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The nonlinear Schrödinger equation (NLS) is the standard model for propaga-
tion of intense laser beams in Kerr media. The NLS is derived from the non-
linear Helmholtz equation (NLH) by employing the paraxial approximation and
neglecting the backscattered waves. In this study we use a fourth-order finite-
difference method supplemented by special two-way artificial boundary condi-
tions (ABCs) to solve the NLH as a true boundary value problem. Our numeri-
cal methodology allows for a direct comparison of the NLH and NLS models
and, apparently for the first time, for an accurate quantitative assessment of the
backscattered signal.
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1. INTRODUCTION

The propagation of intense laser beams (time-harmonic electromagnetic
waves) in a bulk Kerr medium is usually modeled by the critical nonlinear
Schrödinger equation (NLS) for the electric field amplitude. Since light
rays bend toward areas with higher index of refraction, the nonlinear
dependence of the index of refraction on beam intensity has a self-focusing
effect, whereby a sufficiently intense laser beam becomes narrower as it
propagates. In particular, the NLS model predicts that when the input
beam power (L2 norm) exceeds a given critical threshold Nc, then the beam
can collapse to a point at a finite propagation distance. For more information
of self-focusing, see e.g., [Fibich and Papanicolaou (1999); Sulem and
Sulem (1999)].



As the beam propagates it induces changes in the optical properties
of the medium. As a result, part of the incoming wave is reflected back,
a phenomenon referred to as backscattering. Very little is actually known
on backscattering in nonlinear self-focusing, except for the general belief
that it is ‘‘small.’’ Since, however, small-magnitude mechanisms can have a
large effect in self-focusing [Fibich and Papanicolaou (1999)], there is a
need to accurately quantify the magnitude of backscattering and study how
this phenomenon may affect the beam propagation. Another application
which could greatly benefit from better understanding of backscattering
is remote sensing of the atmosphere [Wöste et al. (1997)], where the
measured signal is exactly the backscattered wave.

The backscattered wave is neglected in the NLS model which only describes
the forward-propagating wave. Calculation of backscattering requires,
therefore, going back to the nonlinear Helmholtz equation (NLH), from
which the NLS is derived. The NLS is an evolution equation with the
spatial coordinate in the direction of propagation playing the role of
‘‘time.’’ Therefore, the correct mathematical formulation for the NLS is the
Cauchy (initial value) problem and as such, solving it numerically is a
relatively straightforward computational procedure. In contradistinction to
that, the NLH is elliptic in its nature, and a special multidimensional
boundary value problem needs to be formulated and solved for this equa-
tion, which is a much harder task from the standpoint of computing. The
first numerical simulations based on solving a true boundary value problem
for the NLH were recently performed in Fibich and Tsynkov (2001) using
an advanced fourth-order method. In that study, the design fourth-order
convergence rate of the method was corroborated experimentally on a
model linear problem. Subsequently, a series of the grid convergence tests
were conducted in the nonlinear regime. In the current paper we go beyond
grid-convergence arguments and show that the asymptotic limit of the
NLH solutions obtained in the simulations is the corresponding NLS solu-
tion. This comparison provides strong support that the calculated NLH
solution is indeed the physical one. Besides, in Section 2.3 we obtain an
asymptotic estimate of the magnitude of backscattering and subsequently
show in Section 4 that it agrees with the calculated values.

As has been mentioned, when the initial datum is sufficiently large the
NLS solution develops singularities at a finite propagation distance (see
Section 2.5). Since, however, physical quantities do not become infinite,
a natural question is whether the corresponding solution of the NLH exists
globally. This fundamental question has been open for many years. There
have been indications, though, that solutions to the NLH exist even when
the corresponding NLS solutions become singular, based on both numeri-
cal solution of ‘‘modified’’ NLH equations [Akhmediev and Soto-Crespo
(1993); Akhmediev et al. (1993); Feit and Fleck (1988)] and on asymptotic
analysis [Fibich (1996)], but these studies did not take into account
backscattering effects. Therefore, our long-term goal is to solve the NLH
for those incoming signals that lead to blowup in the NLS model. In the
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current study, however, we concentrate on the more attainable goal of
better understanding (in terms of both analysis and numerical simulations)
the regime when the corresponding solution of the NLS does not blow up.
Our hope is that this understanding will eventually allow to solve the NLH
for ‘‘any’’ incoming signal.

