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Abstract

We have recently created a kinetic model that reproduces the dynamics of exocytosis with high accuracy. The reconstruction necessitated a
search, in a multi-dimensional parameter space, for 37 parameters that described the system, with no assurance that the parameters, which
reconstructed the observations, are a unique set. In the present study, a Genetic Algorithm (GA) was used for a thorough search in the unknown
parameter space, using a strategy of gradual increase of the complexity of the analyzed input data. Upon systematic incorporation of one to four
measurable parameters, used as input signals for the analysis, the constraint set on the GA search imposed the convergence of the free parameters
into a single narrow range. The mean values for each adjustable parameter represent a minimum for the fitness function in the multi-dimensional
parameter space. The GA search demonstrates that the parameters that control the kinetics of exocytosis are the rate constants of the steps
downstream to synaptotagmin binding, and that the equilibrium constant of the binding of calcium to Munc13 controls the calcium-dependent
priming process. Thus, the systematic use of the GA creates a link between specific reactions in the process of exocytosis and experimental

phenotypes.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Communication between neurons is carried out by a
synchronous exocytosis of synaptic vesicles. The exocytotic
process is mediated by a sequence of interactions between
cytosolic, vesicular and plasma membrane proteins. In the last
decades, the roles of specific proteins involved in this process
have been intensively studied [1-7]. However, the exact
sequence of events that leads to exocytosis is still not fully
understood. Chromaffin cells have been extensively used to
study the involvement of synaptic proteins in vesicle exocytosis
using high time resolution membrane capacitance measure-
ments [5]. These measurements provided valuable information
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about the kinetics of exocytosis and the effect of proteins on
different kinetic components of secretion.

Recently, we presented an innovative mathematical analysis
based on a kinetic model [8] that links up the partial reactions
between the participating proteins into a comprehensive
mechanism that describes exocytosis. The model is based on
a description of the interactions between the proteins involved
in the exocytotic process, using a set of well-defined first and
second order rate equations (Scheme 1). When these equations
are propagated in time, the solution reconstructs the experi-
mental measurements with all their fine details. Moreover, the
model can also reproduce the outcome of complex experimental
protocols and the effect of genetic manipulations of specific
proteins.

The model reconstruction necessitated a search, in a multi-
dimensional parameter space, for 37 parameters that described
the system. However, there was no assurance that the


http://dx.doi.org/10.1016/j.bbamcr.2006.02.011
mailto:me@hemi.tau.ac.il

346 A. Mezer et al. / Biochimica et Biophysica Acta 1763 (2006) 345-355

1) syntaxin + SNAP-25 &2 Binary SNARE complex
®) Binary SNARE complex + VAMP & SNARE
©) Muncli3+Ca®* T Muncl3’
@ SNARE + Muncl3’® & SNARE '’
@) SNARE® +Ca?* & SNARE*
) SNARE * + complexin & SNARE #

Nd

(11) SNARE # + synaptotagmin * &2 RC-II

12) RC-Il + Ca®* & RC-II -1Ca

.

(13) RC-II -1Ca + Ca?** & RC-II -2Ca
4

1

(149) RC-II -2Ca + Ca ** RC-II -3Ca
as) fusion
Pathway 11

N

SNARE # + synaptotagminI &2 RC-I (6)

RC-I + Ca®* g RC-I-1Ca Q)
RC-I -1Ca + Cal"' < RC-1-2Ca ®
RC-I -2Ca + Ca}' € RC-I-3Ca )

fnﬁon 10)
Pathway I

Scheme 1. The sequence of events used in the model to simulate the exocytotic process as published at Mezer et al. 8].

parameters, which reconstruct the observation, were a unique
set. However, the inherent complexity of the system renders it
very sensitive to the value of the parameters. Accordingly, the
values of all parameters must be simultaneously determined.
This calls for a systematic search over a multi-dimensional
parameter space for any combination of constants that
satisfactorily reconstruct the observed signal. Only when the
solution is unique and represents a global minimum of the
fitness function in the parameter space (see Methods), the
magnitude of the rate constants could be physically interpret-
able. In the present publication, we achieved this goal by
applying the Genetic Algorithm (GA) for the evaluation of the
uniqueness of the rate constants determined for a complex set of
reactions of the exocytosis model.

Since its first presentation by Holland [9], the GA attracted
much interest and was applied to a multitude of scientific fields,
including molecular modeling, polymer design, protein folding
etc. (for review [10] and references therein). Yet, its application
to the analysis of complex biochemical processes was rather
limited, and only a few attempts were made to utilize the GA for
solving chemical kinetic problems [11-15]. Recently, we had
applied the GA to an automated search for the rate constants of a
large, multi-equilibria system and demonstrated that the
analysis of the results can indicate whether the solution is
indeed the unique global minimum in the parameter space [16].
In that study, we discovered that fitting a single observation is
not sufficiently restrictive; the search could yield a large number
of combinations of parameters, each of them being an
acceptable reconstruction of the signal. On the other hand,
when increasing the number of the analyzed signals, the system
becomes more restrictive and the solution converges into the
global minimum.

