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Summary. In this Chapter, we give a brief summary of the “present status” of self-focusing
theory, while trying to highlight the fascinating evolution of this theory.

1 Introduction

During the 1960s and early 1970s, there has been an intense theoretical and experimen-
tal research on self-focusing of intense laser beams in bulk media. In 1975, the results
of this research activity were summarized in two long review papers:Self focusing:
Experimental, by Shen [60], andSelf focusing: Theory, by Marburger [50].

Around that time, mathematicians started to become interested in self focusing
theory. A large part of this research effort concerned collapsing (i.e., singular) solutions
of the 2D cubic Nonlinear Schrodinger equation (NLS)

iψz(z, x, y) +∆ψ + |ψ|2ψ = 0, ∆ = ∂xx + ∂yy. (1)

Here,ψ is the complex-valued electric field envelope,z is the direction of propagation,
andx andy are the transverse coordinates. Let the Kerr medium be located atz > 0.
Then, the NLS is solved forz > 0, subject to the initial condition

ψ(z = 0, x, y) = ψ0(x, y), −∞ < x, y <∞,

whereψ0 is the envelope of the electric field that impinges on the Kerr medium inter-
face atz = 0. Analysis of singular solutions of the NLS (1) turned out to be a hard
mathematical problem for several reasons. First, the NLS is genuinely nonlinear, so
linearization-based techniques are not applicable. Second, unlike the 1D cubic NLS,
equation (1) is not integrable, so one cannot use inverse scattering theory. Finally, it
turned out that the 2D cubic NLS is a “borderline case” for collapse in the following
sense. Consider thed-dimensional focusing NLS with nonlinearity exponentp, i.e.,

iψz(z, x1, . . . , xd) +∆ψ + |ψ|p−1ψ = 0, ∆ = ∂x1x1 + · · ·+ ∂xdxd . (2)

Then, the NLS (2) has collapsing solutions if(p − 1)d > 4, the supercriticalcase.
When, however,(p − 1)d < 4, the subcritical case, there are no singular solutions.
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Therefore,(p − 1)d = 4, thecritical NLS, is a “borderline case” for collapse. In par-
ticular, the NLS (1) for whichp = 3 andd = 2 is critical. “As a result”, self-focusing
in the NLS (1) is characterized by a delicate balance between the focusing Kerr non-
linearity and diffraction. Hence, for example, collapse in the critical NLS is highly
sensitive to small perturbations, which can arrest the collapse even when they are still
small [31].

The present mathematical theory of self focusing is very different from the one in
1975, since it is mostly based on results that were obtained after 1975.1 For various
reasons, some of these results have not become part of the common knowledge of the
nonlinear optics community. The goal of this Chapter is, thus, to provide a short survey
of the current status of the mathematical theory of self focusing, and to express it in
a nonlinear optics context. Obviously, we focus on the mathematical results which we
believe are of most relevance to the nonlinear optics applications. For more extensive
reviews, see [31, 62].

2 Some pre-1975 results

We begin with some pre-1975 results. The NLS (1) has several conservation laws. Of
most importance are the conservation ofpower

P (z) ≡ P (0), P (z) =
∫

|ψ|2 dxdy,

and of theHamiltonian

H(z) ≡ H(0), H(z) =
∫

|∇ψ|2 dxdy − 1
2

∫
|ψ|4 dxdy.

Another identity that plays an important role in NLS theory is thevariance iden-
tity [65]. Let

V (z) =
∫
r2|ψ|2 dxdy, r =

√
x2 + y2.

Then,
d2

dz2
V = 8H(0). (3)

Since vanishing of variance can only occur if the whole solution collapses into the
singularity, the variance identity leads to the following result:

Theorem 1.Letψ be a solution of the NLS (1) with initial conditionψ0. Assume that
one of the following three conditions holds:

1.H(0) < 0.
2.H(0) = 0 and Im

∫
ψ∗

0(x, y) · ∇ψ0 dxdy < 0.

1 The year 1975 was chosen as the ‘borderline’ between the ‘past’ and ‘present’ in self focusing
theory, because of the review papers of Marburger and Shen [50, 60] that appeared in that
year. Clearly, this choice is somewhat arbitrary.
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3.H(0) > 0 and Im
∫
ψ∗

0(x, y) · ∇ψ0 dxdy ≤ −
√
H(0)V (0),

where∇ = (∂x, ∂y) andψ∗
0 is the complex conjugate ofψ0. Then,ψ becomes singular

at a finite propagation distance.

An important symmetry of the critical NLS (1), known as thelens transforma-
tion, is as follows [63]. Letψ be a solution of the NLS (1) with initial condition
ψ0(x, y), and letψ̃ be the solution of the NLS (1) with initial conditioñψ(0, x, y) =
e−i r2

4F ψ0(x, y). Then,ψ̃ is given by

ψ̃(z, x, y) =
1

L(z)
ψ(ζ, ξ, η)ei Lz

L
r2
4 ,

where

L(z) = 1 − z

F
, ζ =

∫ z

0

L−2(s) ds, ξ =
x

L
, η =

y

L
.

2.1 Effect of a lens

Since
1
z

=
1
F

+
1
ζ
, (4)

and since the addition of the quadratic phase terme−i r2
4F corresponds to adding a

focusing lens with focal lengthF at z = 0, the lens transformation shows that in a
bulk Kerr medium, the effect of a lens atz = 0 is “the same” as in linear geometrical
optics.

In particular, letZc be the collapse distance of a laser beam. If we now add a lens
with focal lengthF at z = 0, then the new collapse distance, denoted byZF

c , follows
immediately from equation (4), and is given by

1
ZF

c

=
1
F

+
1
Zc
. (5)

Therefore, the collapse distance decreases when the lens is focusing (F > 0), increases
when the lens is defocusing (F < 0, and collapse is arrested by the defocusing lens if
−Zc < F < 0.

