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Abstract

We present numerical simulations of a new type of singular solutions of the critical nonlineé@d®dar equation (NLS),
that collapse with a quasi self-similar ring profile at a square root blowup rate. We find and analyze the equation of the ring
profile. We observe that the self-similar ring profile is an attractor for a large class of radially-symmetric initial conditions, but
is unstable under symmetry-breaking perturbations. The equation for the ring profile admits also multi-ring solutions that give
rise to collapsing self-similar multi-ring solutions, but these solutions are unstable even in the radially-symmetric case, and
eventually collapse with a single ring profile. Collapsing ring solutions are also observed in the supercritical NLS.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The focusing critical nonlinear Sabdinger equation (NLS)

iVt x, y) + Ay + [Py =0,  ¥(0,x,y) = volx, ), 1)

is one of the canonical nonlinear equations in physics, arising in various fields such as nonlinear optics, plasma
physics, Bose—Einstein condensates (BEC), and surface waves. In nonlinear optics it models the propagation of
intense laser beams in a Kerr medium. In this cagethe axial coordinate in the direction of propagatioand
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y are the spatial coordinates in the transverse plane, d,, + 9y, is the diffraction term angh/|2y describes the
nonlinear Kerr response of the medium.

We now briefly review NLS theory, for more information, g&e3]. The NLS(1) has two important conservation
laws: power (L2 norm) conservation,

Nm=/wﬁw@zN@, @

and Hamiltonian conservation,

H() =/|V1/f|2dxdy— %/Il/f|4dxdys H(0). (3)

It is well known that solutions of the two-dimensional critical N(§ can self-focus and become singular at a
finite time T;. A necessary condition for blowup is that th&tial power N(0) exceeds a threshold powsk, i.e.,
N(0) = Nc. A sufficient condition for collapse is that the initial Hamiltonian is negative, H¢Q) < 0.

The two-dimensional NL$1) has waveguide solutions of the forin= €’ R(r), wherer is the solution of

R'(r) + }R’ —~R+R¥*=0, FR(0)=0  R(cx)=0. (4)

Eq.(4) has enumerable number of solutlc{mé”)}n ° o» Which can be arranged in order of increasing powéri.e.,
J@®OParay < [(ROParay < [(RO)axy < -

Of most importance is the ground state solution= R, also known agownes profile [5]. The ground stat&
is positive and monotonically decreasing. In addition, its power is exactly equal to the critical Newer., Nc =
[ R?dxdy ~ 11.7[6].

The critical NLS(1) is invariant under the lens (pseudo-conformal) transformation, i.¢.idfa solution of the
NLS (1) then

1 L, r? r 't ds
L(t)W(T’S)eXp(IL4>’ r=1/x24y2, E=m, r:/o LT(s) (5)

whereL(t) = az_(Tc — 1), is also a solution of the NL&) [7]. Applying the lens transformatid) to the waveguide
solutionsy = €7 R(r) gives rise to the explicit blowup solutions

2 T ods
R TH(Le/L)(?/4) - [ = — o3(T. —
Vilolt:1) = u) (wJé+ "AL%V HO = etle =0 ©

w:

whereR™ are the solutions of4), that become singular at= 7. These explicit blowup solutions, however, are
unstable.

Two related questions which were open from the mid 1960s up to the mid 1980s, were the profile of the solution
near the collapse and the rate of blowup. Numerical studies conducted during thd8,980s1ggested that the
NLS has a universal, cylindrically-symmetric asymptotic blowup profile

1 TH(L/L)(2/4), _[f 9
VVR= T <Lm>é "%;H@r @

whereR is the ground-state solution ¢4). More precisely, it turned out that only the inner core of the solution
collapses into the singularity with the asymptotic profilg asr — T¢, while the rest of the solution continues to
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propagate (see, e.¢ig. 5), i.e.,
YR 0<r<pL()
~ 8
v { Vouter pL(t) <r ®)

wherep > 1 and L(r) = 1/ max.y [¥(t, x, y)|. The understanding that NLS collapse is quasi self-similar with
asymptotic profileyyg was crucial in the asymptotic calculation of the blowup ra{e), which turned out to be
given by theloglog law [10-12]

2n(Te—1) \Y?
10~ (igogr=9) ®

whereT is the singularity point. Finding thleglog law was a hard problem, exactly because the solution undergoes
partial beam collapse, in which the inner core evolves accordingtdhe outer part propagates linearly, and the
dynamics depends on the exponentially weak coupling between the two.

Numerical simulations also showed thigt is an attractor for the inner part of solutions of the weakly perturbed
critical NLS. This property was used in the development of an asymptotic theory for the effects of small perturbations
in the critical NLS, known aswdulation theory [1]. Thus, the convergence tir turned out to be a key feature of
the critical NLS. A rigorous proof of the convergence to the self-similar Townes prpfilehowever, turned out
to be a hard problem. Weinstein proved that near the singularity the solution converges to a self-similar blowup
profile [13]. Nawa further characterized the limiting profiles of the collapsing core and of the diffracting outer
part[14,15] These results partially supported the observation that the NLS has the universal asymptotic blowup
profile ¥, but did not prove it. Only recently, Merle and Raphael proved that solutions of thg N@th power
moderately aboveé/. collapse with the asymptotic profilgg at the loglog blowup rat§l6-18] Concurrently, it
was demonstrated experimentally that the profile of collapsing laser beams is given by the Towne§l@ijofile
Thus, all the research that was carried out from the eighties until these days leads to the belief that the Townes
profile is the only attractor of blowup solutions of the critical NLS.

In arecent paper, Begget al. presented simulations of the critical NLS with super-Gaussian initial conditions that
self-focused with a ring profilf20]. These simulations were only carried out for focusing levels of 3-5, probably
because the focus of that paper was on symmetry-breaking (multiple filamentation). In this research, we study such
ring-type solutions as they continue to collapse. Specifically, we are interested to know whether the ring structure
will persist until the singularity, or whether the solution will eventually collapse with the Townes profile.

