1998).

For every measurable space M , we denote by P(M) the space of probability distri-
butions over M .

The space of in9nite plays is (A×B)N ×�. We equip it with the product �-algebra
(A ⊗B)N ⊗F. We denote by Gn = (A ×B)n−1 ⊗Fn the �-algebra that represents
the information available to the players at stage n. It is convenient to consider Fn as
a sub-�-algebra of Gn.

A strategy � = (�n)n∈N of player 1 is a collection of functions such that �n :
(A× B)N ×� → P(A) is Gn-measurable, for every n∈N. Strategies � of player 2 are
de9ned analogously.

Every pair (�; �) of strategies, together with P, naturally de9nes a probability dis-
tribution over (A × B)N × �. The corresponding expectation operator is denoted by
E�;�.

Denote by � the stage of termination, so that � = +∞ if termination never occurs.
The distribution of � is formally given by

P(� = 1)(!; a; b) = p1(!; a; b);

P(�6 k)(!; a1; b1; : : : ; ak ; bk)

=P(�6 k − 1)(!; a1; b1; : : : ; ak−1; bk−1)

+ (1 − P(�6 k − 1)(!; a1; b1; : : : ; ak−1; bk−1)) × pk(!; ak ; bk):

For every pair (�; �) of strategies, the expected payo: is

�(�; �) = E�;�[1{�¡+∞}g�(a�; b�)];

where 1 is the indicator function.
The goal of player 1 is to maximize the expected payo:, while the goal of player 2

is to minimize this quantity.

De�nition 1. If the equality

sup
�

inf
�
�(�; �) = inf

�
sup
�

�(�; �) (1)

holds, then the common value is the value of the game. Given �¿ 0, every strategy �
of player 1 that attains the supremum on the left-hand side of (1) up to � is �-optimal
for player 1. Every strategy � of player 2 that attains the in9mum on the right-hand
side of (1) up to � is �-optimal for player 2.
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Our main result is the following

Theorem 1. If A, B are compact metric spaces, and the functions gn(!; ·; ·) and
pn(!; ·; ·) are continuous for each !∈� and every n∈N, the game has a value.

Our main contribution is not in the technical result, but in the new technique that
we use for the proof.

We now brieKy compare our result to the existing literature. Under some regularity
assumptions on (�;F;P), the model we consider is a class of general stochastic games.
Maitra and Sudderth (1993, 1998) proved the existence of the value in a fairly general
setup of stochastic games.

Maitra and Sudderth (1993), using the operator approach and trans9nite induc-
tion, proved that certain measurable stochastic games admit a value, and both play-
ers have universally measurable �-optimal strategies, for every �¿ 0. Relative to this
result, our contribution is that we give a constructive argument for the existence of
�-optimal strategies, which are also uniformly �-optimal in the sense de9ned below (see
Section 4).

Maitra and Sudderth (1998), using the fact that every Borel game is solvable,
proved that 9nitely additive stochastic games admit a value, and both players have
9nitely-additive �-optimal strategies for every �¿ 0 (see also Martin, 1998). Thus,
relative to this result, our contribution is that both players have �-additive uniformly
�-optimal strategies for every �¿ 0, rather than 9nitely additive �-optimal strategies.

Rosenberg et al. (2001), using the technique of vanishing discount factors, proved
that when A and B are 9nite, the value exists.

3. The proof

3.1. A stochastic variation of Ramsey’s theorem

Ramsey (1930) proved that for every function c that attaches an element c(k; l) ∈C,
where C is a 9nite set, to every two non-negative integers k ¡ l there is an increasing
sequence of integers k1 ¡k2 ¡ · · · such that c(k1; k2) = c(ki; kj) for every i¡ j.

We are going to attach an Fn-measurable function cn;�, whose range is some 9nite
set C, to every non-negative integer n and every stopping time �. We also impose
a consistency requirement: if �1 = �2 on an Fn-measurable set F , then cn;�1 = cn;�2

on F . Under these conditions, a weaker conclusion than that of Ramsey’s theorem
can be derived: for every �¿ 0 there exists an increasing sequence of stopping times
�1 ¡�2 ¡ · · · such that P(c�1 ;�2 = c�2 ;�3 = c�3 ;�4 = · · ·)¿ 1 − �. 3

Let (�;F;P) be a probability space, and let (Fn) be a 9ltration. A stopping time
� (to the 9ltration (Fn)n∈N) is a function � : � → N such that the set {� = n}
is Fn-measurable for every n∈N. For every A; B∈F, A holds on B if and only if
P(Ac ∩ B) = 0.

