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Abstract

We analyze self-focusing and singularity formation in the complex Ginzburg1Landau equation (CGL) in the regime
where it is close to the critical nonlinear Schrödinger equation. Using modulation theory [Fibich and Papanicolaou, Phys.
Lett. A 239 (1998) 167], we derive a reduced system of ordinary differential equations that describes self-focusing in CGL.
Analysis of the reduced system shows that in the physical regime of the parameters there is no blowup in CGL. Rather, the
solution focuses once and then defocuses. The validity of the analysis is verified by comparison of numerical solutions of
CGL with those of the reduced system. c© 1998 Elsevier Science B.V.

1. Introduction

The Complex Ginzburg1Landau equation (CGL)

ipt + Dp + |p |2p − iε1p − iε2Dp + iε3|p |2p = 0

arises in a variety of physical problems 1 models
of chemical turbulence, analysis of Poiseuille flow,
Rayleigh1Bérnard convection and Taylor1Couette
flow. Its name comes from the field of superconduc-
tivity, where it models phase transitions of materials
between superconducting and non-superconducting
phases (see, e.g., Refs. [1,2] and references therein).

When ε1 = ε2 = ε3 = 0, CGL formally reduces
to the nonlinear Schrödinger equation (NLS) which,
for spatial dimension d > 2, has solutions that be-
come singular in a finite time. Since CGL solutions

1 E-mail: fibich@math.tau.ac.il.
2 E-mail: dlevy@math.berkeley.edu.

are believed to exist globally, one can draw an analogy
between NLS as the weak limit of CGL and the Eu-
ler equations as the weak limit of the Navier1Stokes
equations (see, e.g., Ref. [3]). In Ref. [4] it was
suggested that in a periodic d-dimensional domain
the CGL equation, considered as a perturbation of the
NLS equation, can provide a model for the study of
“turbulent” solutions of partial differential equations.
This approach was further studied in Ref. [3].

In this work we consider the relation between the
two-dimensional CGL on an infinite domain

ipt(t, x, y) + Dp + |p |2p − iε1p − iε2Dp + iε3|p |2p
= 0 (1)

and the 2D critical NLS

ipt(t, x, y) + Dp + |p |2p = 0 , (2)

where from now on
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∆ =
∂2

∂x2
+

∂2

∂y2
(x, y) ∈ R2 , t > 0 .

Our analysis is restricted to the behavior of solutions
of CGL in the regime where it is close to NLS, i.e.

|ε1| � 1 , |ε2| � 1 , |ε3| � 1 . (3)

We “self-focus” on initial conditions

p(0, x, y) = p0(x, y)

that lead to finite-time singularity in NLS and analyze
the behavior of CGL solutions with these initial condi-
tions. While it is difficult to understand the dynamics
of these CGL solutions from direct rigorous analysis
of CGL, when (3) holds we can formally treat CGL
as a perturbation of NLS and analyze it using modula-
tion theory, which is a perturbation method that sim-
plifies the analysis of the effect of small perturbations
on self-focusing in the critical NLS [5,6].

The Letter is organized as follows. We begin in Sec-
tion 2 by briefly reviewing self-focusing theory for
the critical NLS and state in Proposition 2.1 the main
result of modulation theory. In Section 3, modulation
theory is applied to the CGL model, resulting in a re-
duced system of ordinary-differential equations (16)
which describes the leading order behavior of self-
focusing in CGL. Analysis of this system in Section 4
shows that when ε := ε2 + 2ε3 > 0 there is no sin-
gularity formation in CGL. Instead, there is a single
focusing1defocusing event and the maximum growth
of the solution has a bound which is exponentially
large in ε−1 (Eq. (26)). In the regime ε2 + 2ε3 < 0
solutions can blow-up in finite time, which is smaller
than the blow-up time for the corresponding NLS
equation. In Section 5 we present numerical simula-
tions that demonstrate the agreement between CGL
and the reduced system (16).

2. Review of self-focusing theory

We begin with a brief review of self-focusing theory
for the critical NLS (2). For more details see Ref. [5].