2.2 TheR (Townes) profile

The NLS (1) has waveguide solutions of the formψw−g = eiλ2zRλ(r), where
Rλ(r) = λR(λr), andR is the solution of

R′′(r) +
1
r
R′ −R+ R3 = 0, R′(0) = 0, R(∞) = 0.

This equation turns out to have an infinite number of solutions. Of most interest, how-
ever, is the ground-state solution, known as theR profile or theTownes profile, which
is positive and monotonically decreasing to zero.
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TheR-based waveguide solutions were originally considered by Chiao, Garmire
and Townes [9] in the context ofself-trapping, i.e., the observation of long and narrow
filaments in experiments. It later turned out, however, that the NLS waveguide solu-
tionsψw−g cannot be used to explain self-trapping, since they are unstable. Indeed,
if we perturb the initial condition asψ0 = (1 + ε)R(r), where0 < ε � 1, then the
corresponding solution will collapse after a finite propagation distance [67]. Neverthe-
less, theR profile is extremely important in NLS theory, since it has the critical power
for collapse (Section 3) and since it is the universal, self-similar profile of collapsing
beams (Section 4).

3 Critical power

Kelley [41] was the first to predict that the key quantity that determines whether a beam
would collapse is its input power (and not, e.g., its initial radius or focusing angle).
During the sixties and seventies, however, there has been some confusion regarding
the value of the critical power.

Weinstein [67] proved that a necessary condition for collapse is that the input power
will exceed the power of theR profile, i.e., thatP ≥ Pcr, where

Pcr =
∫
R2 dxdy ≈ 11.70.

Merle [52, 53] proved that the only collapsing solutions with thecritical powerP =
Pcr are those whose input profile is given by theR profile. Therefore, for any other
input profile the threshold power for collapsePth is strictly abovePcr. For example,
the threshold power for a Gaussian profileψ0 = c · exp(−r2) is≈ 2% abovePcr, and
for a super-Gaussian profileψ0 = c · exp(−r4) is ≈ 9% abovePcr [21]. In general,
the threshold power for collapse of an input profile which is “close” to theR profile
will be lower (i.e., closer toPcr) than of an input profile which is “less similar” to the
R profile.

Since the conditionH(0) < 0 implies collapse (see Section 2), some researchers
estimated the threshold power for collapse from the condition of a zero Hamiltonian.
AlthoughPcr =

∫
R2 dxdy is only a lower boundfor the threshold power, in the case

of cylindrically-symmetric initial conditions, it provides a much better estimate for the
threshold power than the one obtained from the condition of a zero Hamiltonian ([21],
and see also Section 6.1).

The threshold power for collapse increases with input beam ellipticity. Fibich and
Ilan [23] showed that for an elliptic input profileψ0 = cF (

√
(x/a)2 + (y/b)2), the

threshold power for collapse can be approximated with

Pth(e) ≈
[
0.4

e+ 1/e
2

+ 0.6
]
Pth(e = 1),

where e = b/a and Pth(e = 1) is the threshold power for the circular profile
ψ0 = cF (r). In this case, the threshold power obtained from the condition of a zero
Hamiltonian is also highly inaccurate [23].
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It is important to realize that while the threshold powerPth for collapse is above
Pcr, the amount of power that eventually collapses into the blowup point is always
equal toPcr (see Section 6).

3.1 Hollow waveguides (bounded domains)

The propagation of laser beams in a hollow-core waveguide with radiusra can be
modeled by the NLS (1) on the bounded domain0 ≤ x2 + y2 ≤ r2a, subject to the
boundary conditionψ(z, r = ra) = 0. Fibich [18] proved that in this case,Pcr is
still a lower boundfor the threshold power. In addition, the numerical simulations of
Fibich and Gaeta [21] suggest a stronger result, namely, that in this case the threshold
power for collapse isequalto Pcr for “any” input profile. The reason for this behavior
is that, unlike in bulk media, the reflecting walls prevent the shedding of power and
keep the power localized in the transverse domain. Therefore, unlike in bulk medium,
the collapsing core does not lose power due to radiation as it “re-arranges” itself in the
form of the self-similarψR profile (see Section 4).

4 The universal blowup profileψR

The early analytical studies of collapsing solutions in the NLS (1) assumed that the
blowup profile is a self-similar Gaussian orsechprofile (see, e.g. [1]). Numerical sim-
ulations of collapsing NLS solutions that were carried out during the 1980s and early
1990s (see, e.g., [45]) showed, however, that regardless of the initial profile, near the
singularity, collapsing NLS solutions approach the universal, self-similar profileψR,
which is a modulatedR profile. In other words,ψ ∼ ψR near the collapse pointZc,
where

|ψR| =
1

L(z)
R

(
r

L(z)

)
,

and limz→Zc L(z) = 0. Therefore, in particular, even if the initial condition is
elliptically-shaped and/or noisy, near the singularity the blowup profile becomes
smooth and symmetric.

The fact that collapsing NLS solutions approach the universal blowup profileψR

was crucial for the derivation of the reduced system (7) that was used to find the NLS
blowup rate (see Section 7), as well as for the development ofmodulation theoryfor
the asymptotic analysis of the effect of small perturbations (see Section 10.2).Proving
the convergence toψR, however, turned out to be a very hard mathematical problem.
Indeed, this result was proved by Merle and Raphael [54] only in 2003, and its proof
required developing new analytical tools. The proof of Merle and Raphael is valid for
any initial condition whose powerP satisfiesPcr < P < Pcr + α, whereα is a
universal constant whose value is less thanPcr. In particular, the proof holds for initial
conditions which are elliptically-shaped or randomly distorted.

