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When solvinglinear scattering problems, one typically first solves for the imping-
ing wave in the absence of obstacles. Then, using the linear superposition principle,
the original problem is reduced to one which involves only the scattered wave (which
is driven by the values of the impinging field at the surface of the obstacles). When the
original domain is unbounded, special artificial boundary conditions (ABCs) have to
be set at the outer (artificial) boundary of the finite computational domain in order
to guarantee the reflectionless propagation of waves through this external artificial
boundary. The situation becomes conceptually different when the propagation equa-
tion is nonlinear. In this case the impinging and scattered waves can no longer be
separated, and the problem has to be solved in its entirety. In particular, the boundary
on which the incoming field values are prescribed should transmit the given incoming
waves in one direction and simultaneously be transparent to all the outgoing waves
that travel in the opposite direction. We call such boundary conditionstwo-way ABCs.
In the paper, we construct the two-way ABCs for the nonlinear Helmholtz equation,
which models a continuous-wave laser beam propagation in a medium with a Kerr
nonlinear index of refraction. In this case, the forward propagation of the beam is
accompanied by backscattering, i.e., generation of waves in the opposite direction
to that of the incoming signal. Our two-way ABCs generate no reflection of the
backscattered waves and at the same time impose the correct values of the incoming
wave. The ABCs are obtained in the framework of a fourth-order accurate discretiza-
tion to the Helmholtz operator inside the computational domain. The fourth-order
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convergence of our methodology is corroborated experimentally by solving linear
model problems. We also present solutions in the nonlinear case using the two-way
ABC which, unlike the traditional Dirichlet boundary condition approach, allows for
direct calculation of the magnitude of backscattering.c© 2001 Academic Press

Key Words:artificial boundary conditions (ABCs); two-way ABCs; radiation;
Helmholtz equation; nonlinearity; nonparaxiality; fourth-order schemes; self-
focusing; backscattering.

1. INTRODUCTION

The Helmholtz equation

1E(x1, . . . , xD)+ k2E = 0, 1 = ∂2

∂x2
1

+ · · · + ∂2

∂x2
D

(1)

models time-harmonic wave propagation inD dimensions. The simplest case is when
k ≡ k0, which corresponds to propagation of waves through a homogeneous medium. For
example, in opticsE is the electric field,k0 = ω0n0/c is the wavenumber,ω0 is frequency,
n0 is the (linear) index of refraction of the medium, andc is the speed of light.

In many applications, one wants to solve Eq. (1) in the presence of an impinging wave field
and boundaries, which can be either surfaces of obstacles or interfaces between different
media. The source of the impinging wave is prescribed by a relation of the form

Einc = E0
inc on6source, (2)

where6sourcecan, for example, be a point (i.e., a point source) or a plane (i.e., a plane wave),
andE0

inc is given. The physical properties of surfaces and/or interfaces, i.e., how they handle
the impinging wave in terms of propagation through and/or reflection, are given bylinear
operator relations of the form

L[E] = 0 on6interface. (3)

For example, if6interfaceis the surface of a perfect conductor, then (3) reduces toE = 0 on
6interface(total reflection).

Since Eqs. (1)–(3) are linear, one can solve the scattering problem in two sequential
stages as follows. The solution is split into two components

E = Einc+ Escat.

At the first stage one solves for the incoming wave fieldEinc, which is the solution of
Eq. (1) inRD in the absence of any obstacles and/or interfaces, driven by the known source
term (2). Typically, one can write this solution explicitly as a superposition of plane and/or
spherical waves. Then, at the second stage, one solves for the scattered wave fieldEscat,
which satisfies Eq. (1) with no sources, subject to the boundary condition

L[Escat] = −L[Einc] on6interface,
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which directly follows from (3). In the process of solving numerically forEscat, one has
to replaceRD with a bounded computational domain. In doing so, one needs to introduce
the artificial boundary conditions(ABCs), see [34], which make the boundary transparent
for outgoing waves and guarantee the solvability of the truncated problem on the finite
computational domain, such that the computed solution is close to the original infinite-
domain solution.

In addition to the simplest casek ≡ k0, there are numerous applications where the medium
is nonhomogeneous, i.e.,k = k(x1, . . . , xD). In this case, one may also need to solve for
the incoming fieldEinc numerically (using ABCs), rather than analytically. However, as this
problem is linear as well, one can still employ the linear superposition principle and thus
solve first forEinc and then forEscat.

In the current study, we consider a more complex case wherek also depends on the field
intensity, i.e.,k = k(ω0, |E|2). For example, the propagation of an intense continuous-wave
(cw) laser beam2 through a Kerr-type medium such as water or silica, is described by Eq. (1)
with k2 = k2

0(1+ ε|E|2), whereε = 4ε0cn2 andn2 in the Kerr coefficient (e.g., [4, 21]). In
this case, beam propagation is governed by the nonlinear Helmholtz equation (NLH)

1E + k2E = 0, k2 = k2
0(1+ ε|E|2). (4)

We note that the natural definition of the index of refraction is in the frequency domain. In
the time domain, the cubic nonlinearity becomes a nonlocal convolution, which, in the case
of almost-monochromatic wavepackets, reduces, to leading order, to a cubic nonlinearity;
see Section 8.7 and Ref. [8] for more details. Because of the nonlinearity in the equation
of propagation (4), the componentsEinc and Escat can no longer be decoupled as in the
linear case. From a numerical point of view, this nonlinear coupling adds a new twist to the
construction of the ABCs, since the Kerr medium interface atz= 0 is required to transmit
Einc in one direction and, at the same time, transmitEscatin the opposite direction. Deriving
and implementing thistwo-way ABCin the discrete nonlinear framework is a key emphasis
of this study.

2. PHYSICAL MODEL

Although our numerical approach is quite general, in order to motivate the presentation
we relate it to a specific physical problem, namely that of an intense laser beam propagating
through a nonlinear Kerr medium. The Kerr medium is located in the half-spacez≥ 0;
the directions of increasing and decreasingz are called right and left, respectively; and the
wave source in the model is a right-traveling beam, impinging on the Kerr medium atz= 0.
Therefore, the only physical boundary in the model is the transverse two-dimensional(x, y)
plane atz= 0. For simplicity, we assume that the input beam is radially symmetric in the
transverse plane and denote the transverse coordinate byr =

√
x2+ y2. For the purpose of

solving the problem numerically, the original unbounded physical domain 0≤ z< +∞ is
replaced with the truncated domain 0≤ z≤ zmax. Therefore, the left computational bound-
ary atz= 0 coincides with the Kerr medium interface, and the right computational bound-
ary atz= zmax is a far-field artificial boundary. The desired behavior of the solution at the
boundariesz= 0 andz= zmax is described in the remainder of this section.

2 A cw laser beam is a time-harmonic monochromatic wave, as opposed to, say, pulses and wave packets.
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2.1. Two-Way Propagation of Waves at Media Interface

At z= 0, the electric fieldE has both incoming and backscattered components. The
value of the incoming wave upon entering the nonlinear medium is given by

Einc(r, 0) = E0
inc(r ). (5)

The backscattered field atz= 0 cannot be known ahead of time, because backscattered
waves originate inside the domain and subsequently propagate toward the left boundary
(see Section 7.1.1 for more details). The simplest formulation of the problem, which is the
one used in this study, is to require that the boundaryz= 0 be completely transparent to
all backscattered waves. Consequently, the two-way ABC atz= 0 has to ensure the reflec-
tionless propagation of backscattered waves through the boundary (a radiation boundary
condition) and at the same time correctly prescribe the incoming signal (5).

The main idea in our implementation of two-way ABCs is the following. The overall
solution E is composed of outgoing wavesEout that propagate throughz= 0 with no
reflection, and an incoming waveEinc, which is prescribed atz= 0. Assume that outgoing
wavesEout satisfy a homogeneous boundary conditionBEout = 0, whereB denotes a linear
nonreflecting boundary operator. The incoming waveEinc cannot satisfy this boundary
condition, because otherwise the solutionE would not be unique. Therefore, if we apply
the operatorB to E = Eout+ Einc, we obtainBE = BEout+ BEinc = BEinc 6= 0. Since
the incoming waveEinc is given [see (5)], we see that the nonhomogeneous relationBE =
BEinc can serve as a two-way ABC with the desired properties. In the present study the
implementation of this idea is carried out through linearization in an iterative framework
with subsequent analysis of the linear problem in Fourier space. A detailed description of
the procedure is given in Section 4 for the continuous formulation of the problem, and in
Section 6 for the discrete formulation of the problem.

Our construction of a two-way ABC is based on the assumption of reflectionless propa-
gation of all left-going waves, as well as the incident right-going wave, throughz= 0. A
more accurate physical model should, of course, include reflections from the media inter-
facez= 0, because the linear index of refraction can be discontinuous across this interface
(see Section 8.2 for more details). These reflections can result in different values of the
incoming wave field on two sides of the interface, i.e.,Einc(r,−0) 6= Einc(r,+0). In the
current study we disregard this effect, which can be interpreted as either consideringE0

inc

of (5) to be the part of the incoming wave that has already been transmitted past thez= 0
interface, or assuming continuity of the wavenumber across the interface. Similarly, we
neglect the reflection of backscattered waves by the media interface atz= 0. In Section 8.2
we briefly comment on how one can incorporate a reflecting interface (i.e., discontinuity
in k at z= 0) in the methodology that we are building. In fact, we consider this one of the
future extensions of our current work.