A conserved quantity for solutions of NLS is the
power 3

3 In the context of nonlinear optics, the L2 norm is related to the
power of the laser beam.

N(z) =
1

2π

∫
|p |2 dx dy ≡ N(0) ,

which is of a particular importance due to its connec-
tion with singularity formation in NLS. A necessary
condition for singularity formation in (2) is that the
initial power exceeds the critical value Nc:

N(0) > Nc ' 1.86 .

To proceed, we construct waveguide solutions of NLS
of the form

p = exp(it)R(r) , r = (x2 + y2)1/2 ,

where the radial function R(r) satisfies(
∂2

∂r2
+

1
r

∂

∂r

)
R− R+ R3 = 0 , R′(0) = 0 ,

lim
r→∞

R(r) = 0 . (4)

The solution of (4) with the lowest power (“ground
state”), the so-called Townes soliton, has an important
role in self-focusing theory. This positive, monotoni-
cally decreasing solution has exactly the critical power
for self-focusing and it satisfies

∞∫
0

R2 r dr =

∞∫
0

(∇R)2 r dr = 1
2

∞∫
0

R4 r dr = Nc .

(5)

Analysis of self-focusing in NLS is based on the as-
sumption (which is supported by numerical and ana-
lytical evidence) that in the vicinity of the singularity,
the solution is roughly a modulated Townes soliton,

p ∼ pR ,

where

pR :=
1

L(t)
R(ρ) exp(iS) , ρ =

r

L
,

S = τ+
Lt
L

r2

4
,

dτ
dt

=
1
L2

. (6)

More precisely, near the singularity, ps, the inner part
of the solution 4 whose power is slightly above critical,

4 A possible definition is ps = p for 0 6 ρ 6 ρc, with 1� ρc
constant.
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collapses towards the singularity in a quasi-self-similar
fashion,

ps ∼
1
L
V (τ, ρ) exp(iS) ,

where

V → R as t→ Tc

and Tc is the blowup time. Blowup, of course, corre-
sponds to

lim
t→Tc

L(t) = 0 .

Based on the modulation ansatz pR, it was shown that
near the singularity self-focusing can be described by
the reduced system [719]

βt = −ν(β)
L2

, (7)

Ltt = − β

L3
, (8)

where

ν(β) ∼ c exp

(
− π

β1/2

)
, c ' 45.1 .

In the context of nonlinear optics, the modulation vari-
ableL is the transverse width as well as 1/amplitude of
the focusing part of the laser beam ps and β is propor-
tional to the excess power above critical of ps [5,10],

β(z) ∼ N(ps)−Nc

M
, (9)

where

M = 1
4

∞∫
0

r2R(r) r dr ' 0.55 .

The ν(β) term arises from radiation effects (power
losses of ps to the background) during self-focusing.

Originally, the reduced system (7), (8) was used
to derive the log1log law for the blowup rate of crit-
ical NLS [719]. Later, it turned out that the log1log
law is not valid even after L becomes as small as
10−10 [11,5]. However, since near the singularity

0 6 β(t)� 1 ,

ν(β) is exponentially small and self-focusing is es-
sentially adiabatic, following

−L3Ltt ∼ β(0) . (10)

This relation leads to the adiabatic law for critical col-
lapse which is valid in the domain of physical inter-
est [11,5].

2.1. Modulation theory for the perturbed critical NLS

The NLS equation in spatial dimension D and with
nonlinearity |p |2σp is called critical when σD = 2.
Self-focusing in critical NLS has unique features,
being the borderline case between subcritical NLS
(σD < 2) where the focusing nonlinearity cannot
dominate over diffraction and all solutions exists glob-
ally, and the supercritical NLS (σD > 2) where the
focusing nonlinearity can dominate over diffraction,
in which case the singularity formation is relatively
insensitive to small perturbations in the equation. As
a result, a unique feature of self-focusing in the criti-
cal NLS (see, e.g., Eq. (2), where σ = 1 and D = 2)
is that addition of small perturbations to the equation
can have a large effect on the formation of singularity.
Therefore, analysis of self-focusing in equations of
the form

ipt + Dp + |p |2p + εF(p,pt,∇p, . . .) = 0 ,

|ε| � 1 , (11)

requires a delicate perturbation method which is based
on the modulation ansatz pR (6). Recently, such a
method, called modulation theory, was developed
in [5,6] and its main result is the following.