The paper is organized as follows. In Sect®mwe solve the NLS with high-power super-Gaussian initial
conditions and observe numerically that the solution collapses with a quasi self-similar ring profile at a square-root
blowup rate up to focusing levels of 40 In particular, the solution does not change into the Townes profile, nor
does it blowup with the loglog blowup raf8). In Section3 we find the equation of the ring profile, denoted as
the G equation. Sectiod is devoted to analysis of th& equation. We present one-parameter families of ring and
multi-ring solutions of th&s equation. We then use these solutions to construct explicit self-similar ring solutions
of the NLS that blowup at a square root blowup rate. In Secliome show numerically that the self-similar
profiles of the collapsing ring solutions of the NLS have an excellent match with the single-ring solutions of the
G equation. As in the case of tiieprofile, see Eq(8), the NLS ring solutions match th@ profile only in the
“ring region”, and not everywhere (i.e., quasi self-similar collapse). In Se&iove test the stability of the ring
profiles and show numerically that the self-similar ring profile is a strong attractor in the radially-symmetric case,
but not under symmetry breaking perturbations. We also observe that multi-ring solutions are unstable even in
the radially-symmetric case. Sectidrshows that the super-critical NLS also admits collapsing ring solutions, but
that they are quite different from the critical NLS ring solutions. In SecBove discuss the open question of the
existence of? ring-type blowup solutions of the critical NLS. Final remarks are given in Seétidhe numerical
methods used in this study are described inAppendices A-F
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Fig. 1. Solution of the NLS(10) with o =15 et (A) t=0,A(r)=1; (B) t=0.020 A(t) =1; (C) r=0.027,A(t) =1; (D) t =
0.0286 A(r) = 1; (E)r = 0.0287579389663M (1) = 3.32 x 10%; (F) A(r) = 6.64 x 10°;(G) A(r) = 4.6 x 10'0; (H) A(r) = 6.5 x 105, Times
tin graph E—H differ only in the 14th digit or after, therefore only the focusing lexéisare presented.

2. Preliminary numerical observations

We first ask what happens to ring solutions as they get closer and closer to the singularity (i.e., as they become
more and more focused). Specifically, do they maintain a ring profile or does the blowup profile becomes Townesian
at a certain stage? To see that, we first solve the radially-symmetric NLS

. 1
(e r) + Y + 9 + WPy =0,  ¥(0,r) = yo(r), (10)

with the high-power super-Gaussian initial conditipn= 15 e"4(N(0) ~ 38N¢). In order to be able to get closer

and closer to the singularity we use the methodyatimic rescaling (seeAppendix B. As can be seen iRig. 1, the
solution collapses with a ring profile that becomes taller in amplitude and smaller in radius, up to focusing levels
of A(r) = O(10%°), where

max. [y(t, r)|
Alt) = ————. 11
) max. [(0, r)] ()
In addition,Fig. 1IE—H suggest that the ring solution is self-similar, i.e., of the form
1 r
[y (t, )l ~ —=G(8), 3 (12)

L(r) 0O

for some profileG (¢). In order to check for self-similarity, we rescale the numerical solution according to

Vnommatizedts 1) = L)Y (LL)) L= m (13)

Fig. 2A shows the results dfig. 1E—H, rescaled according {@3). All four normalized plots are indistinguishable,
indicating that the collapsing ring solution is indeed self-similar while focusing over more than 10 orders of

1 Note that under the normalizati¢h3), max. |normalized = 1.
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Fig. 2. (A) Results oFig. IE—H normalized and superimposedr) = 3.32 x 10° (solid), A(r) = 6.64 x 10° (dashes)A(r) = 4.6 x 100 (dots)
andA(r) = 6.5 x 10'® (dash-dots); all four lines are indistinguishable. (B) Same data on a semi-logarithmic scale.
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Fig. 3. Solution of the NLF10) with ¢ = 20 e atr = 0.020793557 A@r) = 1.12 x 103; solid) and atr = 0.020793558 A(r) = 1.75 x
10°; dots); the two lines are indistinguishable.

magnitude. Plotting the same data on a semi-logarithmic seae2B) shows that the rescaled profile is only quasi
self-similar: it is self-similar in the “ring region”, but not near the cenigi (< 10) or far outside/L > 10).

We now increase the input power and solve the NL®) with ¢ = 20 e’ (N(0) >~ 67N¢). In this case the
solution also collapses with a self-similar ring profileid. 3). The radius of the rescaled ringhig. 3is&max = 20.2,
which is larger than irfFig. 2whereémax = 14.1. More generally, we observe that the ring radius increases with
the input power. Since different initial conditions collapse with ring structures with different radii, the ring profile
appears not to be universal (but see Secfi@h

In order to show that initial conditions that are different frggn= ¢ e canalso collapse with a self-similar ring
profile, we show irFig. 4that the initial conditionyg = 15 e’ (N(0) ~ 43N.) also collapses with a self-similar
ring profile? Clearly, not all high-power (i.e N (0) = O(50N,)) initial conditions collapse with a ring profile. For
example, the Gaussian initial condition whose input power is the same as the super-Gayssiab e from
Fig. 1, collapses with a Townes profile (sEgg. 5).

We now consider the blowup rate of these ring solutions. Since the solutions were found to be self-similar as
in (12), their blowup rate is given by.(z). Plotting L2 as a function of looks like a straight line, suggesting an
asymptotic square root blowup rate. However, it is hard to determine from such plots whether the blowup rate is
strictly a square root or a square root with a small (éoglpg) correction. A better numerical approach is, therefore,

2 |n Section6 we show non-monotonic initial conditions that also collapse with a self-similar ring solution.
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Fig. 4. Solution of the NLY10) with ¢ = 15 e’ at+= 00302387873 A(?) = 6.625x 10%; solid) and atr = 0.0302387878 4(r) =
2.67 x 10%; dots); the two lines are indistinguishable.
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Fig. 5. Solution of the NL$10) with v = 15¢/7/2 e atr = 0.0172 (solid). Dotted line is the Townes-based asymptotic profile

to monitor the dynamics af L, = (1/2)(L2),, since lim-z LL, = —a?/2 < 0in the case of a strict square root
blowup rateL(r) ~ a+/Tc — t, Whereas lim_. 7, LL, = 0 when the blowup rate is faster than a square réigf.

6A shows that lim, 7, LL,; = 0.085 for the super-Gaussian initial conditigy = 15 e"4, suggesting a square
root blowup rate ofL(f) ~ a/Tc — ¢ With « = 0.41. Note that this is different from the equal-power Gaussian
initial condition fromFig. 5, for which lim,_,r, LL; = O (seeFig. 6B), which implies a faster-than-a-square-root

blowup rate. Therefore, it seems that monitoring; is, indeed, a good way to tell numerically a square root from
a faster-than-a-square-root blowup rate.

3. Finding the ring profile G(§)

The preliminary numerical observations in SectBsuggest the existence of NLS solutions that collapse with a
self-similar ring-profile G at a square-root blowup rate. We now turn our attention to the following question: Which
equation describes the ring profile{g)bserved irFigs. 2-# Clearly,G cannot be any of the infinite number of
solutionskR™ of Eq.(4), because all these solutions have a global maximum=a0. Likewise, it cannot be any of

3 We say profiles and not profile, since they can have different radii.
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Fig. 6. LL, as a function ofA(r) for solutions of the NLF10) with initial conditions: (A)yo = 15 e and (B)yo = 15/7/2 e

the multibump solutions found by Bud#1], since these solutions exist only in the case of the supercritical NLS,
(i.e., Eq.(32)for d > 2), and even in that case they were found to be numerically unstable.