2.2. Behavior as z→+∞
Basically, asz→+∞, we require thatE have no left-propagating components. In this

study we assume that at large distances propagation is diffraction-dominated and the field
amplitude decays to zero, i.e., limz→∞ max0≤r<∞ |E(r, z)| = 0, so that

lim
z→+∞ k2 = k2

0.

Therefore, at largez’s the solution is a linear superposition of right-traveling waves.
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As mentioned, the simulation is carried out on a truncated domain 0≤ z≤ zmax (see
Sections 5 and 6). Therefore, the desired behavior of the solution asz→+∞ has to be
captured by a far-field ABC at the artificial boundaryz= zmax. This boundary condition
should guarantee the reflectionless propagation of all the waves traveling towardz= +∞.

3. PARAXIAL APPROXIMATION

Most research on wave propagation in a Kerr medium has been carried out in the
framework of the nonlinear Schr¨odinger equation (NLS), rather than the NLH. We now
briefly describe how one derives the NLS from the NLH and quote some results on
wave propagation in the NLS model. For more information on NLS theory, see, e.g.,
[10, 21, 31, 32].

For reasons that will become clear, we consider the NLH inRD with a general power-law
nonlinearity

1E + k2E = 0, k2 = k2
0(1+ ε|E|2σ ).

We denote the axial coordinate byz := xD and assume radial symmetry in the transverse
plane of the firstD − 1 coordinates, i.e.,

E = E(r, z), r =
√

x2
1 + · · · + x2

D−1.

We also separate the slowly varying envelopeψ from the fast oscillations, and we introduce
the nondimensional variables

E = (r0k0
√
ε)−1/σ exp(ik0z)ψ(r̃ , z̃), r̃ = r

r0
, z̃= z

2LDF
,

wherer0 is the initial beam width andLDF = k0r 2
0 is the diffraction length. After dropping

the tildes, the equation for the amplitudeψ , in nondimensional form, is given by

γnpψzz+ iψz+1⊥ψ + |ψ |2σψ = 0,

where the transverse Laplacian is

1⊥ = ∂2

∂x2
1

+ · · · + ∂2

∂x2
D−1

= ∂2

∂r 2
+ D − 2

r

∂

∂r
,

and

γnp =
(

1

2r0k0

)2

.

In typical physical setups the beam widthr0 is much larger than the wavelengthλ, which
implies that 0< γnp¿ 1 (or, equivalently, in dimensional variables, thatψzz¿ k0ψz).
Therefore, it is customary to employ theparaxial approximation, i.e., neglect theγnpψzz

term. In that case, NLH reduces to the nonlinear Schr¨odinger equation (NLS):

iψz+1⊥ψ + |ψ |2σψ = 0. (6a)
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The NLS is an evolution equation wherez plays the role of “time” and the initial condition
is given atz= 0 for all r :

ψ(r, 0) = E0
inc(r ). (6b)

Therefore, under the paraxial approximation one approximates a boundary-value problem
for the NLH with an initial-value problem for the NLS. Since the NLS accounts only for the
forward-propagating wave, backscattering effects are neglected in this model. The question
arises, therefore, whether and how the results of the NLS model remain valid at the NLH
level, or alternatively, how these results are affected by backscattering. As of yet, almost
no rigorous studies of these issues have been conducted. We therefore hope that the current
study, which focuses primarily on developing a computational methodology for solving the
NLH, will provide a means for numerically comparing the NLH and the NLS in the future.

Let us now proceed with describing some specific results in the NLS model which are
interesting to look at in the framework of the NLH.

3.1. Critical Self-Focusing—Arrest of Collapse

We recall that the focusing NLS (6a) is calledsubcritical, critical, orsupercritical, when
σ(D − 1) is less than, equal to, or greater than 2, respectively. It is known that the solutions
of both critical and supercritical NLS can actually develop singularities, i.e., blow up, at
a finite z. There is, however, a marked difference between these two cases, as near the
singularity nonlinearity dominates over diffraction in the supercritical case, while they
are of the same magnitude in the critical case. As a result, unlike the supercritical case,
singularity formation in the critical NLS is highly sensitive to perturbations, which can
arrest the blowup even when they are small [10, 11]. In this paper we focus on the critical
case, which corresponds to the physical self-focusing (σ = 1 andD − 1= 2). In that case,
solutions of the NLS can become singular (i.e., blow up) after finite propagation distance,
provided that their initial power (L2 norm) is above a certain thresholdNc, which is called
the critical power.

The observation that the paraxial approximation breaks down near the singularity has
been already noted by Kelley, in his celebrated paper on self-focusing [16]. Feit and Fleck
[7] were the first to demonstrate that nonparaxiality of the beam can arrest the blowup, by
showing numerically that initial conditions that lead to singularity formation in the NLS re-
sult in focusing–defocusing oscillations in the NLH. In these simulations, however, they did
not solve a true boundary-value problem for the NLH. Instead, they solved an initial-value
problem for a “modified” NLH that describes the right-going wave only (while introducing
several additional assumptions along the way). Akhmediev and collaborators [1, 2] analyzed
an initial-value problem for a different “modified” NLH; their numerical simulations also
suggested that nonparaxiality arrests the singularity formation. Both numerical approaches
([7] and [1, 2]), however, failed to fully account for the effect of backscattering. Fibich
[9] applied asymptotic analysis to derive an ODE inz for self-focusing in the presence
of small nonparaxiality. His analysis suggests that nonparaxiality indeed arrests the singu-
larity formation, resulting instead in decaying focusing–defocusing oscillations. However,
backscattering effects were neglected in this asymptotic analysis.

Since there are no singularities in nature (i.e., the laser beam continues to propagate
beyond the NLS blowup point), a natural question is whether initial conditions that lead to
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blowup in the NLS correspond to global solutions of the corresponding NLH. To the best
of our knowledge, the very issue of the solvability of the NLH still remains unresolved,
including the critical caseσ(D − 1) = 2. Therefore, we are interested in solving numeri-
cally the critical NLHas a true boundary-value problem, in order to address this question.
Another issue of interest in the critical case is calculating the amount of power which is
backscattered for beams which do not blow up in the NLS model. We note that at present,
there are no data coming from either analysis or numerical simulations, on the actual extent
of backscattering, besides the general notion that it should be small.

In order to simplify the calculations, we consider the critical NLH withD = 2 andσ = 2,
i.e., [

∂2

∂z2
+ ∂2

∂r 2

]
E(z, r )+ k2E = 0, k2 = k2

0(1+ ε|E|4), (7)

which corresponds to the critical NLS

iψz+ ψrr + |ψ |4ψ = 0. (8)

Based on the insight gained from NLS theory, we can expect that the results for the critical
NLH with D = 2 andσ = 2 would also apply for the critical NLH withD = 3 andσ = 1.

4. NONLINEAR ITERATION APPROACH

In this section we use a continuous formulation to outline and motivate the iterative
numerical approach that we adopt in this study for solving the foregoing nonlinear wave
propagation problem. The actual derivation, however, is done completely at the discrete
level in Sections 5 and 6.

We are interested in solving the NLH (7) in the half-spacez≥ 0, subject to boundary
condition (5) for the incoming field, decay in the transverse direction

lim
r→∞ E(r, z) = 0,

and radiation conditions atz= 0 andz= +∞ for the outgoing waves, as discussed in
Sections 2.1 and 2.2. We build the iteration algorithm as follows. First, we define thelinear
version of the problem as

LF [E] = 0, (9)

where

LF =
[
∂2

∂z2
+ ∂2

∂r 2

]
+ k2

0(1+ εF(r, z)), (10)

F(r, z) is a given function, andE satisfies the same boundary conditions as in the nonlinear
problem. Then, we find the solution of the nonlinear problem (7) using the iterations

LF (n)

[
E(n+1)

] = 0, Fn = ∣∣E(n)
∣∣4 for n = 0, 1, 2, . . . ,N , (11)
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with the initial guessE(0)(r, z) ≡ 0. Since there is no rigorous theory that guarantees the
convergence of algorithm (11), our simulations (see Section 7) serve as a numerical test for
the convergence of these iterations. In Section 8.3 we briefly discuss alternative approaches
to the nonlinear iterations.

We note that iterative approaches have been used previously in numerical simulations
of problems over infinite domains, although in completely different settings; see, e.g.,
[12, 13, 22].

4.1. Iterative Solution of the Variable-Coefficient Linear Equation

In general, one can use any linear Helmholtz solver to solve equation (11) with respect
to E(n+1) while keepingF (n) frozen. In this study we solve (11) also iteratively as

L0
[
E(m+1)

] = −εk2
0 F (n) · E(m) for m= 0, 1, 2, . . . ,M(n), (12)

where

L0 =
[
∂2

∂z2
+ ∂2

∂r 2

]
+ k2

0.