Proposition 2.1. If

p ∼ pR , |β(t)| � 1

and the perturbation is small

|εF | � |Dp | and |εF | � |p |3 ,

then self-focusing in the perturbed NLS (11) is given
to a leading order by the reduced system

βt(t) +
ν(β)
L2

=
ε

2M
(f1)t −

2ε
M
f2 ,

Ltt(t) = − β

L3
. (12)
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The auxiliary functions f1 and f2 are given by

f1(t) = 2L(t) Re

[∫
F(pR) exp(−iS)

× [R(ρ) + ρ∇R(ρ)] r dr

]
, (13)

f2(t) = Im

[ ∫
p∗RF(pR) r dr

]
. (14)

3. Derivation of the reduced equations

In order to apply modulation theory to CGL, we
rewrite Eq. (1) in the form

ipt + Dp + |p |2p + ε1F + ε2G+ ε3H = 0 , (15)

where

F = −ip , G = −iDp , H = i|p |2p .

The auxiliary functions in modulation theory which
correspond to F are

f1(t) = 2L(t)Re
∫

[−ipR] exp(−iS)[R+ ρ∇R]

= 0 ,

f2(t) = Im
∫

[−ipR]p∗R = −Nc .

The derivation of the auxiliary functions which corre-
spond to G is left to Appendix A. This computation
yields

g1(t) = 2(E−Nc)LLt ,

E =
∫
ρ3[∇R(ρ)]2 ρ dρ ≈ 2.9680 ,

g2(t) =
Nc

L2
+ML2

t .

Finally, the auxiliary functions corresponding toH are

h1(t) = 2L(t)Re
∫

[i|pR|2pR] exp(−iS)

× [R+ ρ∇R] = 0 ,

h2(t) = Im
∫

[ i|pR|2pR]p∗R =
∫
|pR|4 =

2Nc

L2
.

Therefore, to a leading order self-focusing in CGL
is given by the reduced system

βt(t) =
2Nc

M

(
ε1 −

ε2 + 2ε3

L2

)
+ ε2

(
E − Nc

M
− 2

)
L2
t

− ε2
E −Nc

M

β

L2
− ν(β)

L2
,

Ltt(t) = − β

L3
. (16)

4. Analysis of the reduced system

Since in this work we are considering the effect
of CGL “extra terms” on singularity formation, we
analyze (16) when

0 < L� 1, |β| � 1 . (17)

Under the assumptions (17), to a leading order the
first equation in (16) reduces to 5

βt = − ε

L2
, ε :=

2Nc

M
(ε2 + 2ε3) . (18)

Changing the independent variable in (18) to

τ =

t∫
0

1
L2(t′)

dt′

yields, after one integration,

β(τ) = β0 − ετ , β0 = β(0) . (19)

We now define

A :=
1
L
.

Therefore, A > 0, blowup corresponds to A → +∞
and complete defocusing amounts to A ↘ 0. Using
the relation β = Aττ/A, Eq. (19) can be rewritten as

Aττ = (β0 − ετ)A , (20)

which is Airy’s equation

Ass = sA , s = ε−2/3(β0 − ετ) . (21)

5 Here we used L2
t � L−2 since L2L2

t = O(β)� 1.



290 G. Fibich, D. Levy / Physics Letters A 249 (1998) 2861294

The initial condition for (21) is given at

s0 = s(τ = 0) = ε−2/3β0 .

Since we are interested in the effect of the perturbation
as ε → 0, we assume that ε is sufficiently small so
that s0 � 1. The solution of Eq. (21) is a linear
combination of the Airy and Bairy functions [12]

A(s) = k1Ai(s) + k2Bi(s) . (22)

In order to determine k1 and k2 from the initial con-
ditions, we first note that initially the effect of the
perturbation in (20) is small, and self-focusing in the
reduced CGL follows,

Aττ ∼ β0A , 0 6 τ� β0

|ε| ,

which corresponds to adiabatic self-focusing in the
unperturbed NLS (10). Therefore,

A ∼ 1
2

(
A0 +

A′0√
β0

)
exp(β1/2

0 τ)

+
1
2

(
A0 −

A′0√
β0

)
exp(−β1/2

0 τ) , (23)

0 6 τ� β0

|ε| ,

where A0 := A(0) and A′0 = A′(0). We recall that for
large s (see, e.g., Ref. [12]),

Ai(s) ∼ 1
2π1/2

s−1/4 exp(− 2
3s

3/2) , s� 1 ,

Bi(s) ∼ 1
π1/2

s−1/4 exp( 2
3s

3/2) , s� 1 . (24)

Combining (22,24) and expanding s = s0(1−ετ/β0)
for 0 6 τ� β0/|ε| gives

A ∼ k1Ai(s0) exp(sgn(ε)β1/2
0 τ)

+ k2Bi(s0) exp(−sgn(ε)β1/2
0 τ) .