The following proposition characterizes all singular solutions that undergo self-similar collapse at a square root
blowup rate?

Proposition 1. Let v be a singular solution of the NLS (1) with an asymptotic self-similar blowup profile ¥ (t, r) ~
Ye(t, r) where

Vo) = [ @IS, oo [B el (14
UL ’ o L2(s) L@
and G(§) : R — R. If ¢ has a square root blowup rate, i.e., if
. L) . d(L(r))/dr
N e A NN A T e ()
then G (&) is the solution of
/ 4
G'(&) + % + {‘1‘652 - 1} G+G3=0, 0+# G() e R, G'(0)=0. (16)

Proof. Substitution 0f{14)in the NLS(1) shows that the equation f6F is

/

G"(E) + % —G+G3+ %ﬁ(r)gZG =0, B(1) = —L,L5. (17)

SinceG (&) is independent of, 8(r) = Bo := B(0). Hence, the equation fdr(z) is

Multiplying this equation byi.,; and integrating gives,

Bo
L2(0)’

(LL)? = Bo+ CoL?,  Co= L%0)—

4 A “modified” version ofProposition Ifor quasi self-similar collapse is given in Secti@n
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Therefore, since lim, 7, L(r) =0,
lim (LL.)? = Bo + lim CoL? = fo. (18)
t—T¢ t—>T¢

When the blowup rate is a square root, it follows fr¢hs) that

2

. o
Therefore, by(18) and (19)
4
o
=, 2
o=, (20)

Substituting(20) into (17) gives(16). O

We, therefore, see that the profile of self-similar solutions that blowup at a square root rate is giverGby the
Eq. (16), and not by ther Eq. (4). In Section4 we will show that solutions of Eq16) can, indeed, give rise to
ring solutions and in Sectidb.2 we will show that theG-profiles provide an excellent match to the ring solutions
observed in the simulations of Secti@n

Remark 2. Eq.(16)is not new. In fact, it frequently arises in the analysis of blow-up solutions of the NLS. Until
now, however, this equation was analyzed by assuming that to leading order, this equation reducRstofilee

(4). Therefore, it was assumed th@{0) = R(0) + O(a*) = O(1). In contrast, in this study we are interested in
solutions of Eq(16) with G(0) « 1 that give rise to ring solutiors.

Itis generally hard in NLS simulations to characterize the small derivation (if any) from a square root blowup rate,
even in simulations where the solution focuses b{?18s we have seen iRig. 6, monitoring the dynamics df L,
seems to provide a good way to distinguish between a strict square root blowup rate and a faster-than-a-square-roc
blowup rate. Althoughrig. 6 provides a strong numerical support that the ring self-similar solution collapses with
a square root blowup rate, the numerical data cannot determine in a conclusive manner whether the blowup rate i
exactly a square root. Therefore, we ask whether is it possible that NLS solutions with a self-similar ring profile
collapse at a different blowup rate. Since the blowup rate has the rigorous bgnd M./T, — t whereM is a
constan{22,23], we need to consider only the case where the blowup rate is faster than a square root, i.e., when
lim,—. 7, LL, = 0 (see SectioR). This is done in the following proposition:

Proposition 3. Ler Y be a solution of the NLS (1) with an asymptotic self-similar blowup profile (14). If the blowup
rate of  is faster than a square root, i.e., if

lim LL; =0, (22)
t—T¢

then, G(§) is the solution of the R EQ. (4).

Proof. From(18) and (21)it follows thatBp = 0. Substituting this results if17) gives therR Eq.(4). O

Remark 4. Proposition 3applies to the case of loglog blowup rg@), as well as to the linear blowup rate
L(r) = a(T; — t) of the explicit blowup solutionﬁrg;) of (6).

5 Indeed, sinc&”(0) = G(0)(1 — G?(0))/2, G is increasing at = 0 if and only if G(0) < 1.
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Fig. 7. Solutions of Eq(16)with Go = 5 x 10~ for several values af.

4. Ring solutions of the G equation

Solutions of theG Eq.(16) depend on the parameteand on the initial conditioi;g = G(§ = 0). Let us recall
Theorem 1.1 of24] of Johnson and Pan, applied here to ).

Lemma 5. All solutions of the initial value problem (16) are decaying as & — 0o0. Moreover,

2
G =C cos(oés2 - 0722 log& + cz) +0 (;) , (22)

where cg and c2 are constants that depend on Gg and on «.

Lemma 5ensures that for ango (and for anyw) the solution decays @s— oo. This is different from the case of
theR Eq. (4), where decaying solutions exist only for enumerable set of valug$®)f sed4].

4.1. Families of n-ring profiles

As we have mentioned, we are interested in solutions of Ejwith Go « 1 that give rise to ring-type solutions.
Fig. 7 shows solutions of Eq16) with Go = 5 x 10~ for various values of. In general, these solutions can be
separated into two regions:

(1) Aring region for 0< & < O(1/&?), in which G is positive with one or several rings.
(2) A tail of decaying-to-zero oscillations fgrs> 1/« (seeLemma 5.

Clearly, we are interested in solutions of tiequation that look as iRigs. 2—4and not as irrig. 7, i.e., without the
oscillatory tail. Since the amplitude of the decaying oscillations is governed fsee Eq(22), we can equivalently

say that we are interested in ring solutions of Eif) with the smallest-possible tail (i.e:¢).6 Therefore, for a
givenGo, we can define the single-ring profile of H46) as the single-ring solution with the valuewthat gives

rise to the smallest-possihte . More generally, the-ring profile is the:-ring solution with the minimat.’ Fig. 8
shows a graph ofg as a function ofx for Gg = 5 x 10~* (seeAppendix Bfor numerical methods to calculate
¢g)- In generak¢ is O(10), but it sharply falls into minimum points at several locations. Let us denote the values
of « at the minimum points by, going from left to righi™), «®, «®, .. .. Plotting the corresponding-profiles
shows thatr = ) corresponds to amring profile (seeFig. 9). The sharp variation af; near the minima points

in Fig. 8indicates that slight perturbations in the valuexdfom o) result in solutions which are very different

6 See also discussion in Sectién
7 The minimum value of:; is close to, but not equal to, zero (sEig. 8. Indeed, fromLemma 5it follows that if ¢ = 0 thenG = 0.
Therefore, am-ring solution of(16) does have an oscillating tail, but its magnitude is minimal.
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Fig. 8. Graph of:¢ as a function oft for Go = 5 x 10~%.
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Fig. 9. Solutions of Eq(16)with Go = 5 x 10~ and (A)a = «®(Go) = 0.0335, (B)a = a?(Go) = 0.37 and (Cx = «M(Go) = 0.424.

from ring profiles (se€ig. 10. More generally, values af betweeny” < o < o1 give rise ton-ring solutions
with “large” oscillating tails (as in, e.gkig. 7).

