
DOI: 10.1007/s10915-006-9112-x
Journal of Scientific Computing, Vol. 32, No. 1, July 2007 (© 2006)

Efficient Solution of Ax(k) =b(k) Using A−1

Adi Ditkowski,1,2 Gadi Fibich,1 and Nir Gavish1

Received August 20, 2006; accepted (in revised form) September 17, 2006; Published online November 14, 2006

In this work, we consider the problem of solving Ax(k) = b(k), k = 1, . . . ,K,
where b(k+1) =f (x(k)). We show that when A is a full n×n matrix and K �cn,
where c � 1 depends on the specific software and hardware setup, it is faster
to solve Ax(k) = b(k) for k = 1, . . . ,K by explicitly evaluating the inverse matrix
A−1 rather than through the LU decomposition of A. We also show that the
forward error is comparable in both methods, regardless of the condition num-
ber of A.

KEY WORDS: Matrix inversion; linear systems.

1. INTRODUCTION

One of the first things we learn in a basic numerical linear algebra course
is that in order to solve the linear system Ax =b, we should not calculate
the inverse matrix A−1. For example, we quote from Matlab’s user guide:

In practice, it is seldom necessary to form the explicit inverse of a matrix. A fre-
quent misuse of inverse arises when solving the system of linear equations. One way
to solve this is with x = inv(A) · b. A better way, from both an execution time and
numerical accuracy standpoint, is to use the matrix division operator x =A\b. This
produces the solution using Gaussian elimination, without forming the inverse.

Similar statements appear in the classical numerical analysis textbooks.
For example, Golub and van Loan [1, p. 121] say:

. . .As a final example we show how to avoid the pitfall of explicit inverse computa-
tion. . . when a matrix inverse in encountered in a formula, we must think in terms
of solving equations rather than in terms of explicit inverse formation.

Similarly, Conte and de Boor [2, p. 166] say:

1 Department of Applied Mathematics, School of Mathematical Sciences, Tel-Aviv University,
Tel-Aviv, Israel.

2 To whom correspondence should be addressed. E-mail: adid@post.tau.ac.il

29

0885-7474/07/0700-0029/0 © 2006 Springer Science+Business Media, LLC

30 Ditkowski, Fibich, and Gavish

. . .given this simple prescription for calculating the inverse of a matrix, we hasten
to point out that there is usually no good reason for ever calculating the inverse. . . .

whenever A−1 is needed merely to calculate a vector A−1b (as in solving Ax = b)
or a matrix product A−1B, A−1 should never be calculated explicitly.

Higham [3, p. 262] also states:

Not only is the inversion approach three times more expensive, but it is much less
stable. . . .we see that matrix inversion is likely to give a much larger residual than
Gaussian elimination with partial pivoting. . .

Thus, the reasons for preferring Gaussian elimination over explicit
calculation of A−1 to solve Ax = b are performance, and accuracy and
stability.

In this study we consider the case where we want to solve the
equations

Ax(k) =b(k), k =1, . . . ,K, (1.1)

when

1. A is a full n×n matrix.
2. Equations (1.1) have to be solved sequentially, e.g., when b(k+1) =

f (x(k)).

The standard, LU-based approach involves a preprocessing stage in which
the LU decomposition of the matrix A is calculated:

[L,U]= lu(A). (1.2)

Then, for each right-hand-side the linear system is solved using a forward
substitution and a backward substitution:

y(k) =L\b(k), x(k) =U\y(k), k =1, . . . ,K. (1.3)

A second, A−1-based approach for solving problem (1.1) is to calculate the
inverse of A in a preprocessing stage:

invA= inv(A). (1.4)

Then, for each right-hand-side the linear system is solved by a single
matrix-vector multiplication (Fig. 1):

x(k) = invA ·b(k), k =1, . . . ,K. (1.5)

In this study we show that it is better to solve Eq. (1.1) using A−1

rather than through LU decomposition. In Sect. 2 we consider the perfor-
mance issue. We first show that the two methods require the same num-
ber of arithmetic operations. However, the actual performance has a lot