3 For every two bounded stopping times �¡ �′, the F�-measurable function c�;�′ is de9ned by
c�;�′ (!) = c�(!); �′ (!).
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De�nition 2. An NT-function is a function that assigns to every integer n¿ 0 and
every bounded stopping time � an Fn-measurable r.v. that is de9ned over the set
{�¿n}. We say that an NT-function f is C-valued, for some set C, if the r.v. fn;�
is C-valued, for every n¿ 0 and every bounded stopping time �.

De�nition 3. An NT-function f is consistent if for every n¿ 0, every Fn-measurable
set F , and every two bounded stopping times �1; �2, we have

�1 = �2 ¿n on F implies fn;�1 = fn;�2 on F:

When f is an NT-function, and �1 ¡�2 are two bounded stopping times, we denote
f�1 ;�2 (!) = f�1(!);�2 (!). Thus f�1 ;�2 is an F�1 -measurable r.v.

The following theorem was proved by Shmaya and Solan (2002, Theorem 4.3).

Theorem 2. For every 6nite set C, every C-valued consistent NT-function f, and every
�¿ 0, there exists a sequence of bounded stopping times 16 �1 ¡�2 ¡�3 ¡ · · · such
that

P(f�1 ;�2 = f�2 ;�3 = f�3 ;�4 = · · ·)¿ 1 − �:

3.2. Application to games

Let � = (�;F;P; A; B; (pn; gn)) be a dynamic game.
For every two bounded stopping times �1 ¡�2, and every F�2 -measurable function

h, let �(�1; �2; h) be the two-player zero-sum game that starts at stage �1 and, if not
terminated earlier, terminates at stage �2 with terminal payo: h. We do not introduce
a new concept of a strategy in �(�1; �2; h). Rather, we take the strategy space in
�(�1; �2; h) to coincide with that of �, and we use conditional expectation on the event
{�¿ �1}.

The following standard lemma states that �(�1; �2; h) admits a value (see, e.g.,
Nowak, 1985, Theorem 5.2). It follows using backward induction from Sion’s (1958)
minimax theorem and a measurable selection theorem (e.g., Kuratowski and
Ryll-Nardzewski, 1965).

Lemma 1. Let �1 ¡�2 be bounded stopping times, and h an F�2 -measurable func-
tion such that ‖h‖∞6 1. Under the assumptions of Theorem 1, there exists an
F�1 -measurable function v(�(�1; �2; h)), and a pair (�∗; �∗) of strategies such that
for every pair (�′; �′) of strategies,

E�∗ ; �′ [1{�16�¡�2}g�(a�; b�) + 1{�26�}h |G�1 ]¿ v(�(�1; �2; h))1{�16�}

and

E�′ ; �∗ [1{�16�¡�2}g�(a�; b�) + 1{�26�}h |G�1 ]6 v(�(�1; �2; h))1{�16�}: (2)

Actually, there are optimal strategies �∗ = (�∗
n ) and �∗ = (�∗

n) such that �∗
n and �∗

n
are Fn-measurable, rather than Gn-measurable (that is, the actions chosen at each stage



324 E. Shmaya, E. Solan / Stochastic Processes and their Applications 112 (2004) 319–329

n do not depend on previously chosen actions). Moreover, one can verify that (2) still
holds if we replace �∗ in Lemma 1 by any strategy � such that, for every n∈N,
�n = �∗

n on {�16 n¡�2}.
The following lemma summarizes simple monotonicity and continuity properties of

the value operator.