Let us denote by (Go) the value ofx for which the solution of Eq(16) with the initial conditionG(0) = Go
is ann-ring profile, according to the above definition of ring profiles, i”)(Go) is a minimum point of the
graphcg (). By repeating the above process for other valueggf(namely calculating:g as a function of
« and finding the minimum points™, seeAppendix Bfor more details), we can obtain curves= o (Go)

1.5

Fig. 10. Solutions of Eq(16)with Go = 5 x 10~% anda = o® (solid),« = o) + 0.01 (dotted) and = o« — 0.01 (dashed).
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Fig. 11. The curves(G) that corresponds te-ring profile solutions of Eq(16).

that describe families of-ring profiles (sed~ig. 11). As we have pointed out earlier, valuesmbetween the
curvesa™(Go) < a < a*+1(Gy), correspond ta-ring solutions with a non-small oscillating tail.

Remark 6. As we have just seen, in the case of ring solutions of the critical ME&n assume a continuous range
of values. In contrasty has to be equal to zero in the case of Townesian blowup solution of the critical NLS, and
in the case of the super-critical NLS the valuexafan assume a single value (e 0.9177 whend = 3 in Eq.

(32)) [9].
4.2. “Universality” of the G-profile

In Section2 we concluded that th€-profile is not universal since different initial condition evolve into rings of
different radii.

In Section4 we have also seen that the valuexds also not universal.

We now consider the behavior of tiieprofile around its peak(s):

Lemma 7. Let G be a solution of EQ. (16) and let Emax be a local maximum point of G such that

4
1< pax < el (23)

Thenfor |%— — Smax| = O(l),

_ 4
; jém) S LI (24)

Proof. SinceG’(§max) = 0andt > 1, the termG’(§)/& can be neglected. In addition, sincs> 1and|§ — &max] =
O(1), it follows thatg2 = g,%,ax(l + 0(1)). Hence, to leading order E¢L6) reduces to

G(E) ~v sech(v

4
G"(6) + ﬁ‘Gsﬁm - 1} G+G*=0.  G'(éma) =0, (25)

whose solution is given b§4). O
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(A) &S e (B) NS

Fig. 12. (A) Single ringG-profiles withGo = 5 x 10~% anda = oM = 0.424 (solid) and withG = 7.6 x 10~% anda = «® = 0.357 (dots).
Also plotted is secl§+/2) (dashes). (B) Same data on a semi-logarithmic scale.

Remark 8. Condition(23) ensures thafmax is in the ring region, and not in the oscillatory tail.
Remark 9. In the case of multi-ring solutionkemma 7applies to each peak of the rings.

Lemma 7shows that up to radial translations and dilations, all ring solutions have the same profile in the ring
region, which is given by the well-known one-dimensional sech soliton. To illustrate that, we pligt ib2A the
single-ring solutions of Eq(16) with Go = 5 x 10~% and with Gg = 7.6 x 1078 rescaled according td.3) and
centered around their corresponding peak&{ak = 10.98 andémax = 15.54, respectively), together with a plot
of sechg/+/2). As predicted by emma 7 there is an almost perfect match between the two singleGipgofiles
and the sech profile. More precisely, the match is excellent near the |gealkfax] < 3); for 3< & — &max < 10
the G-profile lies slightly above the sech profile (deig. 12B). Based orLemma 7and the results shown fig.

12 we can say that, in a sense, therofile is after all universal.

4.3. Self-similar ring collapse—explicit solutions

We can construct explicit self-similar ring blowup solutions by substitufing «./7; — ¢ in the asymptotic
profile g (14):.

Lemma 10. Let

e_ 1 r —i(l0g(Te—1) /o) —i(r2/8(Tc—1))
- G e , 26
Ve = U= (aa/—TC_J (26)

where G(&; ) is a solution of (16). Then, W is an explicit blowup solution of the NLS whose blowup rate is

L(t) = a/Tc —t.

Proof. A straightforward substitution af¢ (26) into the NLS(1) proves the result. O
Remark 11. Lemma 10applies to any solution fL6), and not just ta:-ring G-profiles wherex = ().

Lemma 5Simplies thatG (and hencel) have infiniteL? norms. Thereford,emma 10proves the existence of
collapsing self-similar ring solutions of the NLS that blowup at a square root blowup rate which are bt in
Existence ofH? ring type blowup solutions is discussed in Secton
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5. NLS simulations of collapsing ring solutions
5.1. Explicit single-ring blowup solution

In order to reproduce numerically the explicit single-ring blowup solut&@ﬁo, we first derive a simpler form
of (26). To do that, let

{/}(Gex) — ei((|09(Tc—0t2Tct)/az)/az))hwG(Azt’ Ar), A= ay/Te.
Dropping the tilde, we obtain that

v, r) =

1 r 22 2
G e—l(a r</8(1—a t))7 27
V1—a?t («/1—a2t> (27)
is an explicit blowup solution of the NLS with a square root blowup rate that blows Gp-atl/«?. Settings = 0
in (27) we obtain the corresponding initial condition

Yo = G(r) e /8", (28)

We solve the NL$10)with the initial conditiony2, from (28), with G = 7.6 x 106 anda = «(Go) = 0.357.

The corresponding NLS analytical solution is, of course, givetyyf (27). Fig. 13A shows that, as expected, the
numerical solution collapses with a ring profile. Since the normalized solution remains unchanged while focusing
by a factor of 18° (Fig. 13B), the solution indeed undergoes self-similar collapse. More®igr,14 shows that

the blowup rate of the solution is a square root. The grapblgfis much smoother than iRig. 6A, since in the

case ofyrg, L(t) = a/Tc — .

