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Adiabatic law for self-focusing of optical beams
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An adiabatic approach is used to derive a new law for self-focusing in the nonlinear Schrödinger equation
that is valid from the early stages of self-focusing until the blowup point. The adiabatic law leads to an
analytical formula for the location of the blowup point and can be used to estimate the effects of various small
perturbations on self-focusing. The results of the analysis are confirmed by numerical simulations.  1996
Optical Society of America
The study of blowup of solutions of the nonlinear
Schrödinger equation (NLS)

icz 1 D'c 1 jcj2c ­ 0, cs0, rd ­ c0srd (1)

has been ongoing for more than 30 years, since Kelley
used Eq. (1) to predict the possibility of catastrophic
self-focusing of optical beams.1 Here csz, rd is the
electric field envelope of a laser beam propagating in
a medium with Kerr nonlinearity, z is the distance
in the direction of the propagation, r ­

p
x2 1 y2 is

the radial coordinate, and D' ­ ≠2y≠r2 1 s1yrds≠y≠rd
is the Laplacian in the transverse two-dimensional
plane. The initial approach to self-focusing analysis
was to assume that the solution maintains a Gaussian
profile. This approach was successful in predicting
the critical power for self-focusing (but only up to a
constant), finding the critical dimension for blowup,
etc.2 However, in critical transverse dimension D ­
2 the Gaussian approximation fails to capture the
delicate balance between the focusing nonlinearity
and radial dispersion, which increase in magnitude
while almost completely canceling each other. Indeed,
resolving the local structure of c near the blowup
point Zc had long defied research efforts until Fraiman
and, independently, Landman et al. and LeMesurier
et al. showed that as the beam approaches Zc it follows
the log–log law3

Lszd ,
∑

2psZc 2 zd
ln ln 1ysZc 2 zd

∏1/2

, (2)

where L is the beam width and is also inversely pro-
portional to the amplitude jcj. Although NLS singu-
larity was resolved mathematically, it turned out that
the log–log law is still not valid even after the solu-
tion has been focused by a factor of 1010. However,
the validity of the NLS as a model for beam propa-
gation breaks down much earlier when the field in-
tensity reaches the material breakdown threshold.
Even at subthreshold intensities, some terms that have
been neglected during the derivation of the NLS from
Maxwell’s equations (non-paraxial terms,4,5 time dis-
persion,6,7 etc.) may become important. These terms
may be small in magnitude yet have a large effect
on self-focusing and even lead to its arrest. There-
fore there is still a need for a description of NLS
self-focusing that is valid in the domain of physi-
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cal interest and that can be extended to the ana-
lysis of small perturbations. In this Letter a new adi-
abatic law is derived that satisfied both requirements.

Previous studies3,8 showed that, as the beam propa-
gates forward, it splits into an inner part cs that self-
focuses toward the center axis and an outer part cnf
that diffracts and diverges. Until the beam gets close
to the blowup point, self-focusing is a nonadiabatic
process in which cs transfers most of its excess power
above critical to cnf while focusing and approaching the
quasi-self-similar form

cssr, zd ,
V sj, z d

Lszd
exp

µ
iz 1 i

Lz

L
r2

4

∂
, (3)

where Lszd, the function to be determined, is used to
rescale cs and the independent variables:

j ­
r
L

, dz

dz
­

1
L2

.

From the corresponding equation for V it follows that
V , R 1 Os bd, where Rsjd is the positive solution of

D'R 2 R 1 R3 ­ 0, R 0s0d ­ 0, Rs`d ­ 0 (4)

and b is the adiabaticity parameter:

b ­ 2L3Lzz . (5)

During self-focusing b & 0. Near the blowup point
the rate of self-focusing accelerates and the following
conditions hold8: (i) 0 , b ,, 1. (ii) b is proportional
to the excess power of cs above critical:

b ,
Ns 2 Nc

M
, Ns ­

Z
jcsj

2rdr , (6)

where Nc ­
R

R2rdr > 1.86 is the critical power for
self-focusing and M ­ s1y4d

R
R2r3dr > 0.55. (iii) The

Hamiltonian of cs is given by

Hs , M
µ
L2

z 2
b

L2

∂
,

Hs ­
Z

j=csj
2rdr 2 1/2

Z
jcsj

4rdr, = ­ ≠y≠r . (7)

(iv) Power losses of cs (to cnf ) become exponentially
small compared with its focusing rate f≠Nsy≠z ,
 1996 Optical Society of America
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2exps2py
p

bdg, indicating that near the blowup point
self-focusing is essentially an adiabatic process.