Note that the functionF (n) does not change in the course of the iterations (12).
By rewriting formula (12) in the form

E(m+1) = L−1
0

[−εk2
0 F (n) · E(m)

]
,

we see that it formally corresponds to the standard fixed point iteration scheme. Therefore,
these iterations are more likely to converge when the right-hand side (RHS) is small. We
note that this occurs whenεF (n) ¿ 1, i.e., when the nonlinearity in the NLH is weak
(k2 ≈ k2

0). We can expect this to be the case in physical self-focusing for the following
reason. The Kerr coefficient of the mediumn2 is so small that even for intense laser beams,
upon entering the nonlinear medium,ε|E0

inc|2¿ 1. In the framework of the NLS model, if
the initial beam power is above the threshold for collapse, the nonlinear contribution to the
index of refractionε|E|2 [see (4)] would eventually become comparable to the linear onen0.
However, the asymptotic analysis in [9] suggests that nonparaxiality arrests self-focusing
whenε|E|2¿ 1. As a result,k2 ≈ k2

0 for all z≥ 0.

4.2. Direct Solution of the Constant-Coefficient Linear Equation

At each iteration of the inner loop (12), we solve a linear constant-coefficient equation
of the form

L0E = 8(r, z), (13a)

where the RHS8 is given by

8 = −εk2
0 F (n) · E(m). (13b)

Equation (13a), with8 given by (13b) and subject to the boundary conditions discussed
above, is solved in the following way. We use Fourier decomposition in the transverse
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direction for the solutionE, the RHS8, and boundary dataE0
inc(r ):

E(r, z) =
∑

l

ul (z) cos(lr ),

8(r, z) =
∑

l

f l (z) cos(lr ), (14)

E0
inc(r ) =

∑
l

u0,l
inc cos(lr ).

Because of the orthogonality of the Fourier modes, thel -th Fourier modeul (z) of E(r, z)
satisfies the ordinary differential equation

ul
zz(z)+ k2

l ul (z) = f l (z), k2
l = k2

0 − l 2, (15)

subject to the Dirichlet condition for the right-going wave atz= 0 [cf. (5)],

ul
inc(0) = u0,l

inc; (16)

a radiation condition for the left-going wave atz= 0; and a radiation condition atz= +∞.
It is at this level, i.e., after the separation of variables, that we implement the two-way ABC
at z= 0 and the radiation boundary condition atz= +∞. For that, we use the concept of
theone-way Helmholtz equations.3

4.2.1. One-way Helmholtz equations and the radiation principle.Equation (15) admits
two linearly independent eigenfunctions:u(1) = ei

√
k2

l z andu(2) = e−i
√

k2
l z. Whenk2

l > 0,
u(1) = ei |kl |z is the right-propagating wave andu(2) = e−i |kl |z is the left-propagating wave,
whereas whenk2

l < 0,u(1) = e−|kl |z is the right-decaying (evanescent) wave andu(2) = e|kl |z

is the left-decaying (evanescent) wave. Therefore, the one-way Helmholtz equations that
each admits only one of the two eigenfunctions while prohibiting the other one are

uz− i
√

k2
l u = 0, (17a)

uz+ i
√

k2
l u = 0. (17b)

Equation (17a) corresponds to the right-traveling or right-evanescent waveu(1), and
Eq. (17b) corresponds to the left-traveling or left-evanescent waveu(2).

As mentioned at the end of Section 2.2, for the purpose of numerical solution we truncate
the infinite domain [0, +∞) in z and reduce it to the finite interval [0, zmax]. The one-way
Helmholtz equations (17) can be used as boundary conditions for Eq. (15) on the interval
[0, zmax]. Indeed, if we want to make sure that near both edges of the interval [0, zmax]
the solution is only composed of outgoing waves, then we need to use relation (17a) as the
boundary condition atz= zmax and relation (17b) as the boundary condition atz= 0:

uz− i
√

k2
l u = 0 atz= zmax, (18a)

uz+ i
√

k2
l u = 0 atz= 0. (18b)

3 The term “one-way wave equation” was apparently first introduced by Trefethen and Halpern in [33].
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Clearly, as the boundary conditions (18a) and (18b) each eliminate one of the two eigen-
functionsu(1) andu(2), the homogeneous version of Eq. (15) on [0, zmax] (i.e., when f l ≡ 0)
with these two boundary conditions is only satisfied by the trivial solution. Consequently,
the nonhomogeneous Eq. (15) with boundary conditions (18) is uniquely solvable for any
RHS f concentrated on the interval [0, zmax]. From the standpoint of physics, the resulting
solution is only composed of waves due to sources located inside [0, zmax], which radiate to
the right and to the left, and contains no incoming waves from sources outside this interval.
A solution of this type is said to satisfy theradiation principle.

4.2.2. Adding the incoming power.As mentioned above, for the particular problem that
we are studying we also need to prescribe the incoming wave atz= 0, i.e., complement
the radiation boundary condition (18b) for the left-traveling waves atz= 0 with a Dirichlet
boundary condition (16) for the given right-traveling wave, which altogether will yield the
two-way ABC. In the continuous framework, this can be done as follows. The incoming
wave (16) gives rise to a solution of the formu0,l

ince
i
√

k2
l z. Substituting this expression into

the one-way Helmholtz equation (17b), we arrive at the following inhomogeneous relation

uz+ i
√

k2
l u = 2i

√
k2

l ei
√

k2
l zu0,l

inc. (19)

As in the case of any inhomogeneous linear differential equation, the general solution to
Eq. (19) can be written as a sum of the general solutionuH to the corresponding homogeneous
equation (17b) and a particular solutionup to the actual nonhomogeneous Eq. (19):

u = uH + up.

We may pick the particular solution as the one generated by the incoming wave,up =
u0,l

ince
i
√

k2
l z; and the general solution to (17b) is obviously given byuH = const· e−i

√
k2

l z.

4.2.3. Obtaining the overall solution.In order to add the incoming power to the radi-
ation solution, we replace the homogeneous boundary condition (18b) with relation (19)
interpreted as a boundary condition at the left edge of the interval:

uz+ i
√

k2
l u = 2i

√
k2

l u0,l
inc at z= 0. (20)

This implies that the overall solution will satisfy Eq. (15), subject to boundary condition
(18a) atz= zmax and boundary condition (20) atz= 0. Indeed, by the linear superposition
principle, the overall solution can be written as the radiation solution with the incoming
power added,u = uradiation+ u0,l

ince
ikl z, whereuradiation satisfies (15) and (18). Boundary

conditions such as (20) are sometimes referred to asinhomogeneous radiation boundary
conditions[17]. A similar derivation in the finite-difference framework is presented in
Section 6.5.

4.3. Nested Iterations

In summary, our solution algorithm consists of two nested iteration loops. On the outer
loop (11) we perform iterations with respect to the nonlinearity forn = 0, 1, 2, . . . ,N . On
the inner loop (12) we solve the linear equation with variable coefficients (which we obtain
at each nonlinear iteration) form= 0, 1, 2, . . . ,M(n). The numbersM =M(n) andN ,
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at which we terminate the inner and outer iteration loops, respectively, are determined
experimentally in the course of iterations.

Our particular choice of solver for the linear variable-coefficient equation (11) is moti-
vated by the following two reasons:

(1) The inner loop iterations (12) require inverting a linearconstant-coefficientoperator
(which is the discrete analogue toL0) rather than a variable-coefficient one. As a result,
the inversion can be performed by a direct method that involves separation of variables and
LU decomposition. Moreover, the implementation of the radiation boundary conditions,
including the two-way ABC atz= 0, is particularly convenient to do with the operatorL0.

(2) If we used some other linear Helmholtz solver, on each outer loop iteration (11)
we would have had to invert a different linear operatorLFn . However, using our particular
linear solver involvesa repeated inversion of the same operator throughout both inner and
outer loops. This implies that the actual inversion can be performed only once in the very
beginning and then the inverse operator, which is stored in memory, can be applied repeatedly
to the changing right-hand side. From the standpoint of numerical efficacy this is beneficial
because the inversion of the discretizedL0 amounts to performing LU decomposition of a
family of sparse matrices obtained after the separation of variables. The result of the LU
decomposition is also sparse, hence its application to a given right-hand side has only linear
complexity. Since the number of iterations required for convergence is large (see Section 7),
this yields substantial savings of computer resources.

5. DISCRETIZATION

We integrate the linear constant-coefficient equation (13) on a Cartesian grid of variables
(r, z) in the finite rectangular computational domain [0, rmax] × [0, zmax]. Since the original
physical domain stretches all the way toz= +∞, at the artificial boundaryz= zmax we set
a radiation boundary condition that guarantees the reflectionless propagation of right-going
waves (see Section 6). On the physical boundaryz= 0 we set a two-way radiation boundary
condition that similarly guarantees the reflectionless propagation of left-going backscattered
waves and also correctly prescribes the right-going incoming signal (Section 6). For the
transverse directionr , we assume that the solution vanishes atr = rmax:

E(rmax, z) = 0, z≥ 0. (21)

Physically, this condition amounts to having a conducting surface atr = rmax, which acts
as a perfect reflector. Therefore, we makermax sufficiently large so that reflections from this
boundary do not contaminate the solution in the primary region of interest nearr = 0. We
also assume thatE is symmetric with respect tor = 0, i.e.,

E(r, z) = E(−r, z), z≥ 0. (22)

This assumption is physically plausible and allows us to consider only half of the domain
[0, rmax] in the r direction rather than the full domain [−rmax, rmax].