In 2003, Moll, Gaeta and Fibich [55] showed experimentally that the spatial profile
of a collapsing beam evolves to the cylindrically-symmetric Townes profile, for ellip-
tically shaped, as well as for randomly distorted Gaussian input beams that propagated
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in glass. Subsequently, in 2006, Grow et al. [40] observed experimentally the evolution
to the Townes profile for collapsing Gaussian input pulses that propagated in water.

4.1 New blowup profiles

Although the proof of Merle and Raphael does not hold for solutions whose power is
above2Pcr, it was widely believed, based on numerous numerical simulations since
the late 1970s, that any singular solution of the NLS collapses with theψR profile.
Even when the solution broke into multiple filaments (see Section 9), each filament
was found to collapse with theψR profile.

Fig. 1.Collapsing self-similar ring solution of the NLS (6) withψ0 = 15e−r4
. From Ref. [22].

Recently, however, Fibich, Gavish and Wang [22] showed that high-power super-
Gaussian beams collapse with a self-similarring profile, which is different from the
R profile, see Figure 1. Similarly to theψR profile, these solutions are stable under
radial perturbations. Therefore, the radially-symmetric NLS

iψz(z, r) + ψrr +
1
r
ψr + |ψ|2ψ = 0, (6)

does have stable collapsing solutions whose blowup profile is not given byψR. Unlike
theψR profile, however, these ring solutions are unstable under azimuthal perturba-
tions. Therefore, the ring solutions are unstable as solutions of the NLS (1).

5 Super-Gaussian input beams

The self-focusing dynamics of super-Gaussian input beams is very different from the
one of Gaussian beams. Here we briefly discuss some aspects of this topic. For more
information and references, see the Chapter by Lukishova et al.
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In the linear regime (i.e., for beam power� Pcr), super-Gaussian evolve into a
ring shape. This linear effect is due to Fresnel diffraction, and it occurs at propagation
distances of the order of the diffraction (Fresnel) length, which is defined asLdiff =
k0r

2
0, wherek0 is the wavenumber andr0 is the input beam width. For high peak-

power Nd:glass lasers, it was shown, both experimentally and numerically, that super-
Gaussian profiles evolve into a ring profile [11, 43].

Grow et al. [40] showed theoretically thatring formation of high-power super-
Gaussian beams is a nonlinear phenomena which is due to ray bending as a result of
nonlinear self-phase modulations(see Figure 2). Therefore, ring formation of high-
power super-Gaussian beams is a nonlinear geometrical optics effect, rather than a lin-
ear Fresnel diffraction one. This implies that it can occur over distances much shorter
than a single diffraction length, and that this phenomena occurs for anyN > 2 in the
initial profile ψ0 = c · exp(−rN ) (see Figure 2).
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Fig. 2.Nonlinear propagation of rays (horizontal lines) and phase fronts (vertical lines) for high-
power beamsψ0 = c · exp(−rN ). (A) GaussianN = 2, (B) super-GaussianN = 4, and (C)
super-GaussianN = 20. Graphs (A) and (B) are from Ref. [40].

In the absence of azimuthal noise, high-power super-Gaussian beams collapse with
the self-similar ring profile described in Section 4.1 (see, e.g., Figure 1). These collaps-
ing rings are, however, highly unstable under azimuthal perturbations. As a result, the
ring quickly disintegrates into a ring of filaments, each of which collapses with the
ψR profile.

In [40], both the ring formation and its subsequent propagation dynamics as it
breaks up into a ring of filaments were observed experimentally for high-power super-
Gaussian beams propagating in water. The diffraction length in these experiments was
approximately 40cm, and the distances at which the rings were observed were usually
less than 10cm. Therefore, the experimental data agrees with the ring developing at a
fraction of a diffraction length. Figure 3 shows data from the same set of experiments
that clearly shows the ring formation at high powers and its absence at low powers.
This further confirms that ring formation for high-power super-Gaussian beams is a
nonlinear phenomena.
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Fig. 3. Experimental intensity distributions for: (a) input profile, (b) linear output (low power)
after a 7-cm cell, and (c) nonlinear output with E = 12.2µJ after a 7-cm cell. Data supplied by
T.D. Grow and A.L. Gaeta.

Finally, we note that the collapse dynamics of high-power super-Gaussians implies
that they can undergo multiple filamentation during the initial collapse at much lower
powers (P ∼ 10Pcr) than Gaussian beams (see Section 9) [4, 40].

6 Partial beam collapse

The fact that the blowup profile is given byψR implies that

|ψ|2 −→ Pcr · δ(r), z → Zc.

In other words, the amount of power that collapses into the singularity is independent
of the initial condition, and is always given byPcr.2 We already saw that for any input
profile different from theR profile, collapse can occur only ifP > Pcr. Therefore,
the “outer part” of the beam, whose power is equal toP − Pcr, does not collapse into
the singularity, but rather continues to propagate forward. This shows that generically,
only part of the beam power collapses into the singularity (partial beam collapse).
Hence,the variance at the collapse point is generically positive and not zero, i.e.,

lim
z→Zc

V (z) > 0,

as was proved in 1989 by Nawa and Tsutsumi [56].

6.1 Common misinterpretations of the variance identity

There are some commonmisinterpretationsof the variance identity, all of which follow
from the wrong assumption that the variance vanishes at the blowup point: 1) The vari-
ance identity can be used to predict the collapse distance. 2) The threshold power can
be well approximated from the condition of a zero Hamiltonian, 3) Solutions with pos-
itive Hamiltonian undergo partial-beam collapse whereas those with negative Hamil-
tonian undergowhole-beam collapse(i.e. all the beam power collapses into the focal
point), etc. We stress that all of these statements are false, as they are based on the
wrong assumption that the variance vanishes at the blowup point. See [23] for more
details.
2 This explains why in experiments it is often found that all filaments have the same power.
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7 Blowup rate

In the rigorous mathematical theory of the NLS, the blowup rate is usually defined as
L(z) = (

∫
|∇ψ|2 dxdy)−1/2. However, up to a multiplicative constant, the blowup

rate can be defined asL = 1/maxx,y |ψ(z, x, y)|. A question which has been open
for many years is what is the blowup rate of NLS solutions. In other words, does
L(z) ∼ c(Zc − z)p for somep asz → Zc?