The new approach reported here is to use the
dual interpretations for b [Eqs. (5) and (6)] and the
multiple-scales method. If we ignore the slow-scale
power loss fbz , 2exps2py

p
bdyL2g, adiabatic self-

focusing follows the fast-scale equation

2L3Lzz ­ b, b ; b0 :­ bs0d . (8)

If we multiply Eq. (8) by 2LzL23, integrate, and use
relation (7), we observe that in addition to Ns, Hs is
also constant over the fast scale:

L2
z ­

b

L2 1
Hs

M
, Hs ; Hss0d .

Multiplying by L2 and integrating one more time
lead to the new adiabatic law

L ­

"
L2

0 6 2
µ

b 1
HsL2

0

M
z
∂1/2

z
1

Hs

M
z2

#1/2

,

L0 ­ Ls0d . (9)

By setting L ­ 0 in Eq. (9) we can get an equation for
the blowup point Zc:

Zc ­

8>>>>>><>>>>>>:

L2
0

p
b 1 sb 1 HsL2

0yMd1/2
Lzs0d # 0

L2
0

p
b 2 sb 1 HsL2

0yMd1/2
Lzs0d . 0, Hs , 0

no blowup Lzs0d . 0, Hs . 0

.

(10)

In the case of a collimated beam (c0 real) Lzs0d ­ 0,
Hss0d , 2Mb0yL2

0 [relation (7)], and the pure adia-
batic law is

L , L0

µ
1 2

z2

Z2
c

∂1/2

, Zc ­
L2

0p
b0

. (11)

If we add a lens with focal length F at z ­ 0,
the initial condition becomes c̃0 ­ c0 3

exps2ir2y4F d. Therefore L̃0 ­ L0, b̃0 , b0, and
H̃ss0d , Hss0d 1 ML2

0yF2 [relations (6) and (7)], where
the tildes denote the corresponding parameters for
c̃0. Thus the new blowup point is [Eq. (10)]

Z̃c ­
L2

0
p

b0 1 L2
0yF

.

Note that 1yZ̃c ­ 1yZc 1 1yF , in agreement with
Talanov’s lens transformation property for the NLS.9

The adiabatic law [Eq. (9)] can be rewritten in the
form

L ,
∑
2
p

bsZc 2 zd 1
Hs

M
sZc 2 zd2

∏1/2

. (12)

As z approaches the singularity point the quadratic
term becomes negligible, and Eq. (12) reduces to
Malkin’s law8:

L ,
∑
2
p

bsZc 2 zd
∏1/2

. (13)

Thus laws (12) and (13) agree asymptotically but
Eq. (12) becomes valid earlier, because in addition to
beam power it also incorporates the initial focusing
angle. Likewise, the log–log law can be derived as
the asymptotic limit of Eq. (13).8 Therefore the three
laws are not in disagreement; only their domains of
validity differ.

Note that all adiabatic relations [(9)–(13)] are only
Osbd accurate owing to the approximations [(6) and (7)]
used in their derivation. To maintain this accuracy
in Eq. (12) or (13) one must include the slow-scale
(nonadiabatic) changes in b and Hs.

Although Eq. (11) was derived under the assump-
tions that cs has approached its asymptotic form
[Eq. (3)] and b ,, 1, we can try to extrapolate it
to predict Zc for general initial conditions. We de-
termine the value of b from relation (6) with Ns ,R

jc0j2 and that of L0 by matching c0srd , RL0 :­
L21

0 RsryL0d. For example, if we impose
R

j=c0j2 ­R
j=RL0 j

2, then L0 ­ sNcy
R

j=c0j2d1/2 and

Zc ,
µ

MNc

p 2 1

∂1/2
, Z

j=c0j2rdr, p ­

R
jc0j2rdr

Nc

.