We use a uniform Cartesian grid with sizehr and a total ofM cells in ther direction (hr =
rmax/M), and sizehz and a total ofN cells in thez direction (hz = zmax/N). Accordingly,
the grid nodes are

{(rm, zn) | rm = m · hr , zn = n · hz,m= 0, 1, . . . ,M, n = 0, 1, . . . , N}. (23)
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We discretize Eq. (13) using a fourth-order accurate central-difference scheme,

Lh
rr E·,n

∣∣
m,n
+ Lh

zzEm,·
∣∣
m,n
+ k2

0 Em,n = 8m,n,
(24)

m= 0, 1, . . . ,M − 1, n = 2, 3, . . . , N − 2,

where

Lh
rr E·,n

∣∣∣∣
m,n

= −Em−2,n + 16Em−1,n − 30Em,n + 16Em+1,n − Em+2,n

12h2
r

, (25a)

Lh
zzEm,·

∣∣∣∣
m,n

= −Em,n−2+ 16Em,n−1− 30Em,n + 16Em,n+1− Em,n+2

12h2
z

. (25b)

The indexn that corresponds to the coordinatez runs from 2 toN − 2 in Eq. (24) because
the stencil, which is five nodes wide in each direction, obviously cannot be applied to any of
the boundary nodesn = 0, 1, N − 1, andN located nearz= 0 andz= zmax. The treatment
of these near-boundary grid nodes is discussed in Section 6 in the framework of the discrete
radiation boundary conditions.

Similarly, the direct application of the transverse partLh
rr of the discrete operator in (24)

may also require a special treatment of the near-boundary nodesm= 0, 1, andM − 1. This
treatment should take into account the transverse boundary conditions atr = 0 (22) and
at r = rmax (21). We can avoid this, however, by expanding the solutionEm,n, for each
n, in a finite series with respect to eigenfunctions of the transverse discrete operatorLh

rr ,
which also satisfy the two boundary conditions (21) and (22) [this is a discrete analog to
the continuous Fourier expansion (14)]. This discrete eigenfunction expansion allows us to
treat the operatorLh

rr in the transformed space from the very beginning and never implement
it directly on the grid. In addition, the radiation boundary conditions in thez direction are
most natural to implement in the transformed space separately for each longitudinal (i.e.,
z-aligned) mode, as we have seen in the continuous formulation in Section 4.2.1.

We shall now derive the discrete eigenfunction expansion forEm,n. Let us introduce the
space of all grid functions that are equal to zero atm= M , i.e.,

V = {ψm | m= 0, 1, . . . ,M, ψM = 0}.
Clearly, for eachn, the functionE·,n ∈ V . We can define a weighted inner product onV :

〈ψ, φ〉 = 1

2M
ψ0φ0+ 1

M

M−1∑
m=1

ψmφm. (26)

PROPOSITION5.1. Let us consider a family of M one-dimensional grid functions of the
argument m:

ψ(k)
m = cos((2k− 1)m1θ), 1θ ≡ πhr

2rmax
= π

2M
, k = 1, 2, . . . ,M. (27)

Then,

(I) {ψ(k)}Mk=1 ⊂ V .
(II) The functionsψ(k) are orthogonal with respect to the inner product(26), i.e.,〈

ψ(k), ψ(l )
〉 = 0 for k 6= l . (28)
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(III ) The set{ψ(k)}Mk=1 forms a basis in V .
(IV) ψ(k)

m are even functions of the argument m, i.e., symmetric with respect to m= 0:

ψ(k)
m = ψ(k)

−m.

(V) ψ(k) are eigenfunctions of the transverse component of the finite-difference operator
of (24) with eigenvaluesλk,4 i.e.,

Lh
rrψ

(k) = −λkψ
(k),

(29)

λk = 1

3h2
r

[
16 sin2

(
(2k− 1)1θ

2

)
− sin2((2k− 1)1θ)

]
.

Proof. The inclusion (I) follows from the definition of the spaceV and the explicit form
of the functionsψ(k)

m (27). To show the orthogonality (II), we calculate

M · 〈ψ(k), ψ(l )
〉 = M−1∑

m=0

ψ(k)
m ψ(l )

m −
1

2

=
M−1∑
m=0

cos((2k− 1)m1θ) cos((2l − 1)m1θ)− 1

2

= 1

2

M−1∑
m=0

[cos((2k+ 2l − 2)m1θ)+ cos((2k− 2l )m1θ)] − 1

2

= 1

2

M−1∑
m=0

[cos(2qm1θ)+ cos(2sm1θ)] − 1

2

= 1

4

M−1∑
m=0

ei 2qm1θ + e−i 2qm1θ + ei 2sm1θ + e−i 2sm1θ − 1

2

= 1

4

[
1− ei 2q M1θ

1− ei 2q1θ
+ 1− e−i 2q M1θ

1− e−i 2q1θ

]
+ 1

4

[
1− ei 2sM1θ

1− ei 2s1θ
+ 1− e−i 2sM1θ

1− e−i 2s1θ

]
− 1

2
= 0.

We indeed obtain zero, because out of the two integer numbersq = k+ l − 1 ands= k− l ,
one is always odd and the other is even, and thus one of the expressions in rectangular
brackets on the last line in the previous chain of equalities is always equal to zero and the
other one is equal to two. Property (III) follows easily from the orthogonality (II) because the
orthogonality implies that theM functionsψ(k), k = 1, . . . ,M , are linearly independent,
and the spaceV is obviously M-dimensional. Property (IV) is trivial and immediately
follows from the definition (27). Finally, property (V), including the explicit expression for
the eigenvalueλk given in (29), is obtained by directly applying the operatorLh

rr of (25a)
to eachψ(k), k = 1, . . . ,M . The application ofLh

rr to aψ(k) in the near-boundary nodes
requires using the symmetry property (IV) and also noticing that allψ(k), k = 1, . . . ,M ,
are in fact antisymmetric with respect tom= M , which again immediately follows from
the definition (27). ¥

4 Note that for small wavenumbers the discrete eigenvalues and eigenfunctions are similar to those in the contin-
uous formulation (cf.(14) and(15)) asλk ≈ (k− 1/2)2(π/rmax)

2 andψ |r=mhr = ψ(k)
m = cos((k− 1/2)πr/rmax).
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Proposition 5.1 shows that the system{ψ(k)}Mk=1 forms an orthogonal basis of the space
V , composed of the eigenfunctions of the operatorLh

rr , which are symmetric with respect
to m= 0 and vanish atm= M . For all n we can construct the expansion with respect to
these eigenfunctions according to

uk,n =
〈
E·,n, ψ(k)

〉 = 1

2M
E0,n + 1

M

M−1∑
m=1

Em,n cos((2k− 1)m1θ),

(30a)
k = 1, 2, . . . ,M,

so that

Em,n = 2
M∑

k=1

uk,n cos((2k− 1)m1θ) = 2
M∑

k=1

uk,nψ
(k)
m ,

(30b)
m= 0, 1, . . . ,M.

Representation (30b) can be easily verified by directly substitutinguk,n of (30a) and per-
forming the transformations similar to those performed when proving Proposition 5.1.
Obviously, formulae (30a) and (30b) are particular versions of the direct and inverse dis-
crete Fourier transforms, respectively.

The above eigenfunction expansion can be used to implement the transverse discrete
differentiation along with the boundary conditions atr = 0 andr = rmax. Indeed, if we
expandEm,n and the RHS8m,n in the form (30b) with the coefficientsuk,n and fk,n,
respectively, obtained using (30a), then because of the orthogonality of the eigenfunctions
ψ(k) (28), we arrive at the following family of one-dimensional discrete equations:5

Lh
zzuk,·

∣∣
k,n
− λkuk,n + k2

0uk,n

≡ −uk,n−2+ 16uk,n−1− 30uk,n + 16uk,n+1− uk,n+2

12h2
z

+ k2
cuk,n = fk,n, (31)

k2
c = k2

0 − λk, k = 1, 2, . . . ,M, n = 2, 3, . . . , N − 2,

where the eigenvalues{λk} are defined in (29). Each of theM equations of (31) is inde-
pendent of the others and will be solved separately using the methodology of Section 6.
Having obtained the modal solutionsuk,n for all k = 1, 2, . . . ,M , we then recover the
overall solutionEm,n by means of the inverse transformation (30b).