7.1 The loglog law

Finding the blowup rate of the NLS turned out to be a very hard problem, and over
the years various power-law relations were proposed [48]. In retrospect, the mathe-
matical difficulties had to do with the fact that collapse in thecritical NLS is “only”
quasi self-similar, i.e., the collapsing core approaches the self-similar profileψR, but
the “outer part” of the beam has a completely different dynamics. Moreover, the cou-
pling between these two components of the solution is exponentially weak. Eventu-
ally, Fraiman [37], and independently (and in a different way) Landman, LeMesurier,
Papanicolaou, Sulem and Sulem [44, 46] showed that the NLS dynamics can be ap-
proximated with the following reduced ODE system forL(z):

Lzz(z) = − β

L3
, βz(z) = −ν(β)

L2
, (7)

where0 < β � 1,

ν(β) = cνe
−π/

√
β, cν =

2A2
R

M
, (8)

AR = limr→∞ err1/2R(r) ≈ 3.52, andM = 1
4

∫ ∞
0 r2R2 rdr ≈ 0.55. Asymptotic

analysis of the reduced equations (7) showed that the blowup rate of the critical NLS
is a square root with a loglog correction (theloglog law) [37, 44, 46]

L ∼
(

2π(Zc − z)
ln ln(1/(Zc − z))

)1/2

, z −→ Zc. (9)

Subsequent numerical simulations with specialized codes that could reach very
high focusing levels (e.g.,1/L = O(1010)) have confirmed that the blowup rate is
slightly faster than a square root, but failed to detect the loglog correction. The reason
for this “failure” was explained by Fibich and Papanicolaou [16, 31], who showed that
the loglog law does not become valid even after the solution has focused by10100.
Since the validity of the NLS model breaks down at much lower focusing levels, the
loglog law turned out to be more of mathematical interest than of real physical value.
However, Malkin [49] and Fibich [16] showed that the same reduced equations that
lead to the loglog law, equations (7), can be solved differently, yielding theadiabatic
laws of collapse, which become valid after moderate focusing levels [31]. More im-
portantly, Fibich and Papanicolaou [31] showed that a similar approach can be used
to analyze the effect of small perturbations on the collapse dynamics at physically-
relevant focusing levels (see Section 10.2).
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Although the loglog law (9) was derived in the late 1980s, a rigorous proof was
obtained only in 2003 by Merle and Raphael [54]. The proof holds for all initial con-
ditions whose powerP satisfiesPcr < P < Pcr + α, whereα is a universal constant
which is smaller thanPcr.

7.2 A square-root law

Although the rigorous proof of Merle and Raphael does not hold for input powers
P > 2Pcr, it was widely believed that generically, all NLS solutions collapse accord-
ing to the loglog law. However, in 2005, Fibich, Gavish and Wang showed asymptoti-
cally and numerically that collapsing self-similarring solutions of the NLS (see, e.g.,
Figure 1) blowup at a square-root rate, with no loglog correction [22]. At present, it
is still an open question whether the self-similar ring profile, hence the square-root
blowup rate, is maintained all the way up to the singularity. Indeed, the numerical sim-
ulations of [22] become unreliable after focusing by≈ 1016. Therefore, it is possible
that at higher focusing levels the self-similar ring profile would change to the Townes
profile, in which case the blowup rate would change from a square root to the loglog
law. This open question is, however, only of mathematical interest, as the validity of
the NLS model breaks down at much smaller focusing levels.

8 Self-focusing distance

It would have been very useful to have an exact analytical formula for the location
of the singularity as a function of the input beam. Unfortunately, such a formula does
not exist. Some researchers estimated the location of the blowup point by using the
variance identity (3) to calculate the location where the variance should vanish. As
we pointed out in Section 6.1, this approach usually leads to very inaccurate results.
Fibich [16] used theadiabatic law of collapseto derive the following asymptotic for-
mula for real initial conditions (i.e. for collimated beams)

Zc ∼

√
MPcr

P/Pcr − 1

(∫
|∇ψ0|2

)−1

, (10)

which gives reasonable predictions forP ≤ 2Pcr.
In the absence of an analytical formula, the only way to find the location of the

singularity is through numerical simulations. For example, Dawes and Marburger [12]
used the results of numerical simulations to derive the followingcurve-fittedformula
for the location of the singularity of collimatedGaussianinput beamsψ0 = ce−r2/2:

Zc = 0.367[(
√
P/Pcr − 0.852)2 − 0.0219]−1/2. (11)

Kelley [41] was the first to show that the collapse distanceZc scales as1/
√
P

for P � Pcr. In theory, the1/
√
P relation should become more and more accurate

asP increases. This is, indeed, the case when the input beam is noiseless. In prac-
tice, however, input beams are always noisy. At input powers that are roughly above
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100Pcr, the propagation becomes highly sensitive to the effect of input beam noise. As
a result, the beam becomes modulationally unstable and breaks into multiple filaments
at a distance that scales as∼ 1/P . Campillo, Shapiro and Suydam [6] predicted theo-
retically, and observed experimentally for continuous-wave (cw) beams propagating in
CS2, that this noise-induced multiple filamentation implies that the collapse distance
scales as1/P . This result was rediscovered by Fibich et al. [19], who also observed
numerically, and experimentally for femtosecond pulses propagating in air, that the
collapse distance scales as1/

√
P for input powers that are moderately above the crit-

ical power for self focusing, but that at higher powers the collapse distance scales as
1/P .