Efficient Solution of Ax(k) =b(k) Using A−1 31

10
2

10
3

10
−6

10
−4

10
−2

10
0

n

av
er

ag
e

C
P

U
 ti

m
e

Fig. 1. Average CPU time for solving Ax = b(k) using the backward and forward substitu-
tion (Eq. (1.3), ×) and through multiplication by A−1 (Eq. (1.5), �).

to do with the way that optimized computer codes, such as Intel’s MKL
Basic Linear Algebra Support (BLAS) package, handle computer architec-
ture issues, such as caching and memory allocation. Indeed, because the
data structure of a square matrix (A−1) is inherently simpler than that of
two triangular matrices (L and U), in our numerical tests we observe that
it is faster to solve these equations using A−1 than through the LU decom-
position of A. In Sect. 2.4 we show that there are more efficient imple-
mentations of the LU algorithm then the one given in Eqs. (1.2) and (1.3).
Even with these improvements, however, the A−1 algorithm is still more
efficient.

As noted, the second argument against using A−1 is accuracy and sta-
bility. This argument is based on analysis which showed that the backward
error in the A−1-based method is larger than in the LU-based method,
and that the ratio between the two increases with the condition number
of A. While there have been no such analytical results for the forward
error, it was implicitly assumed that it would behave similarly. However,
in Sec. 3, our simulations with randomly-chosen matrices, as well as with
three families of ill-conditioned matrices, suggest that this implicit assump-
tion is wrong. Indeed, we observe that the forward error is of the same
magnitude for both the A−1-based method and the LU-based method, regard-
less of the condition number of A.

In Sec. 4 we list various applications that are expected to run faster
when implemented with the A−1-based method (quasi-Newton iterations,
inverse-power method, and spectral differentiation methods). We conclude
by showing that the inverse power method for finding the smallest eigen-
value of a 100 × 100 matrix can be 11 times faster with the A−1-based
method than with the LU-based method, and just as accurate.

32 Ditkowski, Fibich, and Gavish

Our conclusion that using A−1 is superior to using LU decomposition
applies to problems in which:

1. A is full, since when A is sparse then L and U are sparse but A−1

is full.
2. Equations (1.1) have to be solved sequentially, hence only level

2 BLAS optimization (matrix-vector operations) can be used.
Indeed, when all the b(k) are known in advance, all the right-hand-
sides can be simultaneously solved with a block LU algorithm,
i.e., replacing (1.3) with

Y =L\B, X =U\Y,

where

B = [b(1) · · ·b(K)], X = [x(1) · · ·x(K)], Y = [y(1) · · ·y(K)].

In this case, the block LU algorithm is more efficient than using
X = A−1 · B, since one can exploit level 3 BLAS optimization
(matrix-matrix operations).

2. PERFORMANCE

2.1. Arithmetic Operations Count

We begin with the standard count of arithmetic operations:

Lemma 2.1. The overall number of arithmetic operations needed to
solve the system (1.1) in the LU-based method is

Nlu = 2
3
n3 +O(n2)

︸ ︷︷ ︸

eq. (1.2)

+2Kn2 +O(Kn)
︸ ︷︷ ︸

eq. (1.3)

and in the A−1-based method is

NA−1 = 8
3
n3 +O(n2)

︸ ︷︷ ︸

eq. (1.4)

+2Kn2 +O(Kn)
︸ ︷︷ ︸

eq. (1.5)

.

Proof. For the LU-based method the preprocessing stage involves
finding the LU decomposition of A, which requires 2

3n3 +O (

n2
)

arithme-
tic operations (see [4, p. 152]). Then, solving each linear system involves

Efficient Solution of Ax(k) =b(k) Using A−1 33

a backward and forward substitution. Each substitution requires n2 +
O(n) arithmetic operations. Therefore, an overall of 2Kn2 +O(Kn) arith-
metic operations are needed to solve (1.3).

Similarly, for the A−1-based method the preprocessing stage involves
finding A−1, which require 8

3n3 +O (

n2
)

arithmetic operations (see [4,
p. 161]). Then, solving each linear system requires multiplying b(k) by
A−1, which requires 2n2 +O(n) arithmetic operations. Therefore, 2Kn2 +
O(Kn) arithmetic operations are needed to solve (1.5). �

Observation 2.1 shows that the number of arithmetic operations for
the LU-based method is smaller than for the A−1-based method for K ≤n,
and is the same for K �n. More precisely,

Nlu ≈ 1
4NA−1 , K �n

Nlu = 2+6λ
8+6λ

NA−1 K =λn, λ=O(1)

Nlu ≈NA−1 K �n.