5.1. Implementation of Transformations (30) Using FFT

It is convenient to implement the direct and inverse transformations (30a) and (30b)
using the standard discrete Fourier transform, for which library subroutines optimized for
performance are available (fast Fourier transforms). To do that, we note again (see end of the
proof of Proposition 5.1) that representation (30b) allows us to extendEm,n for anyn beyond
m= 0 andm= M using the explicit form of the basis functionsψ(k); see (27). The extension
for negativem’s is symmetric with respect tom= 0, and the extension beyondm= M is

5 Note the analogy to (15).
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antisymmetric with respect tom= M . For a given functionEm,n, m= 0, 1, . . . ,M , it is
convenient to first extend it antisymmetrically with respect tom= M (so that the function
is defined form= 0, 1, . . . ,2M), and then also extend it symmetrically with respect to
m= 0 (so that it finally is defined form= −2M, . . . ,0, . . . ,2M). In doing so, we arrive
at a periodic grid function with the period 4M . It is easy to see that for a function extended
in this particular way the standard discrete Fourier transform

ul ,n = 1

4M

2M−1∑
m=−2M

Em,ne−i lm1θ , l = −2M, . . . ,2M − 1, (32a)

reduces to (30a). Indeed, asEm,n is real we will always haveul ,n = ū−l ,n, and in this
particular case the symmetry with respect tom= 0 implies that allul ,n are also real and
thusul ,n = u−l ,n. Consequently, we can consider only 2M + 1 independent real coefficients
ul ,n for l = 0, 1, . . . ,2M . Then, the antisymmetry with respect tom= M will yield that
ul ,n = 0 for all evenl = 0, 2, 4, . . . ,2M and we are thus left with only the coefficientsul ,n

for oddl = 1, 3, 5, . . . ,2M − 1. In other words, we can rewrite (32a) as

ul ,n = 1

2M
E0,n + 1

M

M−1∑
m=1

Em,n cos(lm1θ), l = 1, 3, . . . ,2M − 1,

and conclude that it indeed coincides with (30a) if we change notations froml = 1, 3, 5, . . . ,
2M − 1 to k = (l + 1)/2, k = 1, 2, . . . ,M . Similarly, it is easy to see that because of the
aforementioned properties oful ,n (ul ,n = u−l ,n, ul ,n real, andul ,n = 0 for l = 0, 2, 4, . . . ,
2M), the standard inverse discrete Fourier transform

Em,n = 1

4M

2M−1∑
l=−2M

ul ,neilm1θ , m= −2M, . . . ,2M, (32b)

reduces to (30b).

6. THE ONE-DIMENSIONAL DISCRETE HELMHOLTZ EQUATION

In this section we analyze the discrete one-dimensional linear nonhomogeneous Helm-
holtz equation (31), paying special attention to the treatment of the boundary conditions for
z= 0 andz= zmax. We recall that the boundary conditions atz= zmax should guarantee
that this boundary be transparent for all waves traveling to the right (i.e., a standard radiation
ABC). The boundary conditions atz= 0 should guarantee that this boundary be transparent
for all backscattered waves traveling to the left, and at the same time impose the given
incoming wave field (two-way ABC). We emphasize that we have not discussed a particular
discrete form of these boundary conditions until now, since typically the ABCs are most
convenient to set in the transformed space rather than in the original space [34].

To simplify the notations, we drop the subscriptk, so that Eq. (31) takes the form

−un−2+ 16un−1− 30un + 16un+1− un+2

12h2
z

+ k2
cun = fn,

(33)
n = 2, 3, . . . , N − 2.
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Equation (33) is a fourth-order difference equation. It is obtained, however, as a fourth-
order accurate difference approximation to the second-order differential equation. There-
fore, compared to its original continuous counterpart, the difference equation (33) requires
additional boundary conditions. A total of four boundary conditions are needed to guaran-
tee the solvability and uniqueness for Eq. (33). Two extra boundary conditions that are not
present in the continuous case are a pure numerical artifact. They are accounted for by the
presence of two extra evanescent waves among the solutions of the homogeneous version
of Eq. (33) in addition to the two standard traveling or evanescent waves (see Section 6.1).
Altogether, these four boundary conditions should ensure the desired behavior of the solu-
tion nearz= 0 and nearz= zmax. We also reiterate that the finite-difference equation itself
obviously cannot be written in the form (33) for the grid nodesn = 0, 1, N − 1, andN.
A special form of the discrete equation for these four grid nodes is therefore required; this
special form will actually constitute the boundary conditions and make the total number of
equations in the linear system equal to the number of unknowns.

6.1. The Discrete Homogeneous Problem

We start by analyzing the homogeneous counterpart to the finite-difference equation (33)
over an infinite grid domain, i.e.,

−un−2+ 16un−1− 30un + 16un+1− un+2

12h2
z

+ k2
cun = 0,

(34)
n = 0,±1,±2, . . . .

PROPOSITION6.1. Let α = (hzkc)
2 be such that either0< α < 16/3 or −3≤ α < 0.

Then, the general solution to Eq.(34) has the form

un = c1q
n
1 + c2q

n
2 + c−1q

−n
1 + c−2q

−n
2 , (35)

where c1, c2, c−1, and c−2 are arbitrary constants, and q1 and q2 are roots of the charac-
teristic equation that corresponds to(34).

In addition,

(I) when0< α < 16/3, qn
1 and q−n

1 are waves propagating to the right and to the left,
respectively. In particular, when0< α ¿ 1, then

q1 = eikchz +O((kc · hz)
5), (36a)

q2 = e−ikchz +O((kc · hz)
5), (36b)

and as such, qn
1 and q−n

1 are the discrete analogues of the right and left traveling waves
eikcz and e−ikcz, respectively, with fourth-order accuracy.
(II) When−3≤ α < 0, qn

1 and q−n
1 are evanescent waves decaying to the right and to

the left, respectively.
(III ) In both cases, i.e., for 0< α < 16/3 and for−3≤ α < 0,qn

2 and q−n
2 are evanes-

cent waves decaying to the right and to the left, respectively.

Proof. Let us introduce the characteristic algebraic equation

−1+ 16q + (12α − 30)q2+ 16q3− q4 = 0 (37)
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for the homogeneous finite-difference equation (34). It is generally known (see, e.g., [15])
that if all the rootsqj of a given characteristic algebraic equation are distinct, then the general
solution to the corresponding homogeneous finite-difference equation is obtained as a linear
span of the grid functionsqn

j , where the powern is determined by the grid location. In the
specific case that we are studying, Eq. (37) is a quartic algebraic equation and thus provided
that its four roots{qj }4j=1 are distinct, the general solution to the homogeneous equation
(34) has the form

un = c1q
n
1 + c2q

n
2 + c3q

n
3 + c4q

n
4 , (38)

where{cj }4j=1 are arbitrary constants.
Hereafter, we restrict ourselves only to the case when the roots{qj }4j=1 of Eq. (37) are

distinct. By explicitly calculating{qj }4j=1 (see below), we will show that multiple roots are
only possible for the two casesα = 0 andα = 16/3, which are easy to avoid in practical
computations.

To simplify the actual calculation of the roots of quartic Eq. (37), we first note that by
dividing (37) byq4 we arrive at exactly the same equation for 1/q. Therefore, ifq is a root,
thenq−1 is also a root (this follows, of course, from the fact that the discretization (33) is
symmetric). Accordingly, we rename the four roots of Eq. (37) asq1, q2, q−1

1 , andq−1
2 , and

write

−1+ 16q + (12α − 30)q2+ 16q3− q4

= −(q − q1)
(
q − q−1

1

)
(q − q2)

(
q − q−1

2

)
= −(q2− d1q + 1)(q2− d2q + 1)

= −1+ (d1+ d2)q − (2+ d1d2)q
2+ (d1+ d2)q

3− q4, (39)

where

d1 = q1+ q−1
1 , d2 = q2+ q−1

2 . (40)

By comparing the beginning and the end in the chain of equalities (39) we obtain system
of equations ford1 andd2

d1+ d2 = 16, −2− d1d2 = 12α − 30,

from which we find that

d1 = 8− 6
√

1+ α/3, d2 = 8+ 6
√

1+ α/3. (41)

From formulae (41) we conclude that bothd1 andd2 are real provided thatα ≥ −3. If, for
example,hr ≈ hz (the cell aspect ratio of the discretization is close to one), then the definition
of kc (see (31)), whereλk is given by (29), along with the definition ofα = (hzkz)

2, suggests
that even for negativeα’s their absolute values are sufficiently small, and thus we can always
assume thatα ≥ −3 and consequently considerd1 andd2 real. However, allowing for the
complex values ofd1 andd2 may make the analysis more cumbersome, but it does not
change any of the results hereafter. This, in particular, is corroborated by the computations
of Section 7.1, which were conducted on the grids with cell aspect ratios 20/1 and 20/3.
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From (40) we know thatqj andq−1
j are the roots of the quadratic equation

q2− dj q + 1= 0, j = 1, 2. (42)

Let us analyze the casej = 1 first. For 0< α < 16/3, Eq. (42) has two complex conjugate
roots

q1 = d1+ i
√

4− d2
1

2
, q−1

1 =
d1− i

√
4− d2

1

2
. (43)

From (43) it follows that|q1| = |q−1
1 | = 1 and, in addition, that when 0< α ¿ 1 then (36)

holds.
When−3≤ α < 0, we have

q1 = d1−
√

d2
1 − 4

2
, q−1

1 =
d1+

√
d2

1 − 4

2
. (44)

Therefore, both roots are real and satisfy|q1| < 1 and |q−1
1 | > 1, showing thatqn

1 and
q−n

1 of (44) are discrete analogues of two evanescent waves. We note that asα changes
from positive to negative in formulae (43), the right-propagating waveqn

1 changes into
an exponential decreasing to the right and the left-propagatingq−n

1 wave changes into an
exponential decreasing to the left, a fact that simplifies the identification of the right and
left traveling and decaying waves in the actual implementation of the boundary conditions
at z= 0 andz= zmax.