The present publication demonstrates that the exocytosis
process is reconstructed by a unique set of parameters. The
analysis was applied to fit measurements that were collected
under various experimental protocols, each of which empha-
sized a different phase of the maturation-fusion process. Under
these conditions, where the optimization follows the different
aspects of the process, the GA consistently converged to a
single set of values, suggesting it is, the global minimum of the
fitness function in the multi-dimensional parameter space. The
set of parameters that was found through the GA was shown to
reproduce the lag time of the release reaction, a feature which
was not optimized for. Moreover, we show that a gradual
increase in the complexity of the analyzed signals restricted the
range of parameters and indicated the reactions that control
specific aspects of exocytosis.

2. Methods

2.1. The model system

The process of exocytosis is presented as a linear array of interactions
between synaptic proteins (Scheme 1, adjusted from Mezer et al. [8]). Each
step consists of a reaction between well-defined reactants and is characterized
by forward and backward rate constants. The ratio between the off rate
constants (k_;) and the on rate constants (;) is equal to the equilibrium constant
(K;). The reaction mechanism is basically linear, where the product of one step
is the reactant of the next one. A detailed description of the model can be found
in Mezer et al. [8]. Briefly, the modeling of the exocytotic process was imitated
with the formation of reaction between SNAP25 and syntaxin I to form the
binary SNARE complex [17-19]. This complex reacts with the third SNARE
protein, the synaptobrevin/VAMP II, to form the mature ternary SNARE
complex [17,20,21]. The process moves forward by sequential activations
steps; at first, by the active form of munc13-1 (marked as munc13’), and then
by the reaction of calcium ions with a high affinity site to form the intermediate
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Table 1
The published parameters used in the calculations

Constant Present analysis * Reference
ki=~6x10°M's! >500 M st [44]
K;=~126 nM <100 nM [19]
k,=~d2x107 5" <0.01s7" [45]
ky>1x10° M 57! >1x10°M s (8]
ks=~3x—10" M ' 57! [24]

k s=~038s""

[SNAP25]: excess >0.1 uM [18,46]
[Syntaxin]: excess >0.1 pM

The rate and equilibrium constants are numbered as in Scheme 1.
* According to the present analysis the magnitude of the adjustable parameter
must be larger than the indicated value.

SNARE*. The next step in the maturation is the binding of complexin to the
SNARE* to form the SNARE” complex [22—25]. At this intermediate stage,
there is a bifurcation of the main pathway into two competing reactions. One
pathway (Path I) represents the reaction of Synaptotagminl (Sytl) with the
mature SNARE-complexin adducts, to form the first releasable complex (RC-
I), which can participate in a rapid fusion process. The second pathway (Path
1I), emerging also from the same SNARE-complexin adduct, is due to reaction
with an alternate Ca>* sensor, Synaptotagmin* (Syt*) to form the second
population of releasable complex (RC-II), which fuses significantly slower.
When the intracellular Ca>*-concentration increases, each of the two paths
reacts successively with three calcium ions and the vesicles fuse with the cell
membrane [26—29]. Besides the mainstream process, we had to add a parallel
one-step event (reaction 0) representing a Ca>" dependant activation step. The
novel Ca>" activated step could have been assigned also to unknown,
hypothetical reactants. Yet, to simplify the system we attributed this function to
a defined protein, Munc13-1. Munc13-1 was shown to be a priming factor in
neurons and has three C2 calcium-binding domains and one calmodulin
binding site [30-32]. Accordingly and in order to avoid addition of unknown
reactants, step 0 was defined as activation of Munc13-1 (It should be stated
that, provided that the activation step can be mediated either by free Ca®" or
through reaction with calmodulin, the overall mechanism is still the same in
both cases).

The experimental protocol, simulated in this study, is the flash-photolysis of
caged Ca*" [33,34]. In this protocol, the chromaffin cells are dialyzed with

Table 2

solution containing a permeable caged Ca>* compound, under conditions where
the free Ca®" concentration is maintained at a constant level (usually 200—
300 nM Ca®", but the level can be adjusted during the experiment). After 2 min
of equilibration (the pre-pulse step), a flash of UV light elevates the [Ca®'] to
10-50 puM for 5 s (flash stimulation) and secretion is measured continuously by
a membrane capacitance measurement.

The simulation program reconstructed the same protocol as previously
described [8]. Briefly, the reactions between all proteins were propagated for a
period of 10 min. at 50 nM Ca®", representing the situation inside the cells before
the pre-pulse step. The final concentrations of the intermediates were used at the
end of this period as the initial concentrations for the pre-pulse step, which was
set as 2-min simulation in the presence of 280 nM [Ca®"]. The concentrations of
the intermediates, as calculated at the end of the pre-pulse, were used as the
initial values for the final simulation of the pulse, where the [Ca®'] concentration
was set to 30 uM.

2.2. Range of variance set for the adjustable parameters

The rate and equilibrium constants were allowed to vary from the upper limit
set by the Debye—Smoluchowski equation [35], down to a few orders of
magnitude below (for more details, see Mezer et al. [8]). Rate and equilibrium
constants that had been published were used in the model without any change
and are summarized in Table 1. The concentration of the vesicles was set to
10 nM [8].