(2.1)

2.2. Numerical Tests

The standard approach to estimate run-time of algorithms is to count
the number of arithmetic operations. Hence, Lemma 2.1 and Equ. (2.1)
seem to suggest that the LU-based method is faster than the A−1-based
method. We now show that this is not always the case.

To demonstrate this, we solved linear systems of the form (1.1) using
the LU-based and A−1-based methods. For each method and for each n=
2j , j = 5, . . . ,12, we randomly choose three different n × n matrices, for
each matrix we solve the linear system Ax =b(k) 1,000 times, sequentially,
and calculate the average CPU time per RHS. This measurement of CPU
time does not include the preprocessing time of LU decomposition or of
finding the inverse.

The tests were conducted on a Pentium 4 with 1 Mb cache and 2 GB
RAM using Matlab 7.0 R14 for Linux. In the first test we used Intel’s
MKL BLAS package. The average CPU time per RHS with the A−1-
based method is smaller by a factor of 15–35 compared with the LU-based
method (see Fig. 2), for matrix sizes varying from 32×32 to 4096×4096.

Next, we repeated the same test, but changed the software package
that Matlab uses for the linear algebra subroutines from Intel’s MKL
BLAS to ATLAS BLAS. In this case, the average CPU time for a forward
and a backward substitution did not change, but the average CPU time
for multiplication by A−1 increased by a factor of ≈1.2–1.9, hence the

34 Ditkowski, Fibich, and Gavish

10
2

10
3

10
−6

10
−4

10
−2

10
0

n

av
er

ag
e

C
P

U
 ti

m
e

Fig. 2. Also plotted, is the average CPU time using ATLAS BLAS for solving Ax =
b(k) using the forward and backward substitution (Eq. (1.3), ◦) and through multiplication
by A−1 (Eq. (1.5, �).

A−1-based method was “only” 8–16 times faster than the LU-based
method, (see Fig. 2).

Finally, we ran a benchmark test in which we implemented the mul-
tiplication by A−1 and the backward and forward substitution using a
naive straightforward non-vectorized code of a double loop. In that case,
the average CPU time is about the same for forward and backward sub-
stitution and for multiplication by A−1 (see Fig. 2). As expected, the
naive implementation was slower than the MKL BLAS implementation.
The matrix-vector multiplication by A−1 was 35–50 times faster (using
MKL BLAS) than with the naive implementation. On the other hand, for-
ward and backward substitution using MKL BLAS was only 1.4–2.6 times
faster than forward and backward substitution with the naive implementa-
tion.

We also conducted the same tests on a different Pentium 4 machine
(0.5 Mb cache and 0.5 GB RAM using Matlab 7.0 R14 for Windows XP).
Under this configuration, all qualitative results remained the same, but
the performance ratios changed. For example, the A−1-based method was
“only” 15–20 times faster than the LU-based method using Intel’s MKL
BLAS, and 8–12 faster under ATLAS BLAS.

2.3. Data Analysis

The simulation of Sec. 2.2 shows that, for sequentially solving the
system and neglecting the preprocessing costs, the A−1-based method is
significantly faster than the LU-based method (per RHS). Since the num-
ber of arithmetic operations per RHS is the same for both methods (see

Efficient Solution of Ax(k) =b(k) Using A−1 35

10
2

10
3

10
−6

10
−4

10
−2

10
0

n

av
er

ag
e

C
P

U
 ti

m
e

Fig. 3. In addition average CPU time per RHS using a naive implementation for the LU-
based method (solid) and the A−1-based method (dashes).

Sec. 2.1), we conclude that the A−1-based method is faster because the
implementation of matrix multiplication in MKL BLAS or in ATLAS
BLAS is faster than the implementation of a forward and backward sub-
stitution. Indeed, when we used a naive implementation, there was no
performance difference between the two methods. In retrospect, the fact
that the A−1-based method is faster is not surprising since the memory
structure and indexing of a full matrix is inherently simpler than that of
a triangular matrix. Therefore, matrix multiplication can be more easily
accelerated through software and hardware optimization. In other words,
the performance difference between the two methods is due to the imple-
mentation of the numerical linear algebra software package. This con-
clusion is further supported by the observation that changing the BLAS
package leads to a change in the performance ratio from 15–35 to 8–16,
(see Fig. 3).