The caseα ≥ 16/3 remains to be considered. For the positive values ofk2
c , we can

introduce the wavelengthλc = 2π/kc and for this range ofα obtain λc/hz ≤
√

3π/2.
Thus, we see thatα ≥ 16/3 implies a poor “points per wavelength” resolution even for the
long wavesλc > λ0 = 2π/k0. This makes the choiceα ≥ 16/3 inappropriate for practical
computations. Finally, regarding the last case that has not yet been considered,α = 0,
we note that for this value ofα Eq. (42) will have a double rootq1 = q−1 = 1. However,
formulae (29) and (31) show that the caseα = 0⇔ k2

c = 0 can be easily avoided by slightly
changing the parameters of the discretization.

For j = 2, we find from Eq. (42) that

q2 = d2−
√

d2
2 − 4

2
, q−1

2 =
d2+

√
d2

2 − 4

2
. (45)

Clearly,|q2| < 1, |q−1
2 | > 1 for all relevant values ofα (α ≥ −3), i.e., the two components

qn
2 andq−n

2 of (45) always correspond to evanescent waves.¥

6.2. Discrete One-Way Helmholtz Equations

In analogy with the continuous description in Section 4.2.1, we now construct the dis-
crete one-way Helmholtz equations based on the solution (35) of the homogeneous finite-
difference scheme (34). From the very beginning, we think of these discrete one-way
Helmholtz equations as the relations to be used as boundary conditions for Eq. (33).

According to Proposition 6.1, the discrete homogeneous equation (34) has four linearly
independent eigenfunctions, two of which are either traveling or evanescent waves and
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two of which are always evanescent waves; the presence of the latter (in contrast to the
continuous case) is due to the fact that (34) is a fourth–order finite-difference equation
that approximates the original second-order differential equation. When constructing the
discrete one-way Helmholtz equations, we of course first need to make sure that they han-
dle the first pair of discrete waves,qn

1 andq−n
1 , in the same way that Eqs. (17) handle the

corresponding continuous waves. In addition, we need to decide how the discrete one-way
Helmholtz equations will handle the second pair of discrete waves,qn

2 andq−n
2 , which are

purely numerical (i.e., due to the use of a fourth-order difference scheme). It is natural to
require that the one-way-to-the-right discrete Helmholtz equation admit the right travel-
ing/evanescent waveqn

1 and the right evanescent waveqn
2 and that the other two waves from

representation (35),q−n
1 (left traveling/evanescent) andq−n

2 (left evanescent), be suppressed
by this equation. Indeed,q−n

1 may either be traveling “the wrong way” or grow without
bound asn→+∞, andq−n

2 will always grow without bound asn→+∞.6 Clearly, if we
use the one-way-to-the-right equation that possesses such properties as a boundary condi-
tion for (34) nearn = N, it will guarantee that the corresponding far-field solution (n > N)
is always bounded at infinity and also that this solution is only composed of outgoing (right
propagating and/or right decaying) waves. In other words, the one-way-to-the-right discrete
Helmholtz equation implies that in the far fieldn > N one can represent the solutionun in
the “restricted” form

un = c1q
n
1 + c2q

n
2 , (46)

as opposed to the general form (35). Formula (46) is equivalent to requiring that the vec-
tor [uN−3, uN−2, uN−1, uN ] be a linear combination of the two vectors [1,q1,q2

1,q
3
1] and

[1,q2,q2
2,q

3
2], which is the same as requiring that

Rank


uN−3 uN−2 uN−1 uN

1 q1 q2
1 q3

1

1 q2 q2
2 q3

2

 = 2. (47)

Relation (47) immediately yields the two linearly independent conditions

det


uN−3 uN−2 uN−1

1 q1 q2
1

1 q2 q2
2

 = 0, det


uN−2 uN−1 uN

q1 q2
1 q3

1

q2 q2
2 q3

2

 = 0,

which reduce to

q1q2uN−3− (q1+ q2)uN−2+ uN−1 = 0 (48a)

and

q1q2uN−2− (q1+ q2)uN−1+ uN = 0. (48b)

The two scalar Eqs. (48a) and (48b) constitute the one-way-to-the-right discrete Helmholtz
equation.

6 Besides being “natural,” this choice is also motivated by the well-posedness considerations, as the analysis of
[14, 23] suggests.
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The one-way-to-the-left discrete Helmholtz equation is constructed similarly. Symmet-
rically to the previous case, we require that it admit the left traveling/evanescent waveq−n

1

and the left evanescent waveq−n
2 and that the other two waves from representation (35),

qn
1 (right traveling/evanescent) andqn

2 (right evanescent), be prohibited by this equation.
(From the standpoint of physics the two waves,q−n

1 andq−n
2 , account for the phenomenon

of backscattering.) The wavesqn
1 andqn

2 are to be suppressed in this case becauseqn
1 may

either be traveling “the wrong way,” i.e., to the right, or grow without bound asn→−∞,
andqn

2 will always grow without bound asn→−∞. If the one-way-to-the-left discrete
Helmholtz equation is used as the boundary condition for (34) nearn = 0, it will guaran-
tee that the corresponding far-field solution (n < 0) is always bounded asz→−∞, and
also that this solution is only composed of outgoing (left propagating and/or left decaying)
waves. In other words, the one-way-to-the-left discrete Helmholtz equation implies that in
the far fieldn < 0 one can represent the solutionun in the “restricted” form

un = c−1q
−n
1 n+ c−2q

−n
2 , (49)

as opposed to the general form (35). To make sure that representation (49) holds, we
require that the vector [u0, u1, u2, u3] be a linear combination of [1,q−1

1 ,q−2
1 ,q−3

1 ] and
[1,q−1

2 ,q−2
2 ,q−3

2 ]:

Rank


u0 u1 u2 u3

1 q−1
1 q−2

1 q−3
1

1 q−1
2 q−2

2 q−3
2

 = 2. (50)

Relation (50) is equivalent to the two linearly independent homogeneous conditions

u0− (q1+ q2)u1+ q1q2u2 = 0 (51a)

and

u1− (q1+ q2)u2+ q1q2u3 = 0, (51b)

which constitute the one-way-to-the-left discrete Helmholtz equation.
We note that splitting the general solution (35) into right- and left-going waves (Eqs. (46)

and (49), respectively), and allowing for only one direction while prohibiting the other at
the corresponding edges of the interval, constitutes theradiation principle in the finite-
difference discrete framework.

Having constructed the one-way discrete Helmholtz equations (48) and (51), we now
implement them as boundary conditions for the discrete homogeneous equation (34). If we
consider the finite gridn = 0, 1, . . . , N on the interval [0, zmax], the five-node difference
stencil cannot be centered at the near-edge nodesn = 0, 1, N − 1, andN. As a consequence,
the number of equations in the linear system is four less than the number of unknowns. To
make the number of equations and the number of unknowns equal, we supplement Eqs. (34)
on the gridn = 2, 3, . . . , N − 2 by Eqs. (51a) and (51b) forn = 0 andn = 1, respectively,
and by Eqs. (48a) and (48b) forn = N − 1 andn = N, respectively. In doing so, we arrive
at a linear homogeneous algebraic system withN + 1 equations andN + 1 unknowns,

Au = 0, (52)
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where

A = 1

12h2
z



1 −(q1+ q2) q1q2 0 0 . . . 0

0 1 −(q1+ q2) q1q2 0 . . . 0

−1 16 (12α − 30) 16 −1 . . . 0
. . .

. . .
. . .

. . .
. . .

0 . . . −1 16 (12α − 30) 16 −1

0 . . . 0 q1q2 −(q1+ q2) 1 0

0 . . . 0 0 q1q2 −(q1+ q2) 1


(53)

and, obviously,u = [u0, u1, . . . ,uN ]T .
The following Proposition (6.2) establishes the solvability and uniqueness of the solution

for the nonhomogeneous counterpart of system (52).

PROPOSITION6.2. The linear nonhomogeneous system of equationsAu = f with the
matrixA given by(53) is uniquely solvable for any right-hand sidef = [ f0, f1, . . . , fN ]T .