2. MATHEMATICAL MODELS

2.1. The Nonlinear Helmholtz Equation

A typical experimental setup (both physical and numerical) for the
propagation of waves in Kerr media is shown in Fig. 1. An incoming
laser beam with known characteristics impinges normally on the planar
interface z=0 between the linear and the nonlinear media. The electric
field E=E(x1,..., xD−1, z) in RD is governed by the nonlinear Helmholtz
equation

(“zz+D+) E+k2E=0, k2=k
2
0(1+E |E|

2s), (x1,..., xD−1) ¥ RD−1, z \ 0
(1)

where k0 is the wavenumber, E=4E0cn2, n2 is the Kerr coefficient, and
D+=“x1x1+·· ·+“xD−1xD−1 is the transverse Laplacian (the diffraction term)
[see, e.g., Boyd (1992); Newell and Moloney (1992)]. For simplicity we
consider from now on the cylindrically-symmetric case whereE=E(r, z) and
r=`x21+·· ·+x

2
D−1.

The nonlinear medium occupies the semi-space z \ 0 (see Fig. 1). Con-
sequently, the NLH (1) has to be supplemented by boundary conditions at
z=0 and z0+.. We require that as z0+., E has no left-traveling
components and that the propagation is diffraction-dominated with the field
amplitude decaying to zero, i.e., limzQ. max0 [ r <. |E(r, z)|=0, which also
means limzQ+. k2=k

2
0. In other words, at large z’s the solution should be a

linear superposition of right-traveling waves. Since the actual numerical
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Fig. 1. Schematic of propagation of waves in Kerr media.
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simulation is carried out on a truncated domain 0 [ z [ zmax (Fig. 1), the
desired behavior of the solution as z0+. has to be captured by a far-field
artificial boundary condition (ABC) at the artificial boundary z=zmax. This
boundary condition should guarantee a reflectionless propagation of all the
waves traveling toward z=+.. Often, boundary conditions designed to
ensure the transparency of the outer boundary to the outgoing waves are
called radiation boundary conditions [Tsynkov (1998)].

The situation is more complex at the interface z=0, where the total
field E(r, 0) is composed of a given incoming (right-traveling) component
Einc(r, 0) and an unknown backscattered (left-traveling) component
Escat(r, 0), i.e.,

E(r, 0)=Einc(r, 0)+Escat(r, 0)

As such, the boundary condition at z=0 has to guarantee the reflectionless
propagation of any left-traveling wave through the interface and at the
same time be able to correctly prescribe the incoming signal. Implementa-
tion of such two-way ABC was done in Fibich and Tsynkov (2001).

Finally, we assume symmetry at r=0 and vanishing of the electric
field as r0+.. In practice, we truncate the domain at some large but
finite rmax and require that E(rmax, z)=0.

Let us also note that in this study we do not take into account the
effect of discontinuity in the index of refraction across the interface z=0.
Thus, we assume that Einc(r, 0) is the incoming wave after it has already
passed through the interface (i.e., at z=0+). We also assume that left-
traveling (i.e., backscattered) waves are not reflected by the interface z=0
back into the domain z \ 0. One can expect the latter effect to be small; it
will be investigated in a future study.

2.2. Paraxial Approximation and the Nonlinear Schrödinger Equation

Let r0 be the initial width of the impinging beam. We first introduce
the dimensionless quantities r̃, z̃, and k as

r̃=
r
r0
, z̃=

z
2LDF

, E=e ik0 z(Er20k
2
0)
−1/2s k(r, z) (2)

where LDF=k0r
2
0 is the diffraction length. Then, by dropping the tildes we

obtain

ikz+D+k+|k|2s k=−4f2kzz (3)

where f=1/r0k0 ° 1 is the nonparaxiality parameter.
The standard derivation of the NLS is based on the assumption that

the envelope k is slowly varying. In that case, one can neglect the term on
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the right-hand side of (3) (i.e., apply the paraxial approximation) and
obtain the nonlinear Schrödinger equation

ikz+D+k+|k|2s k=0 (4)

The NLS (4) is supplemented by the initial condition at z=0

k(r, 0)=(Er20k
2
0)
1/2s Einc(r, 0)

Subsequently, it needs to be integrated by a ‘‘time’’-marching algorithm,
where the direction of propagation z plays the role of time. We reempha-
size that backscattering effects are not taken into account by the NLS (4).
Indeed, once (4) is solved, the overall solution, according to (2), is the
slowly varying amplitude k times the forward propagating oscillatory
component e ik0 z.