The reconstruction of the signals is attained by a search in a multidimen-
sional parameter space. The definition of the adjustable parameters, their upper
and lower limits and the final values derived by the analysis, are all listed in
Table 2.

2.3. The fitting problem

To gain high confidence in the results of the analysis, the fitness function
was initially calculated for a pair of experimental result input curves: the
exocytosis from wild type (WT) cells and from synaptotagminl KO (SytIKO)
cells.

For any given set of values of the unknown parameters, the ordinary
differential equations can be solved using standard numerical sub-routines such
as Matlab’s ODE23s. The level of agreement between the experimental signals
and the numerical solutions can be expressed by a fitness function (Ft), which is
weighed as an average of the squares of the differences between the calculated

The adjustable parameters used for the reconstruction of the exocytotic dynamics in chromaffin cells

Reaction Variable Search range Result range Mean Standard deviation

0) muncl3’+Ca?" —muncl3 ko 1E4-1E9 9E5-7E8 1.52 E8 1.81 E8
Ko 10E-9-1000E-9 265E-9—-602E-9 451 E-9 126 E-9
[muncl13] 1E-10—1E-8 1.3E-10-1E-9 4.36 E-10 2.51 E-10

3) SNARE+muncl3’— SNARE’ ks 1E5-1E8 4.3E7-6.4E7 2.03 E7 1.25 E7
K; 1E-10—1E-6 1.5E-8-7.3E-7 1.3 E-7 2.13 E-7

4) SNARE'+Ca*" — SNARE* ka 1E4-1E9 1.4E6-2E7 0.843 E7 0.638 E7
Ky 10E-9—1000E-9 16.5E-9—468E-9 224 E-9 192 E-9

5) SNARE*+complexin— SNARE# [complexin] 10 E-8-100e-8 100E-9-640E-9 335 E-9 188 E-9

6) SNARE#+synaptotagminl — RC-I ke 1E5—-1E8 2.9E7-1.44E8 5.71 E7 3.7E7
Ke 1E-10—-1E-7 2.6E-9-7.9E-9 4.27 E-9 1.75 E-9

7-9) RC-1+Ca> - RC-I-Ca ko 1E4—-10E8 2.7E6-6.5E6 4.73 E6 1.25 E6
kg 3-3000 29.5-160 92.5 47.5

10) RC-I-3Ca— fusion ko 3-30,000 1150-2996 2630 690

11) SNARE#+synaptotagmin* — RC-II ki 1E5-1E8 1.7E7-9.1E7 4.55E7 2.51 E7
Ky 1E-10-1E-7 3E-9-9E-9 5.68 E-9 1.87 E-9

12-14) RC-II+Ca*> —»RC-1 I-Ca kia 1E4-10E8 2.4E6-7E6 491 E6 1.40 E6
k14 3-30,000 55-230 145 64.5

15) RC-II-3Ca— fusion kis 3-30,000 5.7-99 22.5 28.5

The table lists the reactions that were included in the model (for details, see Scheme 1), the nature of the variable (concentration, rate constant or equilibrium constant),
the range at which the parameter was allowed to vary, the range reached by the search (using all penalty factors), the means of the best 10 results and their standard

deviation.
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solutions (X;°"**d) and the measured signals (X'2")) and is normalized with
respect to the calculated signal.

i) =

Z (calculated WT, — signal WT;)\?
signal WT

n (calculated KO, — signal KO;) 2
signal WT

t

(1)

This basic expression is the sum of two fitting functions; one corresponds to
the dynamics measured for the WT (wild type), while the other is for the SytIKO
mutant. To account for the fact that most exocytosis occurs during the first
second after stimulation, the fitness function values that were calculated for the
first second (=0 till /=1 s) were multiplied by 2 (weighed with a factor of 2).
This correction factor is referred to as Pg in Appendix A.

Further improvement of the fitting procedure was gained by addition of
others experimental features as an input for the reconstruction. Thus, when the
search was also set to optimize the dependence of the exocytotic burst
amplitude on the pre-pulse Ca®>" concentration, the values of the fitness
function, as calculated by Eq. (1), were adjusted according to the procedure
detailed in Appendix A. In brief, the program calculated the release dynamics
for the “WT’ case at varying pre-pulse [Ca’’] and related the amplitude
calculated at [Ca®"]=180 and 1640 nM with that of 540 nM. These ratios (+(1)
and r(2), respectively) were converted into penalties P, and P, as detailed in
Appendix A.

The fourth constraint was the addition of the kinetics constraint of the
recovery of exocytosis following exhaustive stimulation. The algorithm
mimicked the exhaustion phase of the cell by a 8 pM Ca®" pulse for 400 ms,
followed by a recovery phase (A¢) that varied in length from 0 to 100 s. At the
end of the recovery time, the [Ca”*] was set to 30 M, and the amplitudes of RC-
T and RC-IT at t=1 s were calculated. The ratios of the amplitudes at the time
points 0s; 10 s and 100 s were compared, and the appropriate penalty factors (P;,
P4 and Ps) were calculated (see Appendix A).