In the numerical experiments shown so far, we neglected the prepro-
cessing cost and considered only the cost of the solving the linear sys-
tems (1.3) and (1.5). This corresponds to the case where K � n, since
then the preprocessing costs are negligible. We now take into account the
preprocessing cost and look at the overall cost of solving (1.1) in both
methods. For example, setting K =10 and comparing the overall cost (pre-
processing+solving for 10 RHS) of the two methods, we obtain that the
A−1-based method is faster than the LU-based method for matrices of size
n<nth and slower for n>nth, where the threshold is nth(K =10)=700 (see
Fig. 4). Equivalently, for a given n, we can find a threshold Kth =Kth(n),
such the overall cost for solving (1.1) is faster for the A−1-method when
K >Kth and slower when K <Kth.

36 Ditkowski, Fibich, and Gavish

10
2

10
−4

10
−2

10
0

n

o
v
e
ra

ll
C

P
U

 t
im

e

K=10

n
th

Fig. 4. Overall cpu time of the LU-based method (dots) and the A−1-based method
(solid) with K =10.

There is a linear relation between Kth and n. Indeed, the overall cost
of the LU-based method is

T
preprocessing

lu +K ·T RHS
lu =α

preprocessing
lu n3 +K ·βRHS

lu n2 +O(Kn,n2), (2.2)

where T
preprocessing
lu is the preprocessing cost of (1.2) and T RHS

lu is the cost
of the solving the linear systems (1.3) by forward and backward substitu-
tion. The overall cost of the A−1-based method is

T
preprocessing
inverse +K ·T RHS

inverse =α
preprocessing
inverse n3 +K ·βRHS

inversen
2 +O(Kn,n2),

(2.3)

where T
preprocessing
inverse is the preprocessing cost (1.4) and T RHS

inverse is the cost of
multiplication by A−1, see (1.5). Hence,

Kth = T
preprocessing

inverse −T
preprocessing

lu

T RHS
lu −T RHS

inverse

= (α
preprocessing
inverse −α

preprocessing
lu)n3 +O(n2)

(βRHS
lu −βRHS

inverse)n
2 +O(n)

∼ α
preprocessing
inverse −α

preprocessing
lu

βRHS
lu −βRHS

inverse

n+O(1).

(2.4)

In Fig. 5 we plot the value of Kth as a function of n. The results show
that Kth ∼0.0012n+1.25, in agreement with (2.4).

As noted, Observation 2.1 has been traditionally interpreted to imply
that the LU-based method is faster than the A−1-based method for

Efficient Solution of Ax(k) =b(k) Using A−1 37

1000 2000 3000 4000

20

40

n

K
th

Fig. 5. Kth as a function of n (solid). Dotted line is the fitted linear curve Kth =
0.0124n+1.25.

10
2

10
3

10
−4

10
−3

10
−2

10
−1

N

av
er

ag
e

C
P

U
 ti

m
e

Fig. 6. Average CPU time for solving Ax =b(k) using standard LU method (solid), LU with
explicit pivot matrix (dash-dotted), LU and linsolve (dotted) and A−1−method (dashed).

K =O(n) and that the run time of the two methods is the same for K �
n. In contrast, in Fig. 6 we see that the A−1-based method is faster for
K > cn, where c ≈ 0.012. The reason for this disagreement is the implicit
assumption that the number of arithmetic operations is a good measure
for comparison of run times. This assumption fails, however, to capture
the large difference between βRHS

inverse and βRHS
lu that results from the differ-

ence in implementation of matrix-vector multiplication and of forward and
backward substitutions.

2.4. Improving the LU Solver

In our numerical tests so far, we have used the most straightforward
implementation of the LU algorithm for solving (1.1). We first calculated

38 Ditkowski, Fibich, and Gavish

the LU decomposition (1.2). Then, for each right-hand-side we solved the
linear system using a forward substitution and a backward substitution,
see equation (1.3), which are implemented by a backslash (‘\’) or equiv-
alently by the ‘mldivide’ Matlab command.