2.3. Preliminary Analysis of Backscattering

To the best of our knowledge, no accurate quantitative analysis of
backscattering in nonlinear self-focusing has ever been performed, although
there is a general belief that the magnitude of the backscattered signal is
small. In this section we present a preliminary asymptotic study of back-
scattering. To do that, we consider a more general ansatz for E than (2)
which is composed of both forward-propagating and backward-propagat-
ing waves, i.e.,

E=(Er20k
2
0)
−1/2s [A(r, z) e ik0 z+B(r, z) e−ik0z] (5)

where A and B are slowly-varying envelopes. Substitution in the NLH (1)
yields

e ik0 z[Azz+2ik0Az+D+A+|A+e−2ik0zB|2s A]

+e−ik0z[Bzz+2ik0Bz+D+B+|A+e−2ik0zB|2s B]=0

Changing to the nondimensional variables (2) gives (after dropping the
tildes)

e i(4/f
2) z[f2Azz+iAz+D+A+|A+e−i(4/f

2) zB|2s A]

+[f2Bzz+iBz+D+B+|A+e−i(4/f
2) zB|2s B]=0

Let us average the last equation over one fast oscillation. For example,
using Taylor expansion, we obtain

2
pf2

F
z+pf2/4

z−pf2/4
B(z) dz=

2
pf2

F
z+pf2/4

z−pf2/4
[B(z)+(z−z) Bz(z)+· · · ] dz

=B(z)(1+O(f2))
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Similarly,

2
pf2

F
z+pf2/4

z−pf2/4
e i(4/f

2) zA(z) dz

=
2
pf2

F
z+pf2/4

z−pf2/4
e i(4/f

2) z[A(z)+(z−z) Az(z)+· · · ] dz

=
f2

4i
Aze i(4/f

2) z+O(f4)

Consequently, we obtain the following equation for the backscattered wave

f2Bzz+iBz+D+B+|A+e−i(4/f
2) zB|2s B=f2F, B(z)|z=.=0 (6)

where

F=
1
4i
e i(4/f

2) z[f2Azz+iAz+D+A+|A+e−i(4/f
2) zB|2s A]z

Let us now employ the common assumption that backscattering is small,
i.e., B° A. Since f° 1, Eq. (6) for B can be approximated with the linear
Schrödinger equation

iBz+D+B+|A|2s B=f2F, B(z)|z=.=0

where

F=
1
4i
e i(4/f

2) z[iAz+D+A+|A|2s A]z

Since the solution of

iBz+D+B+|A|2s B=0, B(z)|z=.=0

is B — 0, the above analysis suggests that

B/A=O(f2) (7)

If the quadratic scaling law (7) can be confirmed independently, then it will
provide a convincing justification for the assumption that backscattering is
indeed small. Hence, in our simulations we expect to see that

(Er20k
2
0)
1/2s |E|− |A|
|A|

=O(f2) (8)

The numerical results of Section 4 do corroborate these expectations.
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The above analysis also shows that

|E|=(Er20k
2
0)
−1/2s |A| :1+B

A
e−2ik0z :

Therefore, the amplitude of the NLH solution may have O(f2) ripples with
the wavelength p/k0 due to backscattering on top of the slowly varying
amplitude of the forward-propagating wave. NLH simulations suggesting
that this indeed may be the case have been reported in Fibich and Tsynkov
(2001) (see also Fig. 3 in Section 4). It is not clear, however, to what extent
the ripples observed in Fibich and Tsynkov (2001) are a numerical artifact
due to placing the far-field artificial boundary too close to the nonlinear
self-focusing zone. Therefore, no definite conclusion as to the presence of
the O(f2) ripples in the NLH solutions can be made at this time and this
question requires a subsequent thorough study.