Matching this relation with (24) results in

k1 =
1

2Ai(s0)

(
A0 + sgn(ε)

A′0√
β0

)
,

k2 =
1

2Bi(s0)

(
A0 − sgn(ε)

A′0√
β0

)
.

4.1. CGL as a defocusing perturbation (ε > 0)

In the physical regime of parameters ε1, ε2, ε3 > 0,
in which case ε > 0. We begin by following the evo-
lution of the power of the focusing part of the beam.
From (9), (19) we see that N(ps) is monotonically
decreasing in τ, going below critical at s1 = 0. There-
fore, we can expect focusing to be arrested at s2 < s1,
corresponding to a later time Tmax := t(s2). Since the
power continues to decrease after the arrest, we do not
expect the solution to refocus.

In order to see that this is indeed what happens, we
note that as τ increases, s decreases, Bi(s) becomes
exponentially small compared with Ai(s) and

A(s) ∼ k1Ai(s) .

Since Ai(s) is bounded for s 6 s0, A(s) does not
become infinite, i.e., there is no singularity formation.
In fact, focusing is arrested when the Airy function
attains its absolute maximum at s2 ' −1.0. At that
point A(s) attains its maximum, which is

A(s2) ∼ k1Ai(s2) ' 0.54k1 .

Therefore, the maximum amplification factor (AF) is

AF := max
s6s0

A(s)
A0

=
A(s2)
A0

' 0.54
2Ai(s0)

(
1 +

A′0
A0
√
β0

)
. (25)

Hence, AF increases exponentially with decreasing ε.
In particular, when p0 is real, Lt(0) = 0 and AF can
be estimated by

AF ' 0.54
√
πβ

1/4
0 ε−1/6 exp

(
2
3
β

3/2
0

ε

)
. (26)

Note that although Ai(s) oscillates as s → −∞, the
reduced system is physically relevant only until A(s)
vanishes, corresponding to complete defocusing (L =
∞). This occurs at s3 ' −2.3 where Ai(s) attains
its first zero. Therefore, there is a single focusing1
defocusing event. We also note that indeed s2 < s1,
i.e., the arrest occurs after the power has already gone
below critical.

It is interesting to compare the effect of CGL extra
terms with that of the many perturbations of NLS an-
alyzed in Ref. [5]. Using modulation theory, it was
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shown there that a small defocusing perturbation typi-
cally results in decaying focusing1defocusing oscilla-
tions, where the decay between oscillations becomes
stronger as ε goes to zero. Therefore, unlike CGL
(where there is always a single focusing1defocusing
event), in those cases the number of oscillations de-
pends on ε and only when ε is extremely small there
is a single focusing1defocusing event.

The time of the maximal focusing can be estimated
using

Tmax ∼ ε−1/3k−2
1

s0∫
s2

Ai−2(s) ds .

From (19), it is clear that

lim
ε↘0

Tmax(ε) = Tc ,

where Tc is the blowup time for the solution of NLS
with the same initial condition.

4.2. CGL as a focusing perturbation (ε < 0)

In this case, as τ increases, s also increases, Bi(s)
becomes exponentially large compared with Ai(s) and

A(s) ∼ k2Bi(s) .

Consequently, the solution blows up at a finite time
T ∗. From (19), it is clear that T ∗ is smaller than Tc
and that

lim
ε↗0

T ∗(ε) = Tc .

Note that our analysis suggests that the domain of
singularity formation for CGL is

ε2 + 2ε3 < 0 .