8.1 Effect of a lens

Let Zc be the collapse distance of a laser beam. As we have seen before, if we add a
lens with focal lengthF at z = 0, then the new collapse distance, denoted byZF

c , is
given by equation (5). Using this lens relation, one can predict the collapse point of
focused beams based on predictions for the collapse point of collimated beams, such
as equation (10) or (11).

Recently, Fibich et al. [34] showed that this lens relation is in excellent agreement
with experimental measurements of the collapse distance in atmospheric propagation
of femtosecond pulses. This showed that the relatively simple NLS model (1) can be
used to predict the collapse point, since all other mechanisms (multiphoton absorption,
plasma formation, Raman scattering, etc.) become important onlyafter the pulse has
collapsed.

9 Multiple filamentation

Since the early 1960s, it was observed experimentally that when the laser power is
significantly larger than the critical powerPcr, the beam can break into several long and
narrow filaments, a phenomenon known asmultiple filamentation(MF) or assmall-
scale self-focusing. Since MF involves a complete breakup of the beam cylindrical
symmetry, it must be initiated by a symmetry-breaking mechanism.

9.1 Noise-induced multiple filamentation

For many years, the standard (and only) explanation for MF in the literature, due to
Bespalov and Talanov [5], has been that it is initiated by input beam noise. Briefly,
the noise leads to amodulational instability(MI), which ultimately results in MF.
Although the analysis of Bespalov and Talanov was based on linear stability of (infinite
power) plane waves solutions of the NLS (1), it was believed to hold for beams whose
power is roughly above10Pcr. This is, however, not the case. For example, Fibich and
Ilan [24] solved numerically the NLS (1) with an input Gaussian beam withP = 15Pcr

and 10% random noise, and observed that it did not break into multiple filaments,
but rather collapsed at a single location. Indeed, noise would lead to MF of Gaussian



12 Gadi Fibich

beams the NLS (1) only when the distance for noise-induced MF,LMF, is smaller
than the self-focusing distanceZc. SinceLMF ∼ 1/P andZc ∼ 1/

√
P , this would

occur for powers above a second power thresholdP
(2)
th , which is roughly of the order

of 100Pcr. Therefore, input beam noise would lead to MF in the NLS (1) only for
P > P

(2)
th [6, 19].

Until recently, the only known way to observe noise-induced MF numerically at
input powers� P

(2)
th was to add to the NLS a collapse-arresting mechanism. Consider,

for example,the 2D NLS with a nonlinear saturation

iψz(z, x, y) +∆ψ +
|ψ|2

1 + ε|ψ|2ψ = 0, ε > 0, ∆ = ∂xx + ∂yy. (12)

Solutions of this equation do not become singular. Rather, when the input power is
abovePcr, the solution initially self-focuses, but then the collapse is arrested (see Fig-
ures 4–5). Subsequently, the solution undergoes focusing-defocusing cycles (amul-
tifocus structure). During the defocusing stage of each cycle, the solution has a ring
(or crater) shape. Since a ring is an unstable shape for a beam, it can disintegrate into
multiple filaments in the presence of noise, as was first demonstrated numerically in
1979 by Konno and Suzuki [42]. Soto-Crespo, Wright and Akhmediev [61] developed
an approximate stability analysis that explains the instability of the rings and predicts
the number of filaments.

Fig. 4. Solution of equation (12) with a noisy input Gaussian beam with powerP ≈ 15Pcr.
From Ref. [24].

It is important to note that the two ingredients needed for MF at input powers
� P

(2)
th are:

1. A “mechanism” that arrests the collapse, so that as the beam defocuses it will as-
sume the unstable ring shape. This mechanism does not have to be nonlinear satu-
ration. For example, in [27] the collapse-arresting mechanisms were nonparaxial-
ity and vectorial effects.
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Fig. 5. Iso-intensity surface of the solution of Fig. 4. Note that the beam propagates from right
to left. From Ref. [24].

Recently, it turned out that this mechanism does not even have to be collapse-
arresting, as the only real requirement is that it will make the beam assume the
unstable ring shape. Moreover, the ring does not have to be defocusing, since a
collapsing ring is also unstable. Indeed, this is the case in MF of high-power Super-
Gaussian beams [40], where the ring is formed as the beam is collapsing (see
Section 4.1), and also in MF of collapsing vortices [66].

2. A “mechanism” that breaks the symmetry of the ring. This can be input-beam
noise, but also deterministic input-beam astigmatism [26, 27, 39] or vectorial ef-
fects [24, 25] (see Section 9.2).

There are several important differences between noise-induced multiple filamen-
tation forP � P

(2)
th and forP ≥ P

(2)
th [19]. WhenP � P

(2)
th , the beam initially

collapses as a single filament, then undergoes a few focusing-defocusing cycles and
only then breaks into MF (see, e.g., Figure 5). In this case, the distance where MF oc-
curs scales as1/

√
P . When, however,P ≥ P

(2)
th , MF occurs during the initial collapse,

and the distance where MF occurs scales as1/P . Indeed, in the experiments in [19],
it was observed that the beam initially collapses as a single filament in the1/

√
P

“low-power” regime, but as multiple filaments in the1/P “high-power” regime.

9.2 Deterministic multiple filamentation

Since noise is by definition random, the MF pattern of noise-inducedMF would be dif-
ferent from shot to shot; i.e., the number and location of the filaments is unpredictable.
This constitutes a serious drawback in applications in which precise localization is
crucial.