Proof. We show that the corresponding homogeneous system (52) has only a trivial
solution. Indeed, the only solution to any of the equations ofAu = 0 except the first two
and the last two is a linear combination of the type (35). However, each of the components
of (35) is explicitly eliminated by one of the boundary conditions (48a), (48b), (51a), or
(51b), i.e., by one of the one-way discrete Helmholtz equations (the first two and the last
two equations ofAu = 0). Therefore, the only solution to the homogeneous system is the
trivial one.7 ¥

Although we have just shown that one can find the solution toAu = f for any given
f = [ f0, f1, . . . , fN ], this solution will not, in fact, correctly approximate the corresponding
solution of the nonhomogeneous differential equation, or in other words, it will not, generally
speaking, be the discrete radiation solution from the sourcesf = [ f0, f1, . . . , fN ]. The
reason for this discrepancy is that the one-way Helmholtz equations which are used in the first
two rows and the last two rows of the matrixA have been constructed for the homogeneous
case. As a result, these four equations will not handle the near-boundary source terms
correctly, which may, generally speaking, be present. The “cure” to this problem, in the
form of a local modification tof , is derived in Section 6.4.

In our simulations (see Section 7), we solve the finite-difference Helmholtz equation by
inverting the matrixA of (53). However, for the purpose of deriving the two-way ABCs
that would correctly handle the near-boundary inhomogeneities, we now show how to
construct the solutionu by using the Green’s function of the finite-difference operator of
(34). As we shall see, this approach is rather expensive numerically and thus not useful for
actual computing. However, it provides the most conceptually straightforward way to build
the radiation solution. Moreover, the analysis that employs the Green’s function reveals
the mechanism of the aforementioned discrepancy between the radiation from the sources
f = [ f0, f1, . . . , fN ] and the solution toAu = f .

7 This solvability result is obviously similar to the one in the continuous case; see Section 4.2.1.
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6.3. Radiation Solution by Means of the Green’s Function

In this section, we introduce a problem very similar to (33), except that the solutionu is
now defined on the infinite gridn = 0,±1,±2, . . . , and the right-hand sidefn is compactly
supported:

−un−2+ 16un−1− 30un + 16un+1− un+2

12h2
z

+ k2
cun = fn,

n = 0,±1,±2, . . . , (54)

fn = 0 for n < 0 and n > N.

We also require that the solutionun of (54) satisfy the radiation principle in the areas of
homogeneityn < 0 andn > N. In other words, we require that forn ≤ 0 one can represent
un in the form (49) and forn ≥ N in the form (46). This is the most general formulation of
the problem of finding the solution that corresponds to the radiation of waves by the sources
f = [ f0, f1, . . . , fN ]T in the finite-difference framework.

To solve this problem, we introduce the fundamental solutionGn (free-space Green’s
function) for the one-dimensional discrete Helmholtz operator, which is defined on the
entire infinite gridn = 0,±1,±2, . . . and is the solution of the equation

−Gn−2+ 16Gn−1− 30Gn + 16Gn+1− Gn+2

12h2
z

+ k2
cGn = δn,

(55)
n = 0,±1,±2, . . . ,

where

δn =
{

1, n = 0
0, n 6= 0.

We also require that the Green’s functionGn satisfy the radiation principle asn→±∞,
or in other words, that it can be represented in the following form:

Gn =
{

a1qn
1 + a2qn

2 , n ≥ 0

b1q
−n
1 + b2q

−n
2 , n ≤ 0.

(56)

PROPOSITION6.3. The values of the constants a1, a2, b1, b2 in (56) are given by

a1 = 12h2
zq1(

q−1
2 − q1

)(
q−1

1 − q1
)
(q2− q1)

, (57a)

a2 = −12h2
zq2(

q−1
2 − q2

)(
q−1

1 − q2
)
(q2− q1)

, (57b)

b1 = −12h2
zq
−1
1(

q−1
2 − q−1

1

)(
q−1

1 − q2
)(

q−1
1 − q1

) , (57c)

b2 = 12h2
zq
−1
2(

q−1
2 − q−1

1

)(
q−1

2 − q2
)(

q−1
2 − q1

) . (57d)
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Proof. To find these four constants, we need four equations. By matching the two
branches (56) of the Green’s functionGn atn = 0 we immediately obtain one equation:

a1+ a2 = b1+ b2. (58a)

The other three equations for the coefficients of (56) are obtained from the original Eq. (55)
written for the nodesn = 0, 1, and−1. Forn = 0 we have

−G−2+ 16G−1+ (12α − 30)G0+ 16G1− G2 = 12h2
z,

or

− (b1q
2
1 + b2q

2
2

)+ 16(b1q1+ b2q2)+ (12α − 30)(a1+ a2)+ 16(a1q1+ a2q2)

− (a1q
2
1 + a2q

2
2

) = 12h2
z.

The previous equation can be simplified by subtracting from it the relation

− (a1q
−2
1 + a2q

−2
2

)+ 16
(
a1q
−1
1 + a2q

−1
2

)+ (12α − 30)(a1+ a2)+ 16(a1q1+ a2q2)

− (a1q
2
1 + a2q

2
2

) = 0,

which comes from the fact that each branch of the Green’s function (the right brancha1qn
1 +

a2qn
2 in this particular instance) satisfies the homogeneous finite-difference equation (34).

The subtraction yields

−(b1q
2
1 + b2q

2
2

)+ 16(b1q1+ b2q2)− 16
(
a1q
−1
1 + a2q

−1
2

)+ (a1q
−2
1 + a2q

−2
2

)= 12h2
z.

(58b)

For n = 1, Eq. (55) takes the form

−G−1+ 16G0+ (12α − 30)G1+ 16G2− G3 = 0,

and again, using the homogeneous equation for the right branch of the Green’s function,
we obtain

−(b1q1+ b2q2)+
(
a1q
−1
1 + a2q

−1
2

) = 0. (58c)

Finally, for n = −1 we have

−G−3+ 16G−2+ (12α − 30)G−1+ 16G0− G1 = 0.

Combining this relation with the homogeneous difference equation for the left branch of
the Green’s function, we arrive at(

b1q
−1
1 + b2q

−1
2

)− (a1q1+ a2q2) = 0. (58d)

Now we need to solve Eqs. (58) fora1, a2, b1, andb2. First, we multiply (58c) by 16 and
substitute it into (58b), and then we rewrite all four equations as follows:

q−2
1 q−2

2 −q2
1 −q2

2

q−1
1 q−1

2 −q1 −q2

1 1 −1 −1

q1 q2 −q−1
1 −q−1

2




a1

a2

b1

b2

 =


12h2
z

0
0
0

. (59)
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The determinant of system (59) is easily reduced to a Vandermonde determinant, which
eventually leads to expressions (57).¥

From the definition ofGn, we have the following.

PROPOSITION 6.4. For any given right-hand side fn compactly supported on
[0, 1, . . . , N], the solution to(54), subject to the radiation principle, is given by the con-
volution

un =
m=N∑
m=0

fmGn−m, n = 0,±1,±2, . . . . (60)

6.4. Radiation Solution by Means of Inverting the MatrixA

The cost of calculating the convolutions in (60) forn = 0, 1, . . . , N isO(N2). We now
show that the portion of the solution (60) that we are interested in, namelyun for n =
0, 1, . . . , N, can be recovered by means of inverting the matrixA of (53). The cost of
this inversion will be onlyO(N) operations because the matrixA is pentadiagonal; see
Section 6.7 for additional details.

PROPOSITION6.5. Let A be defined by(53) and u = [u0, u1, . . . ,uN ]T be defined by
(60) for n = 0, 1, . . . , N. Denotef = [ f0, f1, . . . , fN−1, fN ]T . Then, Au = f̃ , where

f̃ def=



0
0
f2
...

fN−2

0
0


+



f̃ 0

f̃ 1

0
...

0

f̃ N−1

f̃ N


, (61)

f̃ 0
def= 1

12h2
z

[( f0G0+ f1G−1)− (q1+ q2)( f0G1+ f1G0)

+q1q2( f0G2+ f1G1)], (62a)

f̃ 1
def= 1

12h2
z

[( f0G1+ f1G0+ f2G−1)− (q1+ q2)( f0G2+ f1G1+ f2G0)

+q1q2( f0G3+ f1G2+ f2G1)], (62b)

f̃ N−1
def= 1

12h2
z

[q1q2( fN−2G−1+ fN−1G−2+ fNG−3)− (q1+ q2)( fN−2G0

+ fN−1G−1+ fNG−2)+ ( fN−2G1+ fN−1G0+ fNG−1)], (62c)

and

f̃ N
def= 1

12h2
z

[q1q2( fN−1G−1+ fNG−2)− (q1+ q2)( fN−1G0+ fNG−1)

+ ( fN−1G1+ fNG0)]. (62d)



656 FIBICH AND TSYNKOV

Proof. By definition of the Green’s functionGn (see Section 6.3),(Au)n = fn for
2≤ n ≤ N − 2. Indeed, for 2≤ n ≤ N − 2 we have

(Au)n =
1

12h2
z

[−un−2+ 16un−1+ (12α − 30)un + 16un+1− un+2]

= 1

12h2
z

[
−

N∑
m=0

fmGn−2−m + 16
N∑

m=0

fmGn−1−m + (12α − 30)
N∑

m=0

fmGn−m

+ 16
N∑

m=0

fmGn+1−m −
N∑

m=0

fmGn+2−m

]

= 1

12h2
z

N∑
m=0

fm(−Gn−2−m+16Gn−1−m+(12α − 30)Gn−m+16Gn+1−m−Gn+2−m)

=
N∑

m=0

δn−m fm = fn.