2.4. Nonparaxiality and Backscattering

The traditional way of introducing the paraxial approximation is
reported in Section 2.2, where the right-hand side of Eq. (3) is omitted
and the NLS is derived. The more careful analysis of Section 2.3 shows,
however, that two approximations are, in fact, being made when the NLH is
approximated with the NLS: Neglecting Azz (the paraxial approximation in
the narrow sense, i.e., as it applies to the forward-propagating waves) and
neglecting B (backscattering). We recall that previous studies [Feit and
Fleck (1988); Fibich (1996)] suggested that nonparaxiality of the right-
traveling waves (i.e., Azz in the sense of Section 2.3) arrests the collapse of
the NLS solutions, but these studies did not take into account backscatter-
ing effects. Having said that, we still note that the separation into non-
paraxial and backscattering effects, which is based on the ansatz (5), is
somewhat artificial, since the problem in nonlinear. Therefore, when we
compare the NLH and NLS solutions, it is not precisely clear which part of
the difference comes from nonparaxial effects for the right-traveling waves,
and which one from backscattering. A notable exception is, however, at
z=0, where the difference between NLH and NLS solutions is solely due to
backscattering.

2.5. Critical NLS

It is well known that solutions of the NLS (4) can become singular
when either s(D−1) > 2, the supercritical NLS, or when s(D−1)=2,
the critical NLS. However, whereas in supercritical collapse nonlinearity
dominates over diffraction near the singularity, in the critical collapse
nonlinearity and diffraction are almost balanced near the singularity. Con-
sequently, the singularity formation is highly sensitive to small perturba-
tions in the critical case, but much less so is the supercritical case.
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The physical case that corresponds to the propagation of laser beams
in bulk Kerr media is the critical one, as D=3 and s=1. However, in
order to reduce the complexity of the computations, below we consider the
critical case D=2 and s=2. Thus, the NLH for E=E(r, z) and the NLS
for k=k(r, z), which are solved numerically in this study are

Ezz+Err+k
2
0(1+E |E|

4) E=0 (9)

and

ikz+krr+|k|4 k=0 (10)

respectively.

3. NUMERICAL METHODS

The NLH (9) is solved using fourth-order finite differences. The choice
of a higher-order method is motivated primarily by the necessity to resolve
a small-scale phenomenon (backscattering) at the background of the
forward propagating waves. The NLS (10) is also solved by a fourth-order
scheme; it is natural to expect that this will leave less room for potential
purely numerical discrepancies between the two techniques and as such,
will allow for a more accurate comparison. Besides, it is generally known
that higher-order methods provide for a better resolution of waves.

3.1. Numerical Integration of the NLH

Our numerical method for solving the NLH is delineated in Fibich and
Tsynkov (2001); here we only outline its key elements. We use a conven-
tional fourth-order central-difference discretization of the Laplacian; in so
doing the stencil is five-node wide in both r and z directions. As the equa-
tion is nonlinear, we implement a nested iteration scheme. On the outer
loop, we freeze the nonlinearity, i.e., consider the coefficient k2 of (1) as a
given function of r and z, which is actually obtained by taking |E|4 from
the previous iteration. This way we arrive at a linear equation with variable
coefficients. The latter is also solved by iterations on the inner loop of the
nested scheme. Here, we leave the entire varying part of the equation,
which is proportional to E, on the lower level, and on the upper level need
to invert only the constant-coefficient linear Helmholtz operator D+k20I.
Formally, our iteration scheme resembles the fixed-point approach,
however, no rigorous convergence theory is available yet, and the conver-
gence has to be assessed experimentally. The advantage of using these
nested iterations is that first, the method eventually reduces to the repeated
solution of one and the same linear constant coefficient equation driven by
different source terms. As explained below, this can be done efficiently on
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the discrete level. Second, the radiation boundary conditions and the two-
way ABCs are most convenient to set on the upper time level of the itera-
tion scheme already for the linear constant-coefficient operator.