5. Numerical results

In this section we present the results of numeri-
cal simulations obtained for both the CGL model,
Eq. (1), and for the corresponding reduced sys-
tem (16). Eq. (1) was solved in the radially symmet-
ric case using an explicit finite-differences method.
Spatial derivatives were approximated by fourth-order
accurate centered differences. Special attention was

Fig. 1. Evolution of radial beam width L according to the reduced
system (16) and to its leading order approximation (18).

given to the computation of the Laplacian near the
zero, where it was approximated by a Taylor expan-
sion which amounts to using ∆⊥u ' 2urr for r = 0.
The infinite domain in the radial direction was ap-
proximated by a finite domain which was taken large
enough as not to introduce any boundary effects on the
practically compactly supported solution. An explicit
third-order Adams1Bashford method was used for
marching in time. The initialization required for the
Adams1Bashford time marching was performed using
a Runge1Kutta method. The reduced system (16) was
solved directly using Matlab’s Runge1Kutta ODE45
solver.

The required values of β0 and L(t) were recovered
using the asymptotic relations (9) and

L(t) ∼ R(0)
|p(t, 0, 0)| .

Both relations are only O(β) accurate. However, as
can be seen from (26), the results of the reduced sys-
tem have an exponentially large sensitivity to errors in
recovering the initial valuesβ0 andL0. Due to that sen-
sitivity, one can expect difficulties in matching the re-
sults obtained from solving both equations. Therefore,
as evident below, for a general initial condition the
numerical solutions of the two equations agree quali-
tatively, while for Townes-based initial conditions the
two numerical solutions match also quantitatively.

We begin by verifying numerically that (18) is in-
deed valid as an approximation to (16). In Fig. 1 we
present the results obtained by integrating both equa-
tions with the initial conditions
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Fig. 2. Evolution of the on-axis amplitude A = 1/L for the initial
condition (27) with ε1 = ε2 = ε3 = 0.01 and δ = 0.08.

Fig. 3. Evolution of the on-axis amplitude for the initial condi-
tion (27) with ε1 = ε2 = ε3 = 0.01 and δ = 0.07.

β(0) = 0.1 , L(0) = 1 , Lt(0) = 0 ,

ε1 = ε2 = ε3 = 0.0001 .

It is clear that (18) is a good approximation to (16)
and that both solutions have one focusing event fol-
lowed by complete defocusing.

In Figs. 2 and 3 we present results obtained with a
Townes-based initial data with power slightly above
critical,

p(t = 0, r) = (1 + δ)R(r). (27)

Here R(r) is the Townes soliton, i.e. the ground-state
solution of (4). In Fig. 2, δ = 0.08 and ε1 = ε2 = ε3 =
0.01 while in Fig. 3, δ = 0.07 and ε1 = ε2 = ε3 = 0.01.
In Fig. 4 we added focusing to the initial condition by
adding a quadratic phase factor

Fig. 4. Evolution of the on-axis amplitude for the focused initial
condition (28) with ε1 = ε2 = ε3 = 0.008, δ = 0.03 and F = 0.7.

p(t = 0, r) = (1 + δ)R(r) exp

(
−i

r2

4F

)
. (28)

Here, F = 0.7, δ = 0.03 and ε1 = ε2 = ε3 = 0.008.
Each figure displays two graphs: The amplitude of the
solution of CGL

A[Eq. (1)](t) =
|p(t, 0, 0)|
R(0)

,

and that of the solution of the corresponding reduced
system

A[Eq. (16)](t) =
1

L(t)
.

As predicted by the analysis, in all three figures there
is a single focusing1defocusing event and there is a
reasonable quantitative agreement between the two so-
lutions. The maximal focusing (AF) is larger in Fig. 2
than in Fig. 3, since the initial power is larger there, in
agreement with (26). In Fig. 4, the maximal focusing
is even larger than in Figs. 2 and 3 although the ini-
tial power is smaller there, due to the addition of the
initial focusing factor (which corresponds to the A′0
term in (25)). Finally, we note that in Fig. 1, where
the initial power is smaller than in Figs. 214 (in this
case δ ∼ βM/2Nc ∼ 0.015), the maximal focusing
is much higher, due to the exponential dependence of
AF on ε (relation (26)).

It is quite surprising that in Fig. 4 the two solu-
tions, after separating during the focusing stage, seem
to merge again at later times. This phenomena was
observed in numerous simulations that we carried out
for various values of ε1, ε2, ε3, δ and F . We have no
explanation for this behavior.
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Fig. 5. Evolution of |p(t, 0, 0)| for Gaussian and super-Gaussian
initial conditions (29) with ε1 = ε2 = ε3 = 0.01.