The purpose of this simulation was not to find the solution (which is known analytically), but rather to serve
as a benchmark for other simulations. In addition, the fact that the solution maintained a self-similar profile while
focusing over 15 orders of magnitude suggests that the self-siGrfaofile is stable, as will be further shown in
Section6.1.1

[l h
2 ! '|
L 7N
[ _ 4 ~
0 L~
0 5 10 15 20
(A) r
1
L
[l 05
0 .
0 10 20 30
(B) r/L

Fig. 13. (A) Solution of the NLK10) with initial condition wg atr = 2.103 (dashesy, = 5.629 (solid) and = 7.376 (dash-dots). (B) The
three lines from A (at focusing levels(r) = 1.17, 1.89, 4.2) normalized according t(13). Also plotted is the solution at focusing levels of
A(r) = 2.22 x 108 (dots) andA () = 3.48 x 10'® (dash-dots). All five lines are indistinguishable.
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Fig. 14. Blowup rate of the solution of the NL($0) with o = 1//?;.

5.2. Matching NLS ring solutions with the G-profile

In Figs. 2—4we showed NLS solutions with high-power super-Gaussian initial conditions that collapsed with
a self-similar ring profileFig. 15A—C shows that these self-similar profiles have an almost perfect match with

the single ringG-profiles that have the same radii ($&8gpendix Dfor numerical details on how to match with a
G-profile).

1 1 1
=
Sos8 0.8 0.8
©
E
506 0.6 0.6
g
= 04 0.4 0.4
o
0.2 0.2 0.2
0 0 0 :
0 10 20 30 0 10 20 30 40 0 10 20 30
(A) rL (B) rL (C) r/L
1 10°
-
o
4
=1 10°}F
=
g
=
—
10 107
0 10 20 30 40 50 10 20 30 40 50
(D) L (E) r/L (F) r/L

Fig. 15. Solutions of NL$10) (dashes) and the best fittédprofile (solid) normalized according {&3). (A) o = 15 €’4, normalized profile

of ¥ at A(r) = 6.5 x 103, G-profile with Go = 0.000288 andr = «M(G¢) = 0.413; the two lines are indistinguishable. (B) Same as A with
Yo =20e"" A() = L.75x 105, Go = 7.6 x 10~ anda = «®(Go) = 0.357. (C) Same as A witlip = 156", A(f) = 2.67 x 10%, Go =
0.00038053 and = o(Gg) = 0.419. (D-F) Same data as on top, but on a semi-logarithmic scale.
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Fig. 16. (A) Self-similar ring profiles ofig. 15 vy = 15 et (solid), o = 20 e (dotted) andyo = 15 e’ (dash-dotted). All three lines
are nearly indistinguishable. Dashed line is sett@). (B) Same data on a semi-logarithmic scale.

Remark 12. Under the above matching approach, the value @@fence of G(0)) is found by looking for@-profile

that has the same radius as the ring solution. For example, for the super-Gaussian initial cgpditid® e*r4,

we obtaina = «M(Gp) = 0.413. The value ofr can be independently extracted from the numerical data using
the relation lim_ 7, LL, = —a?/2, see(19). For example, lim. 7, LL; = 0.085 for the super-Gaussian initial

conditionyg = 15 e—’4, seeFig. 6A, yieldinga = 0.412. The fact that we recover nearly the same valueusing
two different methods provides an additional support for the validity of the asymptotic hdxt£16)

Plotting the data ofig. 15A—C on a semi-logarithmic scaléig. 15D—F) shows that th&-profiles provide
an excellent match for the self-similar profiles around the ring, but behaves very differentlyswheén(1) and
wheng > 1/a2. This “mismatch” is expected, since the NLS solutions themselves maintain a self-similar profile
only around the ring (se€ig. 2B).

When the three ring profiles froffig. 15are plotted as a function of the radial distance from their corresponding
peaks (seéig. 16, we observe that all three ring profiles are almost indistinguishable. This “universality” was
predicted byLemma 7which states that all (normalized) ring profiles behave like sgafi2). Indeed, the graph of
sech§/+/2) agrees very well with these three profiles. The agreement is excellent near théépeglkdx < 3);
for 3 < & — &max < 10, the NLS ring profile lies slightly above the sech profile. ComparisoRigf 1688 with
Fig. 12B thus shows that th€-profile does not only “capture” the agreement of the NLS ring solutions with the
universal sech profile near the peak, but also the small positive difference from the sech profte§or 8nax <
10.

5.3. “Low power” initial conditions

In Section2 we saw that solutions of the NL&O0) with high-power (V(0) = O(50N¢)) super-Gaussian initial
condition collapsed with a self-similar ring profile. On the other end, Merle and Raflta<ll8]proved that there
exists an universal constasmt, such that all singular solutions of the NI(§) whose power is less tha¥; + o*
collapse with thajr; profile. While the studiefl6-18]do not provide the value af*, a simple bound fo&* can
be obtained by calculating the power of the first excited state explicit solw@(‘m see Eq(6), which clearly does

not blowup with they s profile. Since||¥%, (13 = [R5 = 6.6N,, we obtain the bound* < 5.6N¢. Therefore,
since the rings that we observe are at powers that aft%0N,), there is no contradiction between our observations
and the results of Merle and Raphael.

The results of Merle and Raphael imply that ring-type blowup can only occur above a certain power threshold.
We now ask what is the minimal power threshold necessary for solutions to collapse with a ring profile. In order
to answer this question, we first study a borderline caseRgge 17 and 1Bof the super-Gaussian initial solution
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Fig. 17. Solution of the NLS(10) with initial condition power o = 4/60N:/7 e with N(0)=15N.. (A) t=0,A(r) =1, (B)
= 0.035 A(f) = 2, (C) = 0.0485 A(f) = 12.4, (D) r — 0.04887767073216617 (1) = 1.73 x 107, (E) 1 = 0.0488776707321662\ () =
4.01x 10% (F) A(r) = 1.95 x 10%. Dotted line in F is the rescaled Townes profile

Yo = ce" with N(0) = 15N¢(c = 9.44). Initially, the solution collapses with a ring-like profile that persists up

to a focusing level ofA(r) = 10’ (B-D). However, at a later stage the relative magnitude of the on-axis amplitude
|v(z, r = 0)| becomes larger and larger until the global maximum is obtained at the origin (E), so that eventually it
collapses with a Townes profile (F).
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Fig. 18. Relative magnitude at the origin, as a function of the focusing kefegfor the simulation ofFig. 17. Annotations A—F correspond to
graphs A—F irFig. 17.
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Fig. 19. Focusing level(r), at time of transition from a ring profile to a Townes profile. The initial conditions/gre- ce,

In order to study the dependence of the transition from a ring to Townes profile on the input power, we need
to define the fransition time”. A possible definition for the fransition time” of the solution from a ring profile to
Townes profile is the time when the solution attains its maximum at the origin for the first timersih6ei.e.,

WOl _ 1}
max. [y (z, r)| '

For example, for the simulation dfig. 17, the transition occurs at annotation Ekig. 18 For N(0) < 10N,

the transition occurs during the early stages of the collapse, i.eA(fesnsiion = O(1) (seeFig. 19. However,

when N(0) > 10N, the focusing level of the solution at the transition point grows at a super-exponential rate as
a function of initial power, and reacheSfyansition = 10*® when N(0) = 17N.. Since our numerical code may
become unreliable at focusing levels abové®1@ve cannot determine numerically whether such a transition will
occur at much higher powefs.

firansition= iNf {
t>0

(29)

6. Stability of ring profiles
6.1. Radially-symmetric case

We now test the stability of collapsing self-similar ring solutions of the radially-symmetric (10% Clearly,
in this case, all perturbations preserve the radial symmetry.