To solve the linear-constant coefficient Helmholtz equation (discrete
counterpart of DE+k20E=g, where g is the right-hand side generated on
the previous iteration) we first separate the variables by implementing the
discrete Fourier transform in the transverse direction r; the boundary
conditions are symmetry at r=0 and zero Dirichlet at r=rmax. This yields
a collection of fourth-order one-dimensional finite-difference equations
parameterized by the dual Fourier variable; each of the latter needs to be
solved independently. The two-way and radiation ABCs at z=0 and
z=zmax, respectively, are set in the Fourier space as well, i.e., separately for
each of the aforementioned one-dimensional equations. This is done by
first identifying the linearly-independent eigen-modes for the homogeneous
version of each one-dimensional equation. It is important to note that even
though the original differential equation is of the second order, we are
using its fourth-order approximation and as such, each homogeneous
discrete one-dimensional equation has four linearly independent solutions.
One pair of the latter approximates the genuine modes of the differential
equation, those may be either traveling or evanescent waves depending on
the value of the dual Fourier variable. The other pair is a pure numerical
artifact, these waves are always evanescent, but their presence implies that
every discrete equation requires two more boundary conditions compared
to the original differential equation. The radiation boundary conditions are
constructed by requiring that on the left boundary z=0 only the left-trav-
eling and/or left-decaying (evanescent) waves be present in the solution,
and on the right boundary z=zmax only the right-traveling and/or right-
evanescent waves be present in the solution. The selection is rendered by
the so-called one-way discrete Helmholtz equations, which are the linear
homogeneous relations that define the span of all appropriate modes for
each boundary. The two-way ABC that also prescribes the incoming signal
at z=0 is constructed on the basis of the corresponding radiation bound-
ary condition by substituting the right-traveling incoming wave into the
one-way-to-the-left Helmholtz equation and as such creating the inhomo-
geneity of a particular form [see Fibich and Tsynkov (2001)]. Simple con-
siderations based on the linear superposition principle and uniqueness
guarantee that the resulting nonhomogeneous relation will correctly specify
the incoming signal at z=0 and still ensure the reflectionless propagation
of all the outgoing (i.e., left-traveling) waves through z=0 toward z=−..

As concerns the computational complexity of the resulting algorithm,
if we introduce the grid dimensions Nr and Nz, then the cost of both the
direct and inverse FFT will be O(NzNr lnNr). The cost of solving each of
the Nr one-dimensional systems will be linear with respect to Nz. Indeed, in
the course of iterations each of these systems needs to be solved many times
for different right-hand sides. Consequently, the sparse LU decomposition
can be performed only once ahead of time, and the cost of each backward
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substitution is linear. Altogether, the complexity of each iteration is still
O(NzNr lnNr).

3.2. Numerical Integration of the NLS

The NLS (10) is discretized in the r direction using standard fourth-
order central differences. It is integrated in z with a four-stage Runge–
Kutta method starting with the initial data Einc(r, 0). The boundary condi-
tion at the remote lateral boundary r=rmax is zero Dirichlet, as in the case
of the NLH.

4. COMPUTATIONAL RESULTS

In accordance with the discussion of Section 2 we have designed a set
of numerical experiments aimed at achieving two objectives: (I) Validate
the computational algorithm of Fibich and Tsynkov (2001) for solving the
NLH through a comparison with numerical simulations of the NLS model,
and (II) corroborate that backscattering effects captured by the NLH model
scale quadratically with the nonparaxiality parameter f, as suggested by
the analysis of Sections 2.3–2.4. Regarding the first objective, let us note
that previously we have tested the numerical algorithm of Fibich and
Tsynkov (2001) in the nonlinear regime using grid convergence, but never
compared it with any other algorithm for computing the propagation of
waves in Kerr media. As concerns the second objective, it amounts to the
accurate numerical computation of backscattering in nonlinear self-focus-
ing, and we are currently unaware of any previous technique with similar
capabilities.

To be able to conduct an accurate comparison of the numerical pre-
dictions obtained with the NLH and NLS models (Eqs. (9) and (10),
respectively), we have chosen a regime with the input power below critical,
for which the solution of the NLS does not develop singularities. We take
k0=8 and E=0.04, which corresponds to 74% of the critical power Nc [see
Weinstein (1983), Fibich and Tsynkov (2001)]. The incoming beam profile is
Einc(r, 0)=e−(r/r0 )

2
, such that the beam width r0 is much less than rmax. To

allow for the variation of the nonparaxiality parameter f=1/k0r0, we vary
the beam width r0 while keeping the wavenumber k0 and the quantity
k0 `E that controls the fractional critical power unchanged.

In Fig. 2 we show the on-axis amplitude profiles for the NLH and
NLS numerical solutions; Fig. 2(a) corresponds to f=1/8, and Fig. 2(b)
corresponds to f=1/16. We plot the values of the computed solution on
the axis of symmetry r=0 because this is the most interesting location in
the domain where the genuinely nonlinear phenomena take place. A clear
manifestation of nonlinear self-focusing is the ‘‘bump,’’ or peak, on the
solution curves in Fig. 2, whose value is higher than that of the incoming
wave Einc(0, 0).
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Fig. 2. On-axis amplitudes of the solutions to NLH: |E(0, z)|, and NLS: (Er20k
2
0)
−1/4|k(0, z)|,

plotted vs. z/2LDF.