To determine the uniqueness of the solution, the analysis was repeated many
times, and those combinations of parameters that yielded a fitness function value
of less than Ft=300 were subjected to statistical quantile analysis. In the case
where the values assigned by the program for each adjustable parameter appear
as a linear function, the values of the adjustable parameter are considered to be
members of a normal population, and the mean value corresponds to the
minimum of the fitness function along the given axis of the multidimensional
parameter space. The combination of all means represents the global minimum
of the fitness function.

2.4. Genetic algorithm

In cases of high-dimensional optimization problems with possible non-
smooth fitness function and multiple local minima, the optimization of the
fitness function can be performed by the application of the GA. In the present
study, each generation consisted of 100 “genotypes”, each of them having a
random set of adjustable parameters that were selected within the permitted
range (see Table 2). The program used these values to reconstruct several
experimental signals, and to calculate the fitness. At the end of the generation,
the best-fit phenotype was cloned and replaced the worst fitting one. Apart from
that, the genes were manipulated by the following alternations: two heuristicX-
over, two arithXover, two simpleXover, four boundaryMutation, five multi-
NonUnifMutation, ten nonUnifMutation and two unifMutation. All these
genetic manipulations are standard procedures and defined in the GAOT
program of Matlab [13]. The fitness function was calculated for all new
combinations and their values were evaluated, both among the present
generation and with respect to those genotypes of the previous generation.

Our choice of Matlab as the computational platform is motivated by its
portability across different platforms and by the availability of the GA toolbox
GAOT [13]. To demonstrate the robustness of our methodology, we used the
default parameters of GAOT, rather than trying to optimize performance by
varying GAOT’s parameters (the selection and termination functions, etc.).

In the present study, the GA searched for the minimum of the fitness function
in an 18—12 dimensional space. The length of a 3000—-6000 generations’ run
required duration from 10 to 24 h, depending on the processor in use.

3. Results and discussion

3.1. Application of the genetic algorithm on standard input
signals

In order to test whether the GA is capable of searching over
the parameter space and achieving a satisfactory result within a
reasonable time (~24 h), we used the set of differential rate
equations and parameters that were determined by Mezer et. al.
[8] to generate a pair of simulated input curves. The first input
curve corresponds to the dynamics of exocytosis as measured
from control chromaffin cells, while the second input curve
corresponds with the dynamics of exocytosis recorded from
chromaffin cells derived from synaptotagmin I knockout mice
(SytIKO) [36]. The two curves that perfectly fit the experimen-
tal data [8]) were then reconstructed by the GA. The analysis by
the algorithm was repeated 10 times, and each time for 6000
generations. In all cases, the fitting was improved and after
~1000 generations, the program reconstructed the input signals
with high accuracy, retracing them almost within the width of
the line (Fig. 1a).

The evolution of the fitting process can be presented either
by the convergence of the fitness function (Fig. 1b), or by the
variance of the adjustable parameters as a function of the

a
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Time (sec)
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Fig. 1. (a) The best-fit phenotype with the progression of the GA evolution. The
upper frame represents the reconstructed lines (gray curves), together with the
input curves describing the experimental signals for WT (upper black curve) and
SytIKO (lower black curve), as calculated for the first generation. The lower
frames represent the enhanced fitting as recorded after 4, 10 and 6000
generations, respectively. It should be noted that the reconstructed curve after
6000 generations practically overlaps the experimental input curves. (b) The
convergence of the fitness function of the input signals during repeated
simulations as a function of the generation number. The value of the fitness
function is defined in Eq. (1). Color represents different runs.
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number of generations (Fig. 2). As seen in Fig. 1b, the values of
the fitness function decreased during the evolution, as the
number of generation increased by 2—3 orders of magnitude.
When the value of the fitness function is less than ~3, the input
signal and its reconstruction practically overlap. However, the
evolution of the improvement of the fitness function as a
function of the number of generations varied significantly
among the different runs (Fig. 1b). In some cases, the fitness
function declined monotonically, while in other cases, the
decrease was stepwise. This is an indication that the search was
random each time but converged to the same, low fitness (Fig.
1b). Further examination of later stages of the graphs describing
the fitness function suggested that extension of the process
beyond 3000 generations is not necessary, since the fitness
function did not improve significantly behind 3000 generations.
Thus, throughout this study, the simulations were terminated
after 3000 generations, reducing the calculation time by ~50%.

In contrast to the significant improvement of the GA fitness
over the generation as suggested by the fitness function, some of
the parameters that were selected by the GA significantly
diverged. In some cases, the convergence of the parameters was
acceptable (for example, the range of ko and k5 converged to
one order of magnitude; Fig. 2a and b). But, during the very
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same runs, other parameters hardly converged at all (for
example, see the divergence of Ky and K, in Fig. 2¢c, and d
which varied 3—4 orders of magnitude). Thus, although the
quality of the reconstructions was very satisfactory, each of the
runs reached a different local minimum in the multi-dimen-
sional parameter space. The widespread range of the values
indicated that, even if the reconstruction appeared to be
successful, we did not reach a global minimum and there are
several sets of parameters that can equally reconstruct these
curves. Nevertheless, a successful convergence of a certain
parameter implies that it is crucial for the reconstruction of the
observation and that it controls the kinetics of the fitted system.