6.1.1. Stability of ring profiles

In Fig. 13we solved the NLY10) with initial condition 1//8, whose analytical solution is given bys. The
fact that in the simulation the solution remained self-similar while focusing by a factor'8fsl@gests that the
self-similar ring profiley; is stable despite the presence of numerical noise. To further test the stabifity aofe
randomly perturbed the initial ring profile frofig. 13as follows,

YOS = (1 + e1(r)yd + e2(r). (30)

wheree1(r) andey(r) are uniformly distributed in£0.25, 0.25] and in [-0.05, 0.05], respectively. Note that for
this initial condition both the ring and the inner and outer regions are perturbe#i(se2A). After focusing by
less than 2, the noise inring region (i.e., the area of high nonlinearity) has disapgagredi). Then, the noise at

8 See also discussion in Sectién
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Fig. 20. Solution of the NL$10) with the noisy initial conditior{30); solid line. Dotted line is th&-profile with Go = 3.5 x 1075,

the inner and outer regions slowly decreases, until after focusing by a factor of 150, the solution approaches a clear
ring profile. We, therefore, conclude that the self-simil@r profile is a strong attractor in the radially-symmetric
case.
Notice that in the absence of noise, the radius of the initiglrofile is&max = 18.99 (seeFig. 13B). However,
when noise is added, the solution approaches a différgmbfile with a larger radiustfhax = 20.05). The reason
for the increase in the radius is that the noise that was add,e@ tocreased the initial power from(wg) ~ 29N¢
to N(¥5°9 ~ 31N..

6.1.2. Stability of multi-ring profiles

We now test the stability of the collapsing self-similar solutigis in whichG is a multi-ring profile. Todo that, in
Figs. 21 and 2%ve solve the NL10)with the initial conditionwoG of (28), whereG is the solution of Eq(16)with
the parameter&o = 0.00005 andx = «®(Gg) = 0.37 (double-ring profile) and = «®®)(Go) = 0.335 (triple-
ring profile). In both cases, initially the numerical solution remains close to the analytical salufidre., all the

-0 1=0.019447
8
1 6
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0.5
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[yl . 3 .
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Fig. 21. Dynamics of double-ring solution (solid). Dotted line in D is the best-fitting single ring ptiafijéhe two lines are indistinguishable.
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Fig. 22. Dynamics of triple-ring solution (solid). Dotted line in D is the best-fitting single ring profile; the two lines are indistinguishable.

rings collapse towards the center at the same rate. However, after focusing by a factor of 5, the outer ring(s) begin to
diffract, i.e., become wider and less focused. Hence, the outer ring(s) move away from the inner ring that continues
to collapse. We note that in the simulatiorFa§s. 21 and 22ve use the same numerical parameters (grid resolution,
etc.) as in the benchmark simulationrig. 13which maintained the self-similar profile after focusing by a factor
of 10'5. Therefore, we conclude that multi-ring solutions are unstable.

Inspection of the collapsing inner ring shows that it approaches a single ring pFifise 21D and 2R). This
shows that the single-ring profilis is an attractor not only for initial conditions of the forgg = ¢ e and even
not only for monotonically decreasing initial conditions.

6.2. Anisotropic case

We now present numerical simulations of collapsing ring solutions of the (1).SSolving (1) numerically is
much more demanding than solvi¢i)and was done using the iterative grid redistribution (IGR) fgg@endix B.
We use these simulations to study the effect of breakup of radial-symmetry on collapsing ring solutions. In order
to be able to conduct grid convergence testing, we use a deterministic breakup of radial-symmetry (elliptic initial
conditions) rather than “count” on symmetry breaking due to numerical noise.

6.2.1. Explicit single-ring initial conditions

Our simulations in Sectio6.1.1show that the collapsing self-similar single ring profile is stable in the radially
symmetric case. We now test the stability of ring solutions in the anisotropic case, in which symmetry breaking is
due to the introduction of small ellipticity in the initial condition. Ideally, we would like to solve the K)Svith
the elliptic ring initial condition

Yol 3) = v (r = m> .

However, even with the iterative grid redistribution method (8ppendix B, this simulation seems to be too
demanding at present. Therefore, we first solve the radially-symmetrig N)Svith the ring initial conditionl/fg
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Fig. 23. Solution of the NL$1) with the slightly elliptic single ring profil€31). Top: Surface plot. Bottom: Level sets |af|.

(28)up tor = 19 = 7.8185, such tha# (o) = 1000. Then, we add small ellipticity & 0.01) to the solution afy
and use it as an initial condition for the simulation of the Nl1% In other words, we solve the NL&) with the
initial condition

Y(to, x, y) = ¥g (to, r=1/x2 + 1.01y2> . (31)

As Fig. 23shows, the ring breaks into eight filaments located along a cireles; . These eight filaments consist
of a pair of identical filaments located atA£s, 0), another pair of identical filaments located at{05;) and a
guadruple of identical filaments located atx, =ys;) such thatxfzi| + yfzn = rfziI 2 Therefore, the collapsing ring
profile is unstable as a solution of the NIB, i.e., with respect to perturbations that breakup the radial symmetry.

6.2.2. Elliptic super-Gaussian initial conditions

In the radially-symmetric case, we saw that high-power super-Gaussian initial conditions collapse with a single
ring self-similar profile Figs. 2—4. To check the stability of such solutions under symmetry-breaking perturbations,
we solve the NLY1) with the elliptic super-Gaussian initial condition,

Yo(x, y) = 10 (HLOLY?