As stated by the Matlab’s help, the command

[L,U]= lu(A),

returns an upper-triangular matrix in U , and a “psychologically lower-
triangular” matrix (i.e., a potentially permuted lower triangular matrix)
in L. The “psychologically lower-triangular” form makes it harder to
efficiently implement forward substitution. A faster way is, therefore, to
enforce L to be a strict lower triangular matrix by using the command

[L,U,P]= lu(A), (2.5)

where P is the permutation matrix. Then, the solution to Ax = b can be
obtained by

y = L\(P ·b),

x = U\y.
(2.6)

The additional calculations in this modification (i.e., the calculation of
P ·b) are O(n), hence are negligible compared with the time saved by forc-
ing L to be triangular. Indeed, Figure 6 shows that using the strict lower-
triangular matrix is about 2.5 times faster than the standard method.

The backslash command, e.g., A\b, involves a preprocessing stage in
which the properties of the matrix A are checked in order to pick the
most appropriate solver for the problem. Thus, in the case of Eq. (2.6), the
backslash command identifies that L and U are triangular matrices and
uses backward or forward substitution to obtain the solution. Since it is
known that L and U in (2.6) are lower- and upper-triangular matrices, it
is possible to bypass the preprocessing stage by using the ‘linsolve’ com-
mand instead of the backslash command. Therefore, we use (2.5) to obtain
a strict lower-triangular matrix L, but replace (2.6) with

optLT.LT= true; % lower-triangular property, (2.7)

optUT.UT= true; % upper-triangular property,

y = linsolve(L,P ·b,optLT);
x = linsolve(U, y,optUT).

Figure 6 shows that using (2.5) and (2.7) is 4.6 times faster than the
standard method, i.e. Eqs. (1.2) and (1.3), and 1.3 times faster than using

Efficient Solution of Ax(k) =b(k) Using A−1 39

a strict lower-triangular matrix without linsolve, i.e, (2.5) and (2.6). Even
after all these improvements, however, the A−1 method is still considerably
faster.

3. ACCURACY AND STABILITY

The second common argument in the literature against solving Ax =b

with A−1 is its numerical accuracy and stability (see citations in the Intro-
duction). As noted, this argument is based on analysis which showed that
the backward error in the A−1-based method is larger than in the LU-
based method, and that the ratio between the two increases with the con-
dition number of A. While there has been no such analytical results for
the forward error, it was implicitly assumed that it would behave similarly.
Our simulations however suggest that this implicit assumption is wrong.
Indeed, we observe that the forward error is of the same magnitude for both
the A−1-based method and the LU-based method, regardless of the condition
number of A.

3.1. Forward Error

In the A−1-based method,

‖Δx‖
‖x‖ ≤ cond(A)

‖Δb‖
‖b‖ .

In the LU-based method x is determined by solving the linear sys-
tems (1.3), hence,

‖Δx‖
‖x‖ ≤ cond(L)cond(U)

‖Δb‖
‖b‖ .

Since cond(A) ≤ cond(L)cond(U), the worst-case relative (forward) error
‖Δx‖
‖x‖ is likely to be larger for the LU-based method than for the A−1-

based method. On the other hand, the roundoff error involved in matrix-
vector multiplication is greater than the roundoff error of backward and
forward substitution [4, p. 262].

We now show that, in practice, the relative error of the A−1-based
method is only slightly larger than the relative error of the LU-based
method. To do so, we first solved linear systems of the form (1.1) using
the LU-based and A−1-based methods. For each n = 100,200, . . . ,4000,
we randomly choose 25 different n × n matrices and a solution vector x.
For each matrix A, we first generate the vector b = Ax, then solve with
each method Ax̂ =b, calculate the relative forward error ‖x̂−x‖∞

‖x‖∞ and then

40 Ditkowski, Fibich, and Gavish

0 1000 2000 3000 4000
10

−14

10
−12

10
−10

10
−8

n

R
el

at
iv

e
fo

rw
ar

d
er

ro
r A

0 1000 2000 3000 4000
10

−14

10
−12

10
−10

10
−8

n

R
el

at
iv

e
ba

ck
w

ar
d

er
ro

r B

Fig. 7. (A) Relative forward error |x̂−x‖∞
‖x‖∞ for x̂ =A−1b (solid) and x̂ =A\b (dots), (B) Rela-

tive backward error for the same data.