Lemma 2. (a) If ‖h‖∞ 6 1 then ‖v(�(�1; �2; h))‖∞6 1.
(b) If �1 ¡�2 ¡�3, then v(�(�1; �2; v(�(�2; �3; h)))) = v(�(�1; �3; h)).
(c) If F ∈G�1 and h6 h′ on F , then v(�(�1; �2; h))6 v(�(�1; �2; h′)) on F.
(d) If F ∈G�1 and the sequence (hn) converges pointwise to h on F, then

limn→∞ v(�(�1; �2; hn)) = v(�(�1; �2; h)) on F:

Set C={‘+’; ‘−’}, and de9ne a C-valued NT-function c as follows. For every n∈N
and every stopping time �,

c(n; �) =

{
‘+’ if v(�(n; �; 0))¿ 0;

‘−’ if v(�(n; �; 0))6 0:

Lemma 2(c) implies that c is a consistent NT-function.
Finally, 9x, once and for all �¿ 0. By Theorem 2 there exists an increasing sequence

(�k) of stopping times such that

P(c(�1; �2) = c(�2; �3) = c(�3; �4) = · · ·)¿ 1 − �: (3)

3.3. An auxiliary game

For every k ∈N de9ne

E+
k = {c(�1; �2) = ‘+’ and c(�k ; �k+1) = ‘−’}

and

E−
k = {c(�1; �2) = ‘−’ and c(�k ; �k+1) = ‘+’}:

By (3), P(
⋃

k∈N (E+
k ∪ E−

k ))¡�. Moreover, E+
k and E−

k are in F�k .
We now de9ne an auxiliary game �′

�, which is similar to �, except that it has a
di:erent payo: function (g′

n)n∈N, that is de9ned as follows:

g′
n(!) =

{
0 !∈E+

k ∪ E−
k for some k6 n;

gn(!) otherwise:

Thus, whenever c(�k ; �k+1) �= c(�1; �2), we set the payo: to be 0 from stage �k and
onwards.

Denote by �′(�; �) the expected payo: under the pair of strategies (�; �) in �′
�. Since

P(gn �= g′
n for some n∈N)6P

(⋃
k∈N (E+

k ∪ E−
k )

)
¡�, and since payo:s are bounded

by 1, for every pair of strategies (�; �) one has |�(�; �) − �′(�; �)|¡�.
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3.4. Su:ciency of the analysis of the auxiliary game

The following lemma asserts that if for every �¿ 0 there are 3�-optimal strategies
in �′

�, then the original game admits a value.

Lemma 3. If for every �¿ 0 there exist V� ∈ [−1; 1] and a pair (��; ��) of strategies
that satisfy inf �′ �′(��; �′)¿V� − 3� and sup�′ �′(�′; ��)6V� + 3�, then V := lim�→0 V�
exists, and is the value of �.

Observe that we do not require that V� is the value of �′
�, or, for that matter, that

the games (�′
�)� ¿ 0 have values.

Proof. Let V be any accumulation point of the sequence (V�)�¿0 as � goes to 0.
Since |�(�; �) − �′(�; �)|¡�, the assumptions imply that inf �′ �(��; �′)¿V� − 4� and
sup�′ �(�′; ��)6V� + 4�.

Therefore, for every # there is �¿ 0 suPciently small such that inf �′ �(��; �′)¿
V� − 4�¿V − # and sup�′ �(�′; ��)6V� + 4�6V + #. In particular, V is the value
of �.

Thus, our goal is to 9nd V� ∈ [−1; 1] and to construct a pair (�; �) of strategies such
that inf �′ �′(�; �′)¿V� − 3� and sup�′ �′(�′; �)6V� + 3�.

In Section 3.5 we de9ne V�, in Section 3.6 we de9ne �, and in Section 3.7 we prove
that inf �′ �′(�; �′)¿V� − 3�. The construction of �, and the proof that sup�′ �′(�′; �)6
V� + 3�, is analogous to that of �, and hence omitted.