9 As was pointed out ifi25], since the NLY1) is isotropic, the symmetry breaking induced by ellipticity preserves the symmetries-x
andy — —y. Therefore, the filamentation pattern induced by ellipticity can only consist of single on-axis filament, pairs of identical filaments
located along the ellipse major axis atx, 0), pairs of identical filaments located along the minor axis at-f), and quadruples of filaments
located at =x, +y).
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Fig. 24. Same aBig. 23for the initial conditiony = 10 e ¢*+10L%?

for which N(0) = 16.82. The slightly elliptic super-Gaussian initial condition initially evolves into a ring structure.
However, after focusing by about 4, the ring breaks into four filaments located along a ciraig, see-ig. 24 For
comparison, in the radially-symmetric case- 0, this solution collapses with a ring-profile up to focusing levels
of A(r) = O(10%) (seeFig. 19. As in Fig. 23 one pair of identical filaments is located atrf;, 0) and another
pair of identical filaments is located at, @ ).

7. Supercritical NLS

The NLS Eq.(10) can be written in a more general form as

. d—1
Wil ) + ¥+ —— U+ WP =0, $(07) = Yolr). (32)

The casal > 2 is known as the supercritical NLS. Since the supercritical NLS also admits singular solutions, it

is natural to ask whether collapsing ring solutions also exist in the supercritical case. To do that, we solve the
supercritical NLS(32) with a super-Gaussian initial condition of the forfg = 10 e, As in the critical case,

the solution collapses with a ring structure (§ég 25A). However, if we normalize the supercritical ring solution
according to Eq(13), the normalized ring expands as the solution collapsesKige@3B). This shows that, unlike

the critical case, the rate at which ring amplitude increases is faster than the rate at which the ring radius shrinks. We
also observe that the expansion rate of the rescaled rivg.#62. Therefore, the amount of power collapsing into

the singularity inf lim,_, 7, fx e lv|2r2dr is zero (i.e., weak collapse). In contrast, for the ring blowup solutions

of the critical NLS(1) the amount of power collapsing into the singularity is positive (strong collapse). We thus see
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Fig. 25. (A) Solution of the supercritical NLE32) for d = 3, with ¥ = 10 e atr=038711 (solid),r = 0.03872 (dots) and =
0.038723 (dashes). (B) Same data as in A, normalized according (4 Eq.

that collapsing ring profiles of the supercritical N{®) do exist, but that they are quite different from those of the
critical NLS. A systematic study of these solutions will be presented elsewhere.

8. Do collapsing ring solutions exist in H1?

In Section4.3 we have found explicit self-similar ring solutions that blowup at a square root rate, which we
denoted byw(GeX), see(26). These solutions, however, have an infinite powet form). This raises the question
whether there existi! solution of the NLS that collapse with a ring profile at a square root rate. Our simulations
with high power super-Gaussian initial conditions (which arg#ij show that they collapse with a self-similar
ring profile at a square-root blowup rate, up to focusing levels .18t higher focusing levels our numerical
code becomes unreliable. Even if we could reach somewhat higher focusing levels, it would not be possible to
determine numerically whether ring solutions of the NLS, such as the ones that we presented in this study, will
maintain a ring profile until the singularity. One could attempt to “overcome” this limitation by trying to extrapolate
the results ofig. 19to power levels ofv = O(50N;). Unfortunately, it is not clear whether the focusing level at
the transition to the Townes profile will be finite but exceedingly huge (e.g., 10 to the power of several hundreds
of thousands), or whether the solution would maintain a ring profile all the way until the singularity. Therefore, the
question whether there exist blowup solutiongihwith a self-similar ring profile has to be answered using analytic
arguments?

We have seen that the self-similar ring profile is given byGherofile (Proposition }, and that the power a is
infinite (Lemma . This seems to suggest that finite power ) collapsing ring solutions do not exist. However,
as the simulations of Sectidnshow, the self-similar profilg; characterizes only the collapsing ring region and
not the whole solutioftl i.e.,

Yinner 0 <r < p1L(2)
Ut r)~ < v paL(t) <r < p2L(1) , (33)
VYouter p2L(t) <r

with p2 > p1 > 1 andL(r) = 1/max. , [ (t, x, y)|. Thus, the assumption madeRmnoposition Ithat the solution
is self-similar for 0< r < oo is valid only for non#H? solutions, such asrg?x).lz In the case ofH?® solutions,

10 whether the self-similar ring profile is maintained “only” for focusing over several hundreds (or thousands) orders of magnitudes or all the
way until the singularity is “only” a mathematical issue. Indeed, for any conceivable application, the validity of the NLS as a physical model
breaks down long before reaching focusing levels 3f10

11 This partial beam collapse property also characterizes NLS solutions that blowup witiptbéle, seg8).

12 |ndeed, a whole beam collapse 8t solutions is not possible whef(|v/o|) # 0 [26].
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Proposition lapplies only to the ring region, since only there the solution is characterized by a self-similar profile.
The “modified” version oProposition Ifor H! quasi self-similar solutions is as follows:

Proposition 13. Let  be a singular solution of the NLS (1) with an asymptotic quasi self-similar blowup profile
(33), where Y is given by (14). Assume that (15) holds. Then, G (&) is the solution of

!/

" G at 3
G(§)+§+L6$ —1}G+G =0, forp1<é&<po. (34)

Proof. The proof is exactly the same as the proofRsbposition 1 simply applied only to the bounded region
p1L(t) <7 < p2L(r). O

Of course Proposition 13loes not prove the existence Bf ring solutions, since it relies on the assumption that
the solution has the quasi self-similar blowup prof88). While our numerical results support this assumption, the
validity of the this assumption should be confirmed analytically, e.g., by calculéting andvquter, and matching
them withyrg.

Proposition 13shows that the behavior af for £ >> po is not characterized by the ring profi@ Indeed,
since the ring solution amplitude decays at laggéseeLemma 5, at £ > p2 the NLS reduces to the linear
Schibdinger equationyi; (z, x, y) + Ay = 0. Therefore, the infinite-power “tail” of the ring profi@is “irrelevant”
to the NLS ring solutions, as can be seerkrig. 13D—F. We note that the feature of the “irrelevant infinite power
tail” also occurs in the supercritical NL&2). Indeed,H blowup solutions of the super-critical NLS collapse
with an asymptotic self-similar which is known as tieprofile [12,27] As in the case of th& profile, the
overall power ofQ betweert = 0 and¢ = oo is infinite. However, the simulations and analysi§28,29] show
that the collapse is, in fact, only quasi self-similar, with linear propagation for sufficiently rtgence, the
quasi self-similaiQ profile is consistent with an overall finite power of the collapsing solution. The same feature
was also observed and analyzed by Mall30] in the critical case for solutions that blow up with the Townes
profile.