average over all 25 matrices. Results in Fig. 7A show that the forward
error of the LU-based is smaller by a factor of 2–4 than for the A−1-
based method. This 2–4 factor does not change significantly as n changes
from 100 to 4000, and cond(A) varies between 103 and 106. In order
to see whether larger differences would appear for ill-conditioned matri-
ces, we perform the same test with Matlab’s matrix gallery of involutory
ill-conditioned matrices (Fig. 7A). In this case, the relative forward error
for the LU-based method is slightly below the error for the A−1-based
method, differing by a factor of 1–1.5, as cond(A) varies between 1 and
1016. Repeating this test for tridiagonal ill-conditioned matrices and asym-
metric ill-conditioned matrices gave nearly identical results, with factors of
1–2 and 1.4–3.5, respectively.

3.2. Backward Error

The backward error ‖Ax̂ − b‖ is known to be significantly larger in
the A−1-based method than in the LU-based method when A is ill-con-
ditioned [4, p. 262]. Indeed, Fig. 7B shows that the backward error of the
LU-based method is smaller by a factor of 50–200 than for the A−1-based
method, for the same matrices used to generate Fig. 7A. Similarly, Fig. 7B
shows that the backward error of the LU-based method becomes exponen-
tially smaller than for the A−1-based method, for the same ill-conditioned
involutory matrices used to generate Fig. 8A.

These results, thus, confirm that the LU-based method is superior to
the A−1-based method in terms of backward error. However, compari-
son between Fig. 7A and B and between Fig. 8A and B shows, that the
backward error is a poor prediction of the forward error.

Efficient Solution of Ax(k) =b(k) Using A−1 41

10
0

10
10

10
20

10
−20

10
−10

10
0

10
10

cond(A)

R
el

at
iv

e
fo

rw
ar

d
er

ro
r A

10
0

10
10

10
20

10
−20

10
−10

10
0

10
10

R
el

at
iv

e
ba

ck
w

ar
d

er
ro

r

cond(A)

B

Fig. 8. (A) Forward error ‖x−x̂‖∞
‖x‖∞ for x̂ =A−1b (solid) and for x̂ =A\b (dots). The two lines

are almost indistinguishable, (B) Backward error ‖Ax̂−b‖∞
‖b‖∞ for the same data.

Remark. If the matrix A can be diagonalized, the worst-case sce-
nario is that b is the eigenvector of the maximal eigenvalue (in absolute
value) and Δb is proportional to the eigenvector of the minimal eigen-
value. However, in most applications arising from PDE, this is not the
case. The main ‘mass’ is concentrated in the lower modes, i.e. in the eigen-
vector correlated to the lower eigenvalues, while the ‘noise’ is related to the
high-frequency modes. Therefore in such applications the worst-case sce-
nario is unlikely to happen.

4. POTENTIAL APPLICATIONS

Any application that involves solving many linear systems with a con-
stant full matrix A can benefit from adopting the A−1-based approach
over the LU-based method. We now list various applications which are
potentially suitable for the A−1-based method:

1. Spectral differentiation methods for PDEs: While finite difference
methods require solving linear systems with a sparse banded matrix,
spectral methods, in many cases, require solving linear systems with
full matrices [5]. For example, when solving a parabolic PDE in an
implicit method, each time step involves solving a linear system of the
form

Dx(t+Δt) =F(x(t)),

where D is a full matrix which does not vary with time t . In this case,
if the number of time steps K >Kth(n), it is faster to adopt the A−1-
based approach, i.e., we invert D at the beginning of the simulation,
and then at each step calculate

42 Ditkowski, Fibich, and Gavish

x(t+Δt) =D−1F(x(t)).

2. Modified Newton methods: Newton methods are used to find the roots
of nonlinear equations. They involve the iterations

x(k+1) =x(k) − [J (k)]−1F
(

x(k)
)

, (4.1)

where J (k) = J
(

x(k)
)

is the Jacobian of the function F at the point
x(k). Hence, x(k+1) is the solution of the linear system

J (k)x(k+1) =b(k), b(k) =J (k)x(k) −F
(

x(k)
)

. (4.2)

The calculation of the Jacobian at every iteration is typically very
expensive. To reduce the cost of the Jacobian calculation, in the mod-
ified Newton method [6], the Jacobian is calculated only once every
several (K) iterations.