It is easy to see that for both f=1/8 and f=1/16 the NLH and
NLS curves in Fig. 2 are close to one another. As the NLS is a well-estab-
lished model that has regular solutions for subcritical initial powers, we
conclude that our numerical algorithm for solving the NLH [Fibich and
Tsynkov (2001)] (that starts the iteration process with the initial guess
E — 0) indeed converges to the correct solution.

We also notice that the discrepancy between the NLH and NLS curves
on Fig. 2(a) is larger than that on Fig. 2(b). This behavior is expected

0 0.1 0.2 0.3

Normalized propagation distance  

0.9

0.95

1

1.05

E
le

c
tr

ic
 f

ie
ld

 a
m

p
lit

u
d

e

Nonparaxiality parameter f=1/8

NLS

NLH

Fig. 3. Zoom-in on Fig. 2(a) in the area of the nonlinear self-focusing peak.
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Fig. 4. (a) The quantity given by formula (11) as a function of f compared on the log–log
scale with the approximation 0.75 ·f2.05 (solid line). (b) The difference (12) between the two
solutions as a function of z/2LDF for f=1/8 and f=1/16.

according to the analysis of Section 2.3, because the discrepancy between
the two curves is due to nonparaxiality and backscattering. In particular,
these simulations suggest that the NLS is indeed the asymptotic limit of the
NLH as f0 0. Perhaps the most apparent manifestation of the presence
of backscattering in the solution of the NLH is that the computed value of
the total electric field at z=0 differs from that of the incoming wave, as
one can clearly see in Fig. 3 where we zoom in on the two curves obtained
for f=1/8. The small ripples in the NLH solution may also be evidence of
backscattering (see Section 2.3).

Next, we quantify the backscattering effect by computing a series of
solution pairs (NLS and NLH) for additional values of f. In Fig. 4(a) we
show by asterisks on the log–log scale the quantity

|(Ek20r
2
0)
1/4 E(0, 0)−k(0, 0)| — |(Ek20r

2
0)
1/4 E(0, 0)−A(0, 0)| (11)

(cf. formula (8)), where E is the computed solution of the NLH and k is
the solution to the NLS that satisfies the initial condition k(0, 0)=1, for
f=1/16, 1/12, 1/10, and 1/8. The solid line on Fig. 4(a) that fits closely
the computed data is 0.75 ·f2.05. This essentially corroborates that the
magnitude of backscattering indeed scales quadratically with the non-
paraxiality parameter f, as predicted in Section 2.3 and further discussed in
Section 2.4.

Let us also note that to evaluate the quantity (11) we do not really
need to solve the NLS, because the initial profile at z=0 is given. To
compare the actual computed solutions of the NLH and NLS, we plot on
Fig. 4(b) the quantity

|(Ek20r20)1/4 |E(0, z)|− |k(0, z)|| (12)
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for f=1/8 and f=1/16 (same values as on Fig. 2) as a function of the
normalized propagation distance for z \ 0. Although the curves on
Fig. 4(b) are oscillatory, we still see that that the difference between the
solutions of the NLH and NLS decreases for all z with the decrease of f.

5. CONCLUSIONS

We have compared numerically the solutions to the nonlinear
Schrödinger equation and nonlinear Helmholtz equation, both of which
model the propagation of time-harmonic electromagnetic waves in Kerr
media. The NLH was solved using a new fourth-order method supple-
mented by the two-way artificial boundary conditions that guarantee the
proper behavior of the waves as they enter and leave the computational
domain. As the NLS is considered an established model, the agreement of
the NLH and NLS simulations provides a good justification that the NLH
algorithm indeed converges to the correct physical solution. On the other
hand, the NLH is a more comprehensive model that, unlike the NLS, takes
into account the phenomenon of nonlinear backscattering. As such, we
attribute the small discrepancies that do exist between the NLH and NLS
solution to nonparaxial and backscattering effects. By analyzing several
computational variants that correspond to different values of the non-
paraxiality parameter f we have been able to corroborate that the magni-
tude of the backscattered wave indeed scales quadratically with this
parameter, according to the theoretical predictions. To the best of our
knowledge, this is the first study ever that allows for an accurate quantita-
tive estimation of backscattering in nonlinear self-focusing.
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