3.5. Properties of the coloring

By construction of �′
�, if v(�′

�(�1; �2; 0))¿ 0 then v(�′
�(�k ; �k+1; 0))¿ 0 for every

k ∈N, whereas if v(�′
�(�1; �2; 0))6 0 then v(�′

�(�k ; �k+1; 0))6 0 for every k ∈N.
Let D+={v(�′

�(�1; �2; 0))¿ 0} ∈F�1 , and D−={v(�′
�(�1; �2; 0))6 0} ∈F�1 . Plainly,

(D+; D−) is a partition of �.
On D+, v(�′

�(�k ; �k+1; 0))¿ 0 for every k ∈N. By Lemma 2(b, c),

v(�′
�(�k ; �l+1; 0)) = v(�′

�(�k ; �l; v(�
′
�(�l; �l+1; 0))))¿ v(�′

�(�k ; �l; 0)) on D+:

Similarly,

v(�′
�(�k ; �l+1; 0))6 v(�′

�(�k ; �l; 0)) on D−:

In particular, for every 9xed k ∈N, the sequence (v(�′
�(�k ; �l; 0)))l¿k is a sequence

of F�k -measurable functions, which is non-decreasing on D+ and non-increasing on
D−. Therefore, this sequence has a limit h∗

k , which is F�k -measurable.
Applying Lemma 2(b, d), we get

h∗
k = lim

l→∞
v(�′

�(�k ; �l; 0))

= lim
l→∞

v(�′
�(�k ; �k+1; v(�′

�(�k+1; �l; 0))))

= v(�′
�(�k ; �k+1; h∗

k+1)): (4)

Set V� = E[v(�′
�(1; �1; h∗

1))].
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3.6. De6nition of a strategy �

Choose l∈N suPciently large such that

P(D+ ∩ {v(�′
�(�1; �l; 0))¿ h∗

1 − �})¿P(D+) − �: (5)

For every k ∈N choose an optimal strategy �k for player 1 in the game �′
�(�k ; �k+1; 0),

and an optimal strategy �∗
k in the game �′

�(�k ; �k+1; h∗
k+1). Choose an optimal strategy

�1; l for player 1 in the game �′
�(�1; �l; 0), and, 9nally, an optimal strategy �0 in the

game �′
�(1; �1; h∗

1).
Recall that D+ and D− are F�1 -measurable. De9ne a strategy � for player 1 as

follows:

• � follows �0 up to stage �1.
• If !∈D−, � follows �∗

k between stages �k and �k+1, for every k ∈N.
• If !∈D+, � follows �1; l between stages �1 and �l. Then, for every k¿ l, � follows

�k between stages �k and �k+1.

3.7. The strategy � is 3�-optimal

Let �′ be an arbitrary strategy of player 2. We prove that �′(�; �′)¿V� − 3�. For
convenience, set r� = g′

�(a�; b�) if �¡+∞ and r� =0 if �=+∞. This is the terminal
payo: in the game.

Since �1; l is optimal in �′
�(�1; �l; 0),

E�;�′ [1{�16�¡�l}r� |G�1 ]¿ v(�′
�(�1; �l; 0))1{�16�} on D+: (6)

Since for every k ∈N, �k is optimal in �′
�(�k ; �k+1; 0),

E�;�′ [1{�k6�¡�k+1}r� |G�k ]¿ v(�′
�(�k ; �k+1; 0))1{�k6�}¿ 0 on D+:

Taking the conditional expectation w.r.t. G�1 , and summing over k¿ l, gives us

E�;�′ [1{�l6�}r� |G�1 ]¿ 0 on D+: (7)

From (6) and (7) we have

E�;�′ [1{�16�}r� |G�1 ]¿ v(�′
�(�1; �l; 0))1{�16�} on D+:

By taking the expectation and using (5), we obtain

E�;�′ [1D+∩{�16�}r�]¿E[1D+∩{�16�}v(�′
�(�1; �l; 0))]

¿E[1D+∩{�16�}h∗
1 ] − 3�: (8)

Since for every k ∈N, �∗
k is optimal in �′

�(�k ; �k+1; h∗
k+1), and by the recursive rela-

tion (4),

E�;�′ [1{�k6�¡�k+1}r� + 1{�k+16�}h∗
k+1 |G�k ]

¿ 1{�k6�}v(�′
�(�k ; �k+1; h∗

k+1)) = 1{�k6�}h∗
k on D−: (9)
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Then taking the conditional expectation w.r.t. G�k−1 in (9), and adding it to (9) where
k has been replaced by k − 1, we get

E�;�′ [1{�k−16�¡�k+1}r� + 1{�k+16�}h∗
k+1 |G�k−1 ]

¿E�;�′ [1{�k−16�¡�k+1}r� + 1{�k+16�}h∗
k |G�k−1 ]