Recall that the NLS is only the leading-order model for propagation of linearly-
polarized beams in a Kerr medium, and that a more comprehensive model is given by
the vectorial Helmholtz equations. In the latter model, a linear polarization state breaks
up the cylindrical symmetry by inducing a prefered direction, which is the direction
of the linear polarization state. Fibich and Ilan [24, 25] showed numerically that the
deterministic breakup of cylindrical symmetry by a linear polarization state can lead
to a deterministic multiple filamentation. However, vectorial-effects induced MF has
not been observed in experiments [14]. The reason for this is probably as follows. In
order that the vectorial coupling between the electric fields component would lead to
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MF, the beam radius should self-focus down to approximately two wavelengths. In
experiments, however, self-focusing is arrested at a much earlier stage, due to plasma
effects.

Fig. 6.Normalized 3D views of filamentation patterns after propagation of 31mm in water, for a
near-circular incident beam (e=b/a = 1.09, left panel) and elliptical incident beam (e=2.2, right
panel). The major axis of the ellipse lies along the x-axis of the plots. From Ref. [14].

In [26, 27, 39] it was predicted theoretically and observed for laser pulses propa-
gating in sodium vapor [39] and in water [14] that input beam astigmatism can also
lead to a deterministic MF pattern, i.e., a pattern that is reproducible from shot to shot.
Dubietis et al. [14] pointed out that when the input beam is elliptically-shaped, e.g.,
ψ0 = c · exp(−(x/a)2 − (y/b)2), the MF pattern can only consist of a combination of
(1) a single on-axis central filament, (2) pairs of identical filaments located along the
ellipse major axis at(±x, 0), pairs of identical filaments located along the minor axis
at (0,±y), and (4) quadruples of identical filaments located at(±x,±y). Moreover,
in that study all the above four filament types were observed experimentally in water
(see Figure 6) and numerically. Subsequent approaches for deterministic MF which is
induced by a deterministic breakup of the input beam symmetry include a titled lens
and a phase mask [20, 51]. In [20], it was shown experimentally that sufficiently large
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astigmatism can dominate noise in the determination of the MF pattern in atmospheric
propagation. Hence, rather than trying to eliminate noise, one can control the MF pat-
tern by adding sufficiently large astigmatism.

10 Perturbation theory: Effect of small mechanisms neglected in
the NLS model

The 2D cubic NLS (1) is the leading-order model for propagation of intense laser
beams in a Kerr medium. As we have seen, in the NLS model the electric field in-
tensity becomes infinite at the blowup point. Since physical quantities do not become
infinite, this indicates that near the blowup point, some physical mechanisms that were
neglected in the derivation of the NLS become important. Moreover, since the NLS (1)
is critical (see Section 1), these mechanisms can have a large effect even when they
are still small compared with the Kerr nonlinearity or diffraction.

10.1 Unreliability of aberrationless approximation and variational methods

Since a direct analysis of NLS equations with additional perturbations is hard, the stan-
dard approach has been to approximate these equations with reduced equations that do
not depend on the transverse(x, y) coordinates, and then to analyze the (much sim-
pler) reduced equations. The key issue, naturally, has been how to derive the “correct”
reduced equations.

Starting with [1], for many years all the derivations used theaberrationless approx-
imation, i.e., the assumption that during its propagation, the beam maintains a known
self-similar profile

|ψ| ∼ 1
L(z)

G

(
r

L(z)

)
,

whereG is a Gaussian,sech, etc. In theaberrationless approximation method, this
self-similar profile is substituted in the NLS, and the reduced equations follow from
balancing the leading-order terms. In thevariational method, the self-similar profile
is substituted in the NLS Lagrangian. Integration over the(x, y) coordinates gives the
averaged Lagrangian, whose variational derivative gives the reduced equations.

There has been a considerable research effort on the optimal way to derive the
reduced equations using either of these two methods. However, as was pointed out
and explained in [23], both methods are unreliable, in the sense that they sometimes
lead to predictions that are quantitatively inaccurate, or even qualitatively wrong. It is
important to note that the unreliability of the aberrationless approximation and varia-
tional methods is related to the fact that the NLS (1) iscritical. Indeed, these methods
have been successful in analysis of perturbed non-critical NLS, such as the perturbed
one-dimensional cubic NLS.

The reason for the unreliability of these methods is that they make use of theaber-
rationless approximation. One problem with this approximation is that it implicitly
implies that when collapse occurs, all the beam collapses into the focal point (whole
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beam collapse), whereas, in fact, collapsing beams undergopartial beam collapse(see
Section 6). Another problem with this approximation is that it has been usually applied
with the wrong profile, i.e., with a profileG different from theR profile. This may not
seem like a serious issue, as a well-fitted Gaussian can be quite close to theR profile.
However, theR profile is theonly profile that has 1) the critical power for collapse,
and 2) a zero Hamiltonian. Hence, it is a borderline case for the two conditions for
collapseP > Pcr andH < 0. These two properties are at the heart of the sensitivity
of theψR profile to small perturbations, which cannot be captured by any self-similar
profile which is not based on theR profile.

It may seem, therefore, that one can use the aberrationless approximation, so long
that it is being used with theψR profile. Even this is not true, however, since theψR

profile represents a complete balance between diffraction and nonlinearity. Hence, the
collapse dynamics is determined by thesmall differencebetweenψ andψR. Therefore,
the derivation of the reduced equations should be based on balancing the leading-order
deviations fromψR.

10.2 Modulation theory

As noted, in order to derive the “correct” reduced equations, one should take into
account that

1. As the solution collapses, its profile approaches theψR profile.
2. The collapse dynamics is determined by thesmall differencesfromψR.