(14)
In the simulations Eq. (1) was solved by the method

of dynamic rescaling10 and b was evaluated by rela-
tion (6). In Fig. 1 we plot the relative error in the pre-
diction for L based on the new adiabatic law [Eq. (12)],
Malkin’s adiabatic law [Eq. (13)], and the log–log
law [Eq. (2)]. The initial condition is c0 ­ 1.02Rsrd,
whose power is 4% above critical and whose profile
is close to the asymptotic one [Eq. (3)]. The two
adiabatic laws become Osbd accurate and agree asymp-
totically, with Eq. (12) accurate from the beginning
and Eq. (13) after focusing by a factor of 10. After
focusing by 100,000 b has decreased only by 30%, and
the log–log law is still not valid. Note that, if we add
a focusing lens term fc0 ­ 1.02 exps2ir2y4F dRsrdg,
only the new adiabatic law will maintain the same
accuracy. In Fig. 2 we compare pure adiabatic
self-focusing [Eq. (11)] and almost adiabatic self-
focusing [Eq. (12) with the slowly varying bszd and
Hsszd and Zc 2 z from the numerics] for the same
initial condition. Whereas both Eqs. (11) and (12)
are in reasonable agreement with the numerical

Fig. 1. Relative error in L based on the new adiabatic
law [Eq. (12); solid curve], Malkin’s law [Eq. (13); dotted
curve], the log–log law [relation (2); dashed–dotted curve],
and b [relation (6); dashed curve]. The initial condition is
c0 ­ 1.02Rsrd.
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Fig. 2. Comparison of the pure adiabatic law [Eq. (11);
dotted curve] and the adiabatic law [Eq. (12); dashed
curve] with the numerical solution of the NLS (solid
curve). The initial condition is c0 ­ 1.02Rsrd.

Fig. 3. Location of blowup point Zc as a function of beam
power p according to adiabatic theory [relation (14); solid
curve] and numerical simulations (circles) for A, cRsrd; B,
c exps2r2d [the dotted curve is Eq. (15)]; and C, c exps2r4d.

solution in the prefocal region, only Eq. (12) maintains
Osbd accuracy near the focal point (Fig. 1). In Fig. 3
the adiabatic predictions for Zc [Eq. (14)] are compared
with simulations for the following initial condi-
tions: Fig. 3A, c0 ­ cRsrd; Fig. 3B, c0 ­ c exps2r2d;
and Fig. 3C, c0 ­ c exps2r4d, where c is varied so
that 1 , p # 2. Naturally, the best agreement is in
Fig. 3A, where c0 is closest to the asymptotic profile.
However, even in Figs. 3B and 3C the agreement is
quite good, considering that we have neglected non-
adiabatic changes, that c0 is not close to Eq. (3), and
that the excess power above critical is not small. As
Fig. 3B indicates, the accuracy of the formula of Dawes
and Marburger,11

Zc ­ 0.367fsp1/2 2 0.852d2 2 0.0219g21/2 , (15)

and of relation (14) is of comparable magnitude. How-
ever, Eq. (15) is valid only for the special case of Gauss-
ian initial conditions and was derived by curve fitting
values of Zc obtained from simulations.

The adiabatic approach can be extended to ana-
lyze the effects of small perturbations on self-
focusing.9 For example, it was recently shown5 that
nonparaxial effects become important and lead to the
arrest of self-focusing when ayl ­ Os

p
NcyMb0y4pd,

where a and l are the pulse radius and wavelength,
respectively. Because simulations of Eq. (1) suggest
that typically in the adiabatic regime b ­ Os0.1d,
self-focusing arrest that is due to nonparaxiality will
occur when a , ly2. One can use a similar approach
to analyze at which point small normal time dispersion
will affect self-focusing by combining the results of
this Letter and Ref. 6. Therefore for given initial
conditions it is possible to determine which of these
two mechanisms will be the first to affect self-focusing.
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