¿ 1{�k−16�}h∗
k−1 on D−:

Continuing inductively one obtains for every k ∈N
E[1{�16�¡�k}r� + 1{�k6�}h∗

k |G�1 ]¿ 1{�16�}h∗
1 on D−:

Since h∗
k 6 0 for every k on D−, it follows by taking the expectation that

E�;�′ [1D−∩{�16�¡�k}r�]¿E�;�′ [1D−∩{�16�¡�k}r� + 1D−∩{�¿�k}h
∗
k ]

¿E[1D−∩{�16�}h∗
1 ]:

By the bounded convergence theorem, we deduce that

E�;�′ [1D−∩{�16�}r�]¿E[1D−∩{�16�}h∗
1 ]: (10)

By (8) and (10),

E�;�′ [1{�16�}r�]¿E[1{�16�}h∗
1 ] − 3�: (11)

Since �0 is optimal in the game �′
�(1; �1; h∗

1),

E�;�′ [1{�¡�1}r� + 1{�16�}h∗
1 ]¿E[v(�′

�(1; �1; h∗
1))] = V�: (12)

By (11) and (12),

�′(�; �′) = E�;�′ [r�]¿V� − 3�: (13)

4. Further discussion

Here we discuss the assumptions that our proof hinges on, as well as further topics.
Our argument relies on the assumption that the evolution of the game is independent

of the actions chosen by the players. That is, the players have no control over the
information they receive during the game, but only over the probability of termination
and the terminal payo:. It is most desirable to extend our technique to the case where
players do inKuence their information.

Another aspect that we critically need is that the information be symmetric: both
players should have the same information at every stage. If this is not the case, then
the value need not exist (see Laraki, 2000, for an example.) It is interesting to know
under which informational structure the value still exists.

The strategy � that we constructed in Section 3.6 is uniform in the following sense.
There is N¿ 0 such that for every n¿N

inf
�
E�;�[1{�6n}g�(a�; b�)]¿V� − 5�:

That is, the strategy � is 5�+ |V−V� | -optimal in every 9nite-stage interaction, provided
the interaction is suPciently long.
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The proof relies on the observation that if for some bounded stopping time �, where
�¿ �k for k suPciently large, the expected payo: under (�; �) up to stage � is signif-
icantly di:erent from V�, then the probability of termination between stages �k and �
must be bounded away from 0. Therefore, such an event can occur only 9nitely many
times. Details are standard and omitted.

We assumed that the functions pn(!; ·; ·) and gn(!; ·; ·) are continuous for every
!∈�. However, all we need is that for every Fn+1-measurable function f, the
one-stage game �(n; n + 1; f) with terminal payo: f admits a value. More formally,
we now present a more general version of the one-shot game.

De�nition 4. Let (�;F;P) be a probability space, X and Y be two measurable sets
of strategies, and u :� × X × Y → [−1; 1] be a measurable payo: function. The game
(�;F;P; X; Y; u) admits a value if there exists an F-measurable function v :� →
[−1; 1], and, for every �¿ 0, there exist F-measurable functions x :� → X and y :� →
Y , such that

sup
x′∈X

u(!; x′; y(!)) − �6 v(!)6 inf
y′∈Y

u(!; x(!); y′) + �; P-a:e:

The proof of the following extension of Theorem 1 follows the same lines as the
proof we presented.

Theorem 3. Let �= (�;F;P; (Fn); A; B; (gn; pn)) be an in6nite-stage dynamic game.
Assume that for every n∈N and every Fn-measurable function h :� → [−1; 1],
the one-shot game (�;Fn;P;P(A);P(B); u) admits a value, where u(!; x; y) =∫
A

∫
B pn(a; b)gn(a; b)+ (1−pn(a; b))h dx(a) dy(b). Then the game � admits a value.

Theorem 2 can be applied to prove the existence of an equilibrium in two-player
non-zero-sum stopping games in discrete time (see Shmaya and Solan, 2002). How-
ever, whereas for non-zero-sum 9nite-stage games a lot of structure is needed to ensure
the existence of an equilibrium that satis9es certain desirable properties, for zero-sum
games the technique works in a much more general setup.
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