Fibich and Papanicolaou [31] used these observations to derive a systematic method
for deriving reduced equations for the effect of additional small mechanisms on critical
self-focusing, known asmodulation theory.3 Consider the NLS with a general small
perturbationεF

iψz(z, x, y) +∆ψ + |ψ|2ψ + εF (ψ) = 0, ∆ = ∂xx + ∂yy. (13)

As the solution collapses, its profile becomes closer toψR. Once that happens, self
focusing in the perturbed NLS (13) is given, to leading order, by the reduced ODE
system

βz(z) +
ν(β)
L2

=
ε

2M
(f1)z − 2ε

M
f2, Lzz(z) = − β

L3
, (14)

where

f1(z) = 2L(z) · Re
∫
F (ψR)e−iS [R(ρ) + ρR′(ρ)] dxdy, (15)

f2(z) = Im
∫
F (ψR)ψ∗

R dxdy, (16)

and
3 Not to be confused with modulational instability, which refers to the destabilizing effect of

small perturbations in the input profile, see Section 9.1.
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S(z, r) = ζ(z) +
Lz

L

r2

4
, ρ =

r

L
, ζ =

∫ 2

0

L−2(s) ds.

As expected, whenε = 0, equations (14) become the reduced equations (7) for the
unperturbed NLS. The effect of the perturbation enters through the auxiliary functions
f1 andf2, which correspond to the conservative and nonconservative components of
the perturbation, respectively.

The reduced equations (14) have been used to analyze the effect of various small
perturbations, such as a weak defocusingquintic nonlinearity, saturating nonlinearities,
small normal time dispersion, nonparaxiality, vectorial effects, linear and nonlinear
damping and Debye relaxation [30, 17, 32, 49, 18, 24, 27]. In all cases, the predictions
of the reduced equations were found to be in full agreement with numerical simulations
of the corresponding perturbed NLS.

The reduced equations (14) show that additional mechanisms can have a large ef-
fect on the self-focusing dynamics even when they are still small compared with the
Kerr nonlinearity and diffraction. This ‘sensitivity’ property is unique to thecritical
NLS (see Section 1), and it reflects the fact that in critical collapse, the Kerr nonlinear-
ity is nearly balanced by diffraction. Hence, a small mechanism can shift the delicate
balance between these two competing (much larger) effects, and even arrest the col-
lapse [31].

11 Effect of normal group velocity dispersion

The basic model for propagation ofultrashort pulsesin a bulk Kerr medium is given
by the NLS with group velocity dispersion (GVD)

iψz(z, x, y, t) +∆ψ − γ2ψtt + |ψ|2ψ = 0, ∆ = ∂xx + ∂yy, (17)

where

γ2 =
r20k0k

′′
0 (ω0)
T 2

0

is the dimensionlessGVD parameter, andr0, T0, k0 andω0 are the input pulse radius,
temporal duration, wavenumber and carrier frequency, respectively.

When dispersion isanomalous(γ2 < 0) the pulse undergoes temporal and trans-
verse compression. Indeed, in that case eq. (17) is the 3D [i.e.,(x, y, t)] supercritical
NLS (see Section 1), which has solutions that become singular in finite distancez. The
dynamics in the case ofnormal GVD(γ2 > 0) is much more complicated, however,
because of the opposite signs of diffraction and dispersion.

The question whether small normal dispersion can arrest singularity formation has
defied research efforts for many years. In 1986, Zharova et al. [68] derived a reduced
ODE for the evolution (inz) of the pulse amplitude attm, the time of the initial peak
amplitude. Analysis of this ODE showed that small normal GVD arrests the collapse
at tm. As a result, the pulse splits into two temporal peaks which continue to focus.
The numerical simulations of Zharova et al. confirmed the predicted pulse splitting,
and also showed what was interpreted as a secondary splitting. Therefore, Zharova et
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al. conjectured that the new peaks would continue to split into “progressively smaller-
scale”, and hence that small normal dispersion would arrest self-focusing through mul-
tiple splitting.

Numerical simulations of eq. (17) carried during the 1990s [47, 58, 7, 30, 57, 13]
showed that self-focusing of the two peaks leads to the formation of temporal shocks
at the peaks edges. As a result, in all the above studies, which used ‘standard’ nu-
merical methods, the simulations could not go beyond the shock formation and were
thus unable to determine whether secondary splittings occur and whether the solution
ultimately becomes singular. In 1995, Fibich, Malkin and Papanicolaou [30] usedmod-
ulation theory(see Section 10.2) to derive a reduced system of PDEs for self-focusing
in (17) which is valid for allt cross-sections, and not just fortm. Analysis of the re-
duced system showed that while self-focusing is arrested in the near vicinity oftm, it
continues elsewhere, i.e., that small normal GVD does not arrest the collapse. How-
ever, the validity of the reduced system breaks down as the shock edges of the two
peaks form. Therefore, one cannot use the reduced system to predict whether multiple
splitting would occur and/or whether the solution ultimately becomes singular. Anal-
ysis of the reduced system did reveal, however, that temporal splitting is associated
with the transition from independent 2D collapse of eacht cross-section to a full 3D
dynamics. Therefore, it was suggested in [30] that the two peaks would not necessarily
split again.

Temporal splitting of ultrashort pulses was first observed experimentally in 1996
by Ranka and Gaeta [57] and later by Diddams et al. [13]. In these experiments sec-
ondary splittings were also observed at even higher input powers. Nevertheless, these
observations do not imply that solutions of eq. (17) undergo multiple splittings, be-
cause these secondary splittings were observed at such high powers where the validity
of eq. (17) breaks down, as additional physical mechanisms become important.

In 2001, Germaschewski et al. [38] used an adaptive mesh refinement method to
solve eq. (17) beyond the pulse splitting. These simulations show that after the pulse
splitting the two peaks do not undergo a similar secondary splitting. Rather, the col-
lapse of the two peaks is arrested by dispersion. Similar results were also obtained
by Fibich, Ren and Wang using the iterative grid distribution method [33]. In that
study, the authors solved eq. (17) with the same initial conditions used by Zharova
et al. in [68] and observed no secondary splitting, thus confirming that the numerical
observation of secondary splitting in that study was in fact a numerical artifact.