In summary, at present, the numerical and analytical results do not provide a conclusive answer to whether
collapsing ring solutions exist iff. For further discussion on this issue, see Sedion

9. Final remarks

In this study, we presented NLS simulations of solutions that blowup with a quasi self-similar ring profile at a
square-root blowup rate up to focusing levels oté@t which point our numerical code may become unreliable.
As we noted in Sectio8, the question whether there exist collapshijsolutions that maintain a ring solution and
blowup at a square root blowup rate all the way up to singularity is still open. As we have seen, existence of such
solutions does not contradict the recent results of Merle and Raphael (see S&®timr the infinite power of the
G-profile (SectiorB).

Several open issues, which are related to the question of existeterafg solutions, are:

e The assumption that the ring solution is quasi self-similar of the @30 (see Sectio®) is strongly supported
by the numerical results, but its validity at focusing leyel 0% is an open question.

e The minimal tail criteria for determining the relation= «()(G) for single ringG-profiles (see Sectiod) is
reasonable as an initial choice, but the correct criteria could be based on matching bggwessinoyter.

e What is the minimal power for a ring-type collapse (see Sed@ig)¥

As we have noted, at present, the numerical and analytical results do not provide a conclusive answer to whether
collapsingH? ring solutions of the critical NLS maintain a ring-profile all the way up to the singularity. It they do,
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they represent a new type of singular solutions of the critical NLS. If, however, these ring solutions will change into
R profiles at exceedingly high focusing levels {01), these ring solutions represent a new type of “quasi-singular”
solutions of the critical NLS. We note that this distinction between truly singular ring solutions and “quasi-singular”
ring solutions is a mathematical issue, since for any conceivable physical application, the NLS model is not valid
at focusing levels which arg-106.

Finally, we note that ring-type collapse was recently observed in experiments with high-power, flattened-top
laser beam§31]. These experiments were preliminary and considered only the early stages of the ring creation.
Since our simulations show that as the rings collapse they become unstable with respect to symmetry-breaking
perturbations (see Sectiéh a more detailed experimental investigation is needed to study the issue of ring stability
at higher focusing levels.
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Appendix A. Calculation of the G-profile (16)

Lemma 5ensures that all solutions of E(L.6) decay ag — oo. Therefore, we can solve E(L6) as an initial
value problem with the condition§(0) = G¢ andG’(0) = 0 using a standard Runge-Kutte ODE solver.

Appendix B. Calculation of cg

In order to calculate s, we first find the locations & & < &1 < &3 < - - - of the local maxima ofy|. From
Lemma 5we know that

c 1
G (&) ~ g—G £ > . (B.1)

Thereforle, we perform a linear data fit for the series of pdifgts 1/G (&,))} for £, > 1/a. The slope of the fitted
lineiscg™.

Appendix C. Finding a™(G)

GivenGo = G(0), we wantto find(®(Gy), i.e., the value of for which the solution of16)will be a ring solution
with the smallest oscillation tail possible. A direct method would be to first find a valudlain corresponds to a
solution with a single-ring (with a non-small tail) and then minimigeas a function of, wherecg is calculated
as inAppendix B This approach demands a good initial guessi8i(Go) and turns out to be relatively inefficient.

A better approach is to look at the value®f2) where{¢, } is the series defined Wppendix B For a single-ring
solution,&; already belongs to the oscillating tail, therefore we exp@¢2)| to be minimal. Naively, a minimum
finding algorithm can be applied to find the optinralvhich minimizeg G (&2)|. However, a better approach can be
derived by noting that as changes frona(!) — ¢ to oY + ¢, G(£2) changes its sign (sdgg. 10and alsdFig. C.1).
We can take advantage of this property and apply a zero-finding algorithm to find the value fora\Bighs
closest to zero. This method is significantly faster than the minimum finding algorithm and in addition it does not
demand a good initial guess faf)(Gg). Clearly, sinceLemma 5ensures thatg can not be zeroG (€2) cannot
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Fig. C.1. G(&2) as a function ofr — «Y(G) for Go = 0.0003.
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Fig. C.2. Zoom-in orFig. C.1neara = «(Go).

be zero as well. Indeed, zooming in on the neighborhoad¥Go) shows a discontinuity at = 1) (Fig. C.2.
The discontinuity in the graph asserts that the zero finding algorithm will be stopped by an external threshold and
not when finding a true optimal value. This does not constitute a problem, however, beckigecashows, the
zero search will terminate at a valuemfvhich is O(10°) close toa™(Gy).
Extension of the method tering solutions is done searching for the values ef «)(Go) for which G (&,11)
is closest to zero.

Appendix D. Matching a given ring profile with a G-profile

When we find a self-similar ring profile of a collapsing NLS solution, we would like to find the corresponding
best fitting single-ring solution fL6). To do that, we first require that the two profiles will have the same amplitude
by normalizingy and theG-profile according tq13). Fig. D.1shows that the radius of the normaliz6ebrofiles
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ring radius

Fig. D.1. Radius of a normalized single-riagprofile as a function 0&y.

increases monotonically & decreases (as, of course, can be expected). Therefore, the match is done by searching
for the value ofG¢ for which the normalized; andyr and have the same radius.

Appendix E. Simulation of radially-symmetric NLS (dynamic rescaling)

Simulations of the radially-symmetric NL&O0)were performed using the method of dynamic rescd®hgvith
approximate boundary conditiof32]. In this method, the independent variables and the function are dynamically
rescaled in a way which is based on the asymptotic form of the sol(ti)nAs a result, in the rescaled variables,
the function is smooth and the problem can be solved on a fixed grid using standard techniques. Finally, the NLS
solution is recovered from that of the rescaled problem. Additional rescaling is applied to the modulation variables
L andr, so that they match the corresponding variables of the asymptotic tfic88].

Appendix F. Simulation of anisotropic NLS (iterative grid redistribution)

We use the iterative grid redistribution method for the simulations of the NLS with anisotropic initial conditions.
The IGR method was introduced[84] and further improved if85] and[36]. The method consists of the following
three parts:

(1) A grid generation rule that determines the mesh mapypiagr ().
(2) An iterative procedure that controls the grid distribution near the singular points.
(3) A procedure for solving the NLS.

Step (2) is the key for the method to be successful for the problem with singular behavior. It is a procedure that
improves the grid distribution near singular region if the mapging step (1) cannot achieve enough resolution

in the singular region. In step (1), the grid generation in two and three spatial dimensions is commonly done using
the variational approach, specifically by minimizing a functional of the coordinate mapping between the physical
domain and the computational domain. The functional is chosen so that the minimum is suitably influenced by the
desired properties of the solution of the PDE itself. Steps (1) and (2) are then incorporated into a static adaptive
method for solving the NLS equation in the computational domain. The grid re-generation is needed when certain
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smoothness criterion for the solution in the computational domain is violated. The advantage of the method is that
it can handle singularities with complicated structures. For details, we refer the regie 3, 36]
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