We next examined whether the same set of parameters
converged while fitting to the experimental curves. We obtained
a similar convergence (not shown) for the artificial input curves
(Fig. 1 and Fig. 2). Interestingly, the parameters that converged
by the GA are the K’s of the synaptotagmin binding (reactions
6 and 11), the 3 parallel low affinity calcium binding steps
(reactions 7-9, 12—14) and the last steps of fusion (reactions 10
and 15). On the basis of the successful reconstruction of the
experimental fusion dynamics, we concluded that these
parameters control the kinetics of exocytosis from wt and
SytIKO cells. The values that we obtained are similar to the
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Fig. 2. The convergence of parameters during the Genetic Algorithm. The parameters are defined according to the reaction number in Scheme 1. Color represents
different Runs. (a, b) The convergence of the rate constants corresponding to the final steps of the fusion process of ko (a) and k5 (b) during the reconstruction of the
input signals. Please note that the converged values after 300 generations fall within a rather narrow range. (c, d) The variation with the number of generations of
adjustable parameters that did not converge during the reconstruction K¢ (¢) and K, (d). Please note the wide spread of those values.
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ones obtained previously using other parameter optimization
methods [27,36]. This suggests that the reconstruction of the
basic kinetics of exocytosis is mainly determined by the relative
amount of the two synaptotagmins’ binding and the down-
stream steps of the 3 calcium binding and the fusion.

3.2. Increase of the complexity of the analyzed input data:
constraint imposed by the calcium-dependent priming behavior

To increase the number of parameters that converged in the
GA search, we used more experimental observations, which
describe different features of the exocytotic process, as input
signals. Accordingly, we added new penalty factors that
describe these behaviors. Addition of more penalty factors to
the fitness function increased the complexity of the GA search
and forced the system to be more sensitive.

The first feature that was added to the system was the
calcium-dependent priming behavior of exocytosis. Elevation
of the pre-pulse [Ca®"] has been shown to modulate the size of
the exocytotic burst in chromaffin cells, a phenomenon that is
known as calcium-dependent priming [29,37]. During this
short pre-pulse phase of the exocytotic process, the Ca*" ions
(~200-300 nM) interact with the high affinity Ca" sites that
regulate the maturation of the SNARE complex. This causes an
increase in the number of primed vesicles and, as a result,
following stimulation it will cause larger exocytosis during the
exocytotic burst (measured up to 1 sec after the stimulation).
There are three steps in the model where the low Ca®"
concentration affects the process: the activation of muncl3 by
calcium (reaction 0 in Scheme 1), the activation of SNARE into
SNARE’ by muncl3’ (reaction 3) and the Ca** dependent
conversion of SNARE’ to SNARE* (reaction 4 in Scheme 1).
To force the GA to retrace the experimental variation of the
exocytotic burst on the pre-pulse [Ca®’], we added penalty
factors Py, and P, (see Appendix A). In practice, the GA scored
each phenotype also by its ability to reconstruct the input
release signals (WT and SytIKO), and penalized it by its
deviation from the observed dependence of the amplitude of
the exocytotic burst on the pre-pulse Ca®" concentration [29].
The function readily converged to fit both experimental inputs
(Fig. 3).

Fig. 3 depicts the best-fit phenotype with the progression of
the evolution. The upper left frame represents the reconstructed
lines (gray) together with the experimental signals (WT and
SytIKO, black), as calculated for the first generation. The other
frames on the left represent the enhanced fitting as recorded
after 10, 100 and 3000 generations, respectively. The right
frames represent the calculated (gray) and the measured (black)
exocytotic burst values versus pre pulse calcium, after 1, 10,
100 and 3000 generations. To enhance the speed of conver-
gence, the rate constants, which were determined in the
previous section, were allowed to vary within a narrower
range (one order of magnitude). As these parameters were
optimized for the WT and SytIKO experiments, we already
achieved a relatively good fitting after one generation (Fig. 3,
upper left), while the fitting to the new feature gradually
improved over the generations (Fig. 3, right).

0.5 1 1.5
R A
™ 5,

"'"'I-.......
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g er® ." 2,
[ ® ""'-*o‘....‘.
®
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0.5 1 1.5
[Ca*] (uM)

Time (sec)

Fig. 3. The best-fit phenotypes with the progression of the GA evolution
imposed by two constrains. The GA was set to reconstruct both the fusion
dynamics for the WT and the SytIKO curves (left) and the relation between the
exocytotic burst versus the pre-pulse Ca®* (right). Each row represents the best
fit phenotype after 1, 10, 100, and 3000 generations. Experimental data (black)
GA signals (gray).

The analysis presented in Fig. 3 was repeated ~50 times and
the distribution of the adjustable parameters revealed that some
of the upstream parameters show better convergence. The
improvement was obtained for the high calcium affinity binding
steps (Ko, k3, [Munc13-1]) and the rate (k¢, k) and equilibrium
constants (K, K1) of synaptotagmin binding to SNARE”. The
highest degree of convergence was obtained for the equilibrium
constant of the activation of Muncl3 by calcium (step 0). It
converged to a very narrow range between 300 and 600 nM
(Table 2). On the other hand, the rate constant for the activation
of Munc13 by calcium (k) did not converge. Apparently, within
the kinetic requirement of the system, the level of activated
Muncl3 and not the rate of calcium binding to Muncl3,
determines the calcium-dependent priming behavior. This is a
reasonable conclusion, since calcium ions are not a limiting
factor under these conditions; rather, the calcium concentration
itself controls the binding. Interestingly, this K is similar to the
calcium range that controls the priming process as seen from the
observed dependence of the amplitude of the exocytotic burst
on the pre-pulse Ca®" concentration [29]. In addition, the
convergence of most upstream parameters in these experiments
supports our previous suggestion that priming is a multiple step
process [8].