Fig. 6. Blowup time for CGL at the non-physical domain
(ε1 = ε2 = ε3 = −0.01) is earlier than for NLS. Here, δ = 0.2
and F = 0.2.

We also verified that a similar focusing1defocusing
behavior is observed for other types of initial condi-
tions. For example, in Fig. 5 we present numerical re-
sults obtained with Gaussian and super-Gaussian ini-
tial data

p1(t = 0, r) = 3 exp(−r2),

p2(t = 0, r) = 2.7 exp(−r4). (29)

As in the previous examples, there is a single
focusing1defocusing event.

Finally, we present in Fig. 6 a comparison of the
solution of CGL in the non-physical regime ε < 0
with the solution of NLS. The parameters used are
ε1 = ε2 = ε3 = −0.01, and the initial data is (28)
with δ = 0.2, F = 0.2. As predicted by the analysis,
the solution of CGL blows-up in a finite time which

is earlier than the blow-up time of the NLS solution
with the same initial data. As before, there is good
agreement between the solution of CGL and the one
of the reduced system.

6. Final remarks

Our analysis of blowup in CGL is based on the
assumption that CGL solution is close to the NLS
blowup attractor pR. Consequently, we do not claim
that there are no other mechanisms of blowup or near-
blowup in CGL. This assumption, however, seems rea-
sonable in the context of our analysis of the relation
between blowup in CGL and in NLS. The results of
our simulations in Section 5 provide a strong support
to the validity of this assumption.

We have used the assumption of radial symmetry in
the analysis and in the simulations. This assumption is
reasonable for initial conditions not exceeding twice
the critical power [13]. However, it is well known
that NLS solutions with radially symmetric initial con-
ditions whose power is much larger than critical are
unstable with respect to symmetry-breaking perturba-
tions, which break the solution into filaments, each of
which self-focuses pretty much independently of the
others. In that case, our analysis should apply to each
filament separately.

We note that a similar analysis can be performed for
any CGL equation which is a perturbation of a critical
NLS, such as, e.g., the 1D CGL with quintic nonlin-
earity. Our analysis, however, can not be straightfor-
wardly carried over to the subcritical and the supercrit-
ical cases, since the existence of an attractor pR and
modulation theory are only valid in the critical case.

A different approach, based on energy estimates,
was taken in Ref. [14] where it was shown that the
CGL solution exists globally and a bound was derived
on the maximal growth of the solution as t→∞. Our
analysis provides a different kind of information: The
dynamics of the solution (one focusing1defocusing
cycle), the location of the maximal focusing, a bound
on the maximal growth of the solution for 0 6 t <∞
and the seperatix ε2 + 2ε3 between global existence
and blowup.

In Ref. [15], the 2D CGL on a square cell with
Neumann boundary conditions was approximated
near the threshold of the modulational instability by a
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five-dimensional dynamical system. Further analysis
showed that this system has a region of chaos and does
not preclude the possibility of blowup. Our results
(for CGL on an infinite domain) suggest that there is
no blowup and we have seen no evidence for chaos.
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Appendix A. Derivation of g1 and g2

Below, we outline the derivation of g1(t) and g2(t)
which are the auxiliary functions corresponding to G
defined in (15).

g1(t) = 2L(t)Re
∫

[−iDpR] exp(−iS)[R+ ρ∇R]

= 2 Im
∫

[R+ ρ∇R] exp(−iS)∆[R(ρ) exp(iS)]

= 2
∫

[R+ ρ∇R]

[
R
Lt
L

+ 2
∇R(ρ)
L

r

2
Lt
L

]
r dr

= 2LLt

∫
∇R[R+ ρ∇R] ρdρ

= 2LLt

[ ∫
ρ3[∇R(ρ)]2 ρ dρ

−
∫

[∇R(ρ)]2 ρ dρ

]
,

g2(t) = Im
∫

[−iDpR]p∗R =
∫
|∇⊥pR|2

=
1
L2

[
1
L2
|∇R|2 +

(
Lt
L

r

2

)2

R2

]
.
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