Based on the numerical simulations of [10, 33, 38], it is now believed that after
the pulse splitting the two peaks do not undergo a secondary splitting, and that small
normal GVD arrests the collapse of the two peaks. However, a rigorous proof that
solutions of eq. (17) cannot become singular is still not available, and is considered a
hard analytical problem.

12 Nonparaxiality and backscattering

In nonlinear optics, the NLS model is derived from the more comprehensive scalar
nonlinear Helmholtz equation (NLH)
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Exx(x, y, z) +Eyy +Ezz + k2
0

(
1 + 4ε0cn2|E|2

)
E = 0. (18)

In general,E = eik0zψ(z, x, y) + e−ik0zB(z, x, y), whereψ andB are the slowly-
varying envelopes of the forward-propagating and backscattered waves, respectively.
The NLS is derived byneglecting the backscattered wave(i.e., settingB ≡ 0) and
then applying theparaxial approximation

ψzz � k0ψz.

Since there are no singularities in nature, a natural question is whether initial conditions
that lead to blowup in the NLS, correspond to global (i.e., non-singular) solutions of
the corresponding NLH. In other words, do nonparaxiality and backscattering arrest
the collapse, or is collapse arrested only in a more comprehensive model than the
NLH (18).

The observation that the paraxial approximation breaks down near the singularity
has already been noted in 1965 by Kelley in [41]. Vlasov [64] derived a perturbed
NLS that includes the leading-order effect of nonparaxiality. He solved numerically
this equation, and observed that collapse is arrested in this “nonparaxial NLS”. Feit
and Fleck [15] used numerical simulations of the NLH to show that nonparaxiality can
arrest the blowup for initial conditions that lead to singularity formation in the NLS (1).
After the arrest of collapse in the NLH, the beam undergoes focusing-defocusingoscil-
lations (multiple foci). In these simulations, however, they did not solve a true boundary
value problem for the NLH. Instead, they solved an initial value problem for a “mod-
ified” NLH that describes only the forward-going wave (while introducing several ad-
ditional assumptions along the way). Akhmediev and collaborators [3, 2] analyzed an
initial-value problem for a different “modified” NLH; their numerical simulations also
suggested that nonparaxiality arrests the singularity formation. All of the above numer-
ical approaches ([64, 15, 3, 2]), however, did not account for the effect of backscatter-
ing. Fibich [17] usedmodulation theory(see Section 10.2) to derive a reduced ODE
(in z) for self-focusing in the presence of small nonparaxiality. His analysis suggests
that nonparaxiality indeed arrests the singularity formation, resulting instead in decay-
ing focusing-defocusing oscillations. Moreover, it showed that nonparaxiality arrests
collapse while it is still small compared with the focusing Kerr nonlinearity. However,
backscattering effects were neglected in this asymptotic analysis.

In [35, 36], Fibich and Tsynkov developed a novel numerical method for solv-
ing the NLH as a true boundary value problem. The key issue has been to develop a
two-way absorbing boundary conditionthat allows for the impinging electric field to
enter the Kerr medium, while allowing the backscattered wave to be fully transmitted
in the opposite direction. This method allowed for the first quantitative calculation of
backscattering due to the nonlinear Kerr effect [28]. Unfortunately, so far the method
can only compute solutions whose input power is belowPcr, leaving open the issue of
global existence of solutions with power abovePcr in the NLH model. Some progress
in that direction was made in [29], when Fibich, Ilan and Tsynkov used the same nu-
merical method to compute global solutions of the linearly-damped NLH for initial
conditions that lead to collapse in the corresponding linearly-damped NLS. For these
solutions, therefore, the arrest of collapse has to be due to nonparaxiality and backscat-
tering. Recently, Sever proved that solutions of the NLH exist globally [59]. However,
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Sever’s proof holds only for real boundary conditions, whereas the correct physical
radiation boundary conditions that allow for power propagation are complex-valued.
Therefore, all the results so far suggest that nonparaxiality and backscattering arrest
the collapse, but a rigorous proof of this result is still an open problem.

Finally, we note that the NLH (18) is derived under the assumption of linear po-
larization, and that a more comprehensive model is the vectorial NLH for the three
components of the vector electrical field [8]. The effects of the coupling to the two
other components of the electric field are of the same order as nonparaxiality, and have
the same qualitative effect on the arrest of collapse, but are≈ 7 times stronger [24].

13 Final remarks

At present, there is a fairly good understanding of self-focusing of “low power” beams,
i.e., those whose power is moderately above the critical powerPcr. Indeed, since they
collapse with theψR profile, one can usemodulation theoryto analyze the effects of
most perturbations. There are still some open mathematical questions, such as proving
rigorously that normal dispersion or nonparaxiality arrest the collapse (Sections 11
and 12). However, the lack of rigorous proofs for these open problems is probably a
“mathematical issue”, which “need not concern” the nonlinear optics community.

In recent years, there is a growing evidence that the self-focusing dynamics of
“high power” beams, i.e., those whose power is many times the critical powerPcr, is
very different from the one of “low power” beams. Indeed, “high power” beams can
undergo multiple filamentation prior to the initial collapse (Section 9), have a different
scaling law for the collapse distance (Section 8), and collapse with self-similar ring
profile which is different fromψR (Section 4.1). At present, there is no good under-
standing of self focusing of “high power” beams, and most results are based either on
numerical simulations or on elementary analysis. For example, there is no good theory
for multiple filamentation that can predict the number of filaments of an input beam,
whether two close filaments will merge into a single filaments, etc. The lack of a good
theory for the “high power beams” is because, unlike “low power” beams, there is no
universal attractorψR. Developing new analytical tools for the “high power” regime is
probably one of key challenges for the future of self-focusing theory.
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