3.3. Analysis of the exocytotic process using four optimizing
features

To enhance the convergence of the adjustable parameters, we
stiffen the fitting problem by adding another experimental
protocol together with the appropriate new penalty factors for
the GA search. The experimental feature that describes the
dynamics of the recovery of the releasable pool after exhaustive
stimulation was added to the GA search as a new input signal.
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Experimentally, Voets and coworkers [28] stimulated cells by
four successive depolarizations (100 ms each) that specifically
depleted the readily releasable pool (RRP), and then allowed the
cell to recover for a variable time frame (0.5-80 s) before being
challenged by a high Ca®" pulse (flash). The initial recovery of
the RRP was mirrored by a gradual decrease in the slowly
releasable pool (SRP). After a recovery time of about 30 s, the
build-up of the RRP was not associated with a decrease in the
SRP size and both “pools” increased linearly with time. Based
on this observation, Voets and coworkers [28] suggested that the
recovery of the RRP occurs at the expense of the SRP. In a
previous publication [8], we had demonstrated that the RRP and
SRP “pools” can be equated with the RC-I and RC-II reservoirs,
which are in equilibrium with a common species SNARE".
Accordingly, we could retrace these results [28] through the
model. The GA was modified to include the appropriate penalty
factor for P3, P, and P5 (see Appendix A), which penalizes the
fitness function value by its ability to reconstruct the experi-
mental observations [28].

Once the four features were used for optimization (see Fig. 4),
the convergence was enhanced, and the fitness function reached
its plateau already after ~50 generations, while the analysis as in
Fig. 3 needed ~500 generations to gain their final level. Addition
of this constraint to the GA led to the fact that the rate and
equilibrium constants of the steps that interconnect RCI and RCII
(reactions 6, 11) show a higher degree of convergence;
specifically, the on rate of the binding of synaptotagmin I (k).
Thus the main steps that control the shift from RCI to RCII are the
rate constants of the synaptotagmin’s binding. In addition, the use
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of all four constraints improved the convergence of the other rate
constants, including those that did not converge in the GA runs in
which we used only part of the constraints (Fig. 1 and Fig. 3). The
range of the variation for each adjustable parameter is summed up
in Table 2, column 4. The best 10 solutions were selected and the
mean values plus standard deviations for each adjustable
parameter were calculated (see Table 2, columns 5 and 6).

The robustness [38] of the model demands that a random
combination of values falling within the limits of the range of
variance (column 4 in Table 2) will generate curves that retain the
general features of the dynamics. This was tested by generating
200 combinations of parameters that were randomly selected
from the range given in column 4 in Table 2, and the
corresponding shape of the reconstructed signals was checked.
In all cases, the release dynamics exhibit well resolved ‘fast’ and
‘slow’ release phases, with a clear separation between the “WT’
and the ‘SytIKO’ mutant. These random combinations also
yielded a bell shape dependence of exocytosis on the pre-pulse
Ca*", and typical recovery dynamics (not shown). Thus, the
multi-dimensional parameter space within the range illustrated in
Table 1 column 4 defined the domain where the solution is stable.

Further analysis of the variables was carried out as in
Moscovitch et al. [16]. The Normal Probability plot analysis, as
implemented by the Matlab QQplot function, relates the
individual value with respect to the mean value calculated for
the same variable. When the quantile analysis generates a linear
function, it implies that values are members of a single, normal
population. Thus, for each of the adjustable parameters, there is
a single value where the fitness function will be minimal.
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Fig. 4. The evolution of the reconstruction as a function of the number of generations under all four constrains. The simulations retrace the fusion dynamics for the WT
and the SytIKO mutants (left curves), the values of the exocytotic burst versus the pre-pulse Ca” (middle curves) and the recovery after depolarization pulses (right
curves). Each row represents the best fit phenotype after 1, 10, 30, and 3000 generations. RRP size (triangles) SRP size (squares). Experimental data (black) GA signals

(gray).
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Moreover, the normal variance between the values attained for
each parameter implies that the convergence followed random
trajectories in the multi-dimensional parameter space. The
quantile analysis had been carried out for all variables, and in all
cases a linear relationship was observed (Fig. 5). We can
therefore suggest that the combination of the mean values
represents the global minimum of the fitness function in the
multi-dimensional parameter space.

3.4. Testing of the model

Mathematical models can be tested by the requirement to
reproduce features for which the model was not optimized. In
our previous publication [8], we demonstrated that the
parameters appearing in the present study were able to
reproduce the dependence of the rate of release on [Ca®"] and
to predict the change in the amplitude caused by overexpression
of munc 13. In the present study we also investigated whether
the parameters selected by the GA can reproduce the delay time
of the release reaction.