The common approach is to avoid the explicit calculation of J−1, and
find x(k+1) from (4.2). Our analysis shows that it is faster to use the
A−1-based approach and calculate x(k+1) from (4.1) for “small” matri-
ces of size n<nth(K).

A similar algorithm which may benefit from applying the A−1-based
method is the Update Skipping BFGS algorithm used in optimization
problems [7]. In this case, the iterations of the BFGS method are

Bkx
(k+1) =Bkx

(k) −λJ
(

x(k)
)

, (4.3)

where Bk is an approximation to the Hessian of F at the point
x(k) [8]. To reduce the cost of the Hessian calculation, in the Update
Skipping BFGS algorithm, Bk is updated only once every K steps. In
this case, Our analysis shows that it is faster to use the A−1-based
approach and calculate x(k+1) from

x(k+1) =x(k) −λkB
−1
k J

(

x(k)
)

(4.4)

for matrices of size n<nth(K).
3. Inverse iteration: The smallest eigenvalue of a full matrix A (and the

corresponding eigenvector) can be found from the sequence ‖v(k+1)‖
‖v(k)‖ ,

where [4],

Av(k+1) =v(k). (4.5)

Efficient Solution of Ax(k) =b(k) Using A−1 43

Table I. Comparison of CPU Run Time

Method Equations CPU time (seconds)

[L,U] (1.2), (1.3) 19.76
[L,U,P] (2.5), (2.6) 7.6
[L,U,P] + linsolve (2.5), (2.7) 4.62
A−1 (1.4), (1.5) 1.88

The common approach is to calculate v(k+1) using the LU-based
method, i.e.,

Ly =v(k), Uv(k+1) =y. (4.6)

However, in this case, calculating v(k+1) using the A−1-based approach

v(k+1) =A−1v(k) (4.7)

is faster if the number of iterations K >Kth(n).

As a final example, we implement the inverse-power method (4.5) using
both methods as follows. We randomly choose 250 random 100 × 100
matrices. For each matrix we measure the overall cpu-time (preprocess-
ing and iterations) needed to calculate the smallest eigenvalue using the
inverse-power method implemented with the A−1-based method (4.7) and
the LU-based method (4.6). We stop the iterations when the relative error
is below 10−14 (with respect to the smallest eigenvalue found by Matlab’s
eig function).

In our simulations we observed that the A−1-based method was about
11 times faster than the LU-based method (see Table I). The average
number of iterations needed for the iterations to converge was 269 in
A−1-based method and 264 in the LU-based method. This 2% difference
is probably due to the larger roundoff errors in the A−1-based method.
Therefore, in this case, the A−1-based method is significantly faster than
the LU-based method, and just as accurate. Using the “accelerated” LU
algorithms (see Sect. 2.4) lead to a considerable reduction in the overall
CPU time, but was still 2.5 times slower than using A−1.

ACKNOWLEDGMENT

We thank Eli Turkel and Sivan Toledo for useful discussions.

44 Ditkowski, Fibich, and Gavish

REFERENCES

1. Golub, G., and van Loan, C. (1989). Matrix Computations, 2nd edn. The Johns Hopkins
University Press, London.

2. Conte, S. D., and de Boor, C. (1980). Elementary Numerical Analysis, 3rd edn. McGraw-
Hill book company.

3. Higham, N. J. (1996). Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, PA.

4. Trefethen, N. L., and Bua, D. (1997). Numerical Linear Algebra. SIAM, Philadelphia.
5. Trefethen, N. L. (2000). Spectral Methods in MATLAB. SIAM, Philadelphia, PA.
6. Quarteroni, A., Sacco, R., and Saleri, F. (2000). Numerical Mathematics. Springer,

New York.
7. Dennis, J. E., Schnabel, Jr., and Robert, B. (1983).Numerical Methods for Unconstrained

Optimization and Nonlinear Equations. Prentice-Hall, New York.
8. Tamara, K. G., O’Leary, D. P., and Nazareth, L. (1998). BFGS with update skipping and

varying memory. SIAM J. Optim. 8(4), 1060–1083.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