Kinetic measurements of the earliest event, following flash
photolysis of caged calcium, revealed a distinct delay (lag phase)
in the fusion kinetics. The length of the lag phase varies from
almost 100 ms at low Ca? concentration following the flash
down to a few ms at high calcium concentrations [29,36]. We
tested the model both qualitatively and quantitatively with the GA
parameters. The qualitative evaluation was carried out by
examining the early events that precede fusion in order to test
whether the parameters selected by the GA can reproduce the
experimental delay. The quantitative test was a comparison
between the length of the calculated and the measured lag times as
they vary with [Ca*'] following the calcium pulse (flash) (Fig. 6).
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Fig. 6a reproduced the initial phase of fusion in the model.
We plotted the experimental signal together with the dynamics
of the intermediate protein complexes located between the RC-I
complex and the final fused state. The dynamics of the slow
fusing complex RC-II were omitted, as their fusion is 10 times
slower and makes no contribution to the lag time. As seen in
Fig. 6a, the calculated and the measured curves overlap, even
though the events during the initial time frame contributed less
than 0.1% to the value of the fitness function. Moreover, the
model also provides an explanation for the lag time. This delay
corresponds to the 3 sequential calcium binding steps, until the
final RC-1-3Ca™*? are formed.

While Fig. 6a demonstrates that the model can reproduce the
lag time, Fig. 6b correlates between the length of the lag time
and the Ca®* concentration that triggered the fusion reaction for
the experimental (Fig. 6b, crosses) [36] and the simulation (Fig.
6b, circle) data. The lag time in the simulation was defined as
the time frame needed for the reconstructed curve to reach the
level of 1% from its maximal value. The correlation between the
calculated and measured values is self-evident. Apparently,
the parameters selected for reproducing the various features of
the fusion are suitable for reconstruction of features that were
not used for the optimization of the GA and minimization of the
fitness function’s value.

3.5. The versatility of the model

The present state of the model is compatible with the current
data regarding the interactions of 7 synaptic proteins, forming
the active SNARE complexes and their activation by free
calcium ions. As the exocytotic process is probably mediated by
more proteins, it is essential to investigate whether the model is
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Fig. 5. Quantile analysis of the best-fitted solutions. The Genetic Algorithm generated 34 independent solutions for the system detailed in Fig. 4. For the best 10
solutions, the mean and standard deviations were calculated by the QQPLOT function of Matlab and the distributions of the values with respect to the mean value were
analyzed. Each frame in the figure relates to the measured value (ordinate) with the standard normal quantile drawn on the abscissa. For brevity, the results are

presented for only four adjustable parameters.
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Fig. 6. Tracing of the earliest phase of the fusion dynamics. (a) Superposition of
the fusion dynamics (curve f, gray) and the reconstructed dynamics (curve e,
black) during the first 60 ms after the calcium pulse. Following the high Ca®"
pulse, at r=0, the RC-I state of the vesicles is rapidly depleted (curve a) with
subsequent accumulation of the first Ca®" complex RC-I-1Ca (curve b). This
complex is converted with a delay into the higher Ca®" complexes RC-I-2Ca
(curve c); RC-I-3Ca (curve d) and the fusion products (curve e). These
transitions create the short delay (bar). (b) The correlation between the length of
the lag time and the Ca' concentration of the pulse. (Pluses) The experimental
results as reported by Voets et al. [36]. (circles) The length of the lag time
calculated from the simulation corresponding to the experimental conditions of
Voets et al. [36]. The lag time was defined as the time frame, after the Ca* pulse,
needed for the amplitude to reach 1% of its maximal value.

versatile and can be expanded when new kinetic information is
revealed. To evaluate the versatility of the model, we carried out
two set of calculations; in one, we deliberately removed a well-
established component of the system, and in the other, we
increased the number of Ca®" ions needed for initiation of the
final fusion event.

As a test for the ability of the model to incorporate unknown
reaction steps, we deliberately mutilated the sequence of the
reactions by removing a well-established step. Our expectations
from a versatile model is to reconstruct the observation with the
same rate constants, except for the ‘bridge’ step, in which the
parameters will vary in order to compensate for the missing
event.

The omitted reaction was the binding of complexin to the
SNARE* complex, generating a pathway pretending that the
SNARE” complex is a direct product of the activation of
SNARE’ by the Ca®" ions (reaction 4 in Scheme 1). The
reaction sequence without the involvement of complexin as a
reactant was converted into a set of differential rate equations,
and subjected to kinetic analysis that consisted of the four
optimization features described above. The search yielded a
new solution that reconstructed the experimental results with

the same level of accuracy of the standard model where the
adjustable parameters were essentially the same except for the
step where the component had been removed. The omission of
complexin from the reaction sequence was fully ameliorated by
a 50-fold increase of the Ca”" affinity of reaction 4, reducing
K.q from 560 nM to an extremely low value of 10 nM. The
above calculation, where an established component of the
reaction system is removed, demonstrates that the model is
sufficiently robust to suffer a shortening of the reaction
sequence, and still reconstructs the experimental observation.
In practice, we expect a reverse situation where future
experimental study will reveal the presence of new proteins
associated with the exocytotic pathway, either within the section
discussed in the present study or in earlier events.

The versatility of the model was also evaluated by
modulating the number of Ca®" binding sites needed to initiate
the fusion. It is generally agreed that the rate of release is an
exponential function of the Ca’" concentration ([Ca®"]™
m=3). In chromaffin cells, the apparent value of the exponent
is m ~3, yet in other systems (such as the Calyx of Held synapse
[39] or under conditions of non-homogenous intra-cellular Ca*"
distributions [40], the value of m was found to vary (3 <m <5),
depending on the precise experimental conditions. The present
model had used m=3 to comply with the experimental results.
However, on testing the model, suitable simulations could be
obtained with values of m>3 with proper compensation
through the magnitude of the rate constant (data not shown).
Thus, when applying the model to other cells, the cooperativity
can be modulated without loss of the applicability of the model.

It is of interest to point out that as most of the rate constants
values described in this model are slower than the upper
estimation for diffusion-controlled reactions, this observation
implies that the actual reaction steps consist of more than a
single step or process. These hidden steps or processes can
either be a conformational change of the proteins, a reaction
with another (still unidentified) protein(s) or even oligomeriza-
tion of proteins, such as the oligomerization of the SNARE
complexes or of synaptotagmin. These oligomerizations can
either accelerate the formation of SNARE# or change the
calcium cooperativity [41-43]. At present, we cannot ascertain
those events that slow the overall rate, yet we can assume that
each of the reaction steps is a sequence of molecular events and
only their overall combination of time constants is expressed by
the rate constant, as was determined by the analysis. In
accordance with this concept, the present reaction scheme
should be considered as expandable and suitable to accommo-
date a more refined pattern of events.

We presently recognize quite a few neuro-degenerative
diseases, where the exocytotic apparatus appears to be impaired.
Once the model had been accepted as a proper representation of
the exocytosis, kinetic analysis of standard parameters of the
mechanism, as those discussed in the present publication, may
be used in order to define the reaction steps where the values of
the adjustable parameters had markedly changed. This suggests
that the malfunction may be associated with the very same step.
Thus, we suggest that accepting the system described in the
present study as a standard representation of the exocytotic
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process may be evolved into a diagnostic tool, revealing the
sites where the sequence of events is fundamentally impaired.

4. Concluding remarks

In the present study, we investigated a complex cellular
process using the formalism of classical chemical kinetics. To
cope with the huge number of possible solutions of the
system, and to eliminate human influence, we employed the
GA for a systematic search in a multi-dimensional parameter
space. To our surprise, the search yielded a consistent solution,
which testified to the robustness of the model. A large number
of independent searches converged into a single minimum for
the fitness function in the multi-dimensional parameter space.
A gradual increase of the complexity of the analyzed input
data brought specific parameters to corresponding conver-
gence, and allowed correlation between the experimental data
and the reactions that they represent. The present study
indicated that the GA is an effective tool for intensive search
into a multi-dimensional parameter space, which is capable of
convergence into the unique solution of complex biological
systems.
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Appendix A

The value of the fitness function (Eq. (1)) is the product of
the difference between the calculated and measured values as in
Eq. (2), and the various penalty factors defined by Eq. (3a), and
(3b). The terms r(, are defined by Egs. (4a)—(4e) and the
O values are given in Eq. (5a) and (5b).

6

Fi(r) = fur) x [ [P(3) (1)

1

. 2
7 = Z ((calculated WT, — signal WT,)>

- signal WT
N (calculated KO, — signal KO,)\° 2)
signal WT
o 1 Ri=r
{Pili=1.5} = { |7 —Ri\z xQ0i+1 R #r (3a)

Ry =2;Ry =2;R; = 0.33;Ry = 1;Rs = 1.5;

2 t<l1s
P6(’)_{1 £> 1s (3b)
calculated value(Ca = 540 nM)
1) = 4
r(1) calculated value = 180 nM (4a)
calculated value(Ca = 540 nM)
r(2) = calculated value = 1620 nM (40)
lculated RCI(z =0
3) calculate ( s) (40)

" calculated RCII(t =0 s)

calculated RCI(z = 10 s)
4) = 4d
) calculated RCII(z = 10 s) (4d)

calculated RCI(z = 100 s)

= 4
r(5) calculated RCII(¢ = 100 s) (4e)

{Qili=1, 2} =09 (5a)

{0i]i=3.5} =02 (5b)

The r(1, 2) are the ratios of the amplitude, calculated 1
second after the high Ca™ pulse, at given pre-pulse [Ca*?]
concentrations (as marked in the Eqgs. (4a) (4b)).

r(3, 4, 5) are the ratios between the amplitudes assigned to
Pathl and PathlI at the given time values (marked in the Egs.
(4c) (4d) (4e)) during the recovery of the system after
exhaustive depolarization.

R(1-5) (in Eq. (3a)) are the experimental values of 7(1-5) as
determined from the measurements of Voets et al. [28,29].

The O(1, 2), (in Eq. (5a)) are adjustable parameters operating
on the penalty factors which allow us to balance the correction
factors in order to gain the best results.
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