As for (Au)0, (Au)1, (Au)N−1, and(Au)N , these four components need to be calculated
separately. They will, generally speaking, differ fromf0, f1, fN−1, and fN , respectively,
because of the special structure of the first two and the last two rows of the matrixA, which
admit waves going in only one direction; see Section 6.2.

We start the analysis from the left edge of the interval. Clearly, anyfm for m≥ 2 is not
going to contribute to(Au)0 because when substitutingu of (60) into (51a), we in fact,
substitute only the left branch of the Green’s functionGn−m; see (56). Indeed, in formula
(51a) we only need the values ofun for n = 0, 1, 2, and ifm≥ 2 this impliesn−m≤ 0.
The left branch of the Green’s function (56) by definition turns (51a) into an identity;
therefore(Au)0 is not affected byfm for m≥ 2. Consequently,

(Au)0 = (A[ f0Gn + f1Gn−1])0,

which proves (62a). Similarly, substitution of the left branch of the Green’s function into
(51b) suggests that anyfm for m≥ 3 is not going to contribute to(Au)1. Therefore,

(Au)1 = (A[ f0Gn + f1Gn−1+ f2Gn−2])1,

which proves (62b).
Similar analysis is conducted for the right edge of the interval. OnlyfN and fN−1

affect(Au)N = f̃ N because for all other components of the RHSf the contribution to the so-
lution u at n = N − 2, N − 1, N is given by the right branch of the Green’s
function only; then the explicit form of the solution (60) and the definition ofA (53)
easily yield expression (62d). Analogously, only three components of the right-hand side,
fN , fN−1, and fN−2, contribute to(Au)N−1 = f̃ N−1, which together with (60) and (53)
implies (62c). ¥

From the standpoint of the original physical model the situation nearz= zmax differs
substantially from the situation nearz= 0, because we can always make the effect of
nonlinearity and/or variation of coefficients nearz= zmax negligible, by takingzmax suffi-
ciently large.Therefore, from here on we will always assume that fN = fN−1 = fN−2 = 0.
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Obviously, if we use the RHSf = [ f0, f1, . . . , fN−3, 0, 0, 0]T of this particular kind as
source terms in (54), then for the corresponding solutionu = [u0, u1, . . . ,uN ] we will have
(Au)N−1 = f̃ N−1 = 0 (see 62c) and(Au)N = f̃ N = 0 (see 62d). In other words, the mod-
ified right-hand sidẽf of (60) in this case becomes̃f = [ f̃ 0, f̃ 1, f2, . . . , fN−3, 0, 0, 0]T .

Let us emphasize that̃f 0 = (Au)0 (see 62a) depends onf0 and f1, and f̃ 1 = (Au)1,
(see 62b) depends onf0, f1, and f2. Likewise, in order to obtainf̃ N−1 = (Au)N−1 = 0
(see 62c) andf̃ N = (Au)N = 0 (see 62d), in addition to the obvious requirement that
fN = fN−1 = 0, we also need to imposefN−2 = 0.

Propositions 6.2 and 6.5 guarantee that theonly solution of the linear systemAu = f̃ ,
where f̃ = [ f̃ 0, f̃ 1, f2, . . . , fN−3, 0, 0, 0]T , is the solutionu of (54) with the RHSf =
[ f0, f1, f2, . . . , fN−3, 0, 0, 0] subject to the radiation principle. Thus, we have addressed
the concern raised at the end of Section 6.2, namely which modifications to the right-
hand sidef are needed to ensure that the solution obtained by inverting the matrixA will
coincide with the pure radiation solution from these particular sourcesf . Provided that
near the right edge of the interval the RHS is zero, that is,fN = fN−1 = fN−2 = 0, it
turns out that these modifications are local and require only the replacement of the two
old quantitiesf0 and f1 near the left edge of the interval by the new quantitiesf̃ 0 and f̃ 1,
respectively. It is also important to mention that formulae (62a), (62b) are by themselves
local as well, and therefore the overall modificationf 7→ f̃ amounts to only local, and thus
numerically inexpensive, operations on the grid nearn = 0. Finally, we note that besides
the aforementioned unique solvability, the well-posedness of the discrete formulation needs
to be established; for the problem studied in this paper it can be done by applying the theory
of [14, 23].

6.5. Adding the Incoming Power

The boundary conditions atz= 0 should guarantee the complete transparency of this
boundary for all backscattered waves and at the same time be capable of accurately pre-
scribing the incoming signal; the combination of these two properties has been referred to
asthe two-way ABCs. Similar to the continuous case analyzed in Section 4.2.2, the incom-
ing signalu0

inc results in a forward propagating wave, given byu0
incq

n
1 . The grid function

vn ≡ u0
incq

n
1 solves all equations of the homogeneous systemAv= 0except for the first two,

which are the one-way-to-the-left discrete Helmholtz equation (51). Therefore, by applying
the matrixA of (53) to the vectorv we create a right-hand side that we denote byg. It is
easy to see that

g= u0
inc

12h2
z



1− (q1+ q2)q1+ q3
1q2

q1(1− (q1+ q2)q1+ q3
1q2)

0
...

0

. (63)

Proposition 6.2 guarantees that the only solution of the system of equationsAv= g, where
g is given by formula (63), isv= u0

incq
n
1 . Note that the inhomogeneityg of (63) is a discrete

counterpart of the right-hand side of relation (20) (and 19) obtained when introducing the
incoming signal in the continuous framework; see Sections 4.2.2 and 4.2.3.
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6.6. Obtaining the Overall Solution

We can, finally, put together the foregoing stages of the derivation. Assume that there is a
given RHS of the original equation (33)f = [ f0, f1, f2, . . . , fN−3, 0, 0, 0]T . To obtain the
solution with the incoming poweru0

incq
n
1 added, we first construct the new RHSf̃ on the

basis off according to formulae (61) and (62a), (62b). Then, we construct the additional
source termsg according to formula (63). Due to the linear superposition principle and
according to Proposition 6.2 that guarantees solvability and uniqueness, we immediately
see that the grid functionu that we recover by solving the overall system

Au = f̃ + g (64)

is the solution we seek. Indeed, includingf̃ on the right-hand side of (64) guarantees the
radiation from the original sourcesf both to the left and to the right, and includingg on
the right-hand side of (64) guarantees that the correct incoming signalu0

incq
n
1 will be added.

The system (64) is, of course, solved by inverting the matrixA only once and not by solving
separately with the RHSs̃f andg.

Thus, setting the desired boundary conditions atz= 0 andz= zmax is reduced to building
and inverting the special matrixA of (53) and also modifying the right-hand side of the
equationf 7→ f̃ + g. We again emphasize that the latter modification is not computationally
expensive as both̃f andgare obtained by only local operations on the grid nearn = 0. These
operations will come at virtually no cost when implementing the algorithm numerically.

6.7. Solution ofAu= f̃+ g

We solve the systemAu = f̃ + g using standard LU decomposition; for a pentadiagonal
matrix A the components of this decomposition will obviously be banded as well. As the
equationAu = f̃ + g needs to be solved many times with a changing source term but with
the sameA, at the beginning of a simulation we calculate the LU decomposition ofA once
and use it throughout the iterations. Therefore, the costs per iteration in terms of solving this
equation are only due to the backward substitution, which isO(N) arithmetic operations.

7. NUMERICAL EXPERIMENTS

To assess the numerical performance of our algorithm, we first solve a linear problem
with variable coefficients in several different settings.

7.1. Linear Problem with Variable Coefficients and Backscattering

On a slender rectangular domain in the(r, z) coordinates [0, rmax] × [0, zmax], where
rmax= π/2 is fixed andzmax will vary as an essential part of testing the methodology, we
recover the solution

E = Eright+ C · Eleft, (65)

whereC is a constant, and the right and left propagating componentsEright and Eleft are
given by

Eright = ei
√

k2
0−ν2 z cos(νr )[1+ εz4e−z], (66a)

Eleft = e−i
√

k2
0−ν2 z cos(νr )e−(z/β)

2
. (66b)
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In the framework of our study, the left propagating componentEleft of (66b) is interpreted as
backscattering. Several parameters that control the actual shape of the solution (65) are as
follows:k0 is the wavenumber that corresponds to the homogeneous medium (see Sections 1
and 2);ν is the transversal frequency;ε in (66a) determines the extent of deviation from
the constant-coefficient case for the right propagating mode (see below); andβ in (66b)
determines the spatial (longitudinal) extent to which the backscattered waves are present in
the solution. In the linear case we of course introduce the backscattered waves artificially, but
we are trying to follow the physically interesting situation when these waves are generated
inside the domain and propagate toward and through the left boundaryz= 0. The constant
C is introduced in (65) so as to control the magnitude of the backscattered signal relative to
the forward propagating signal and in particular to be able to fully eliminate backscattering
(C = 0) if desired.

SubstitutingEright of (66a) into Eq. (13a), we obtain

1Eright+ k2
0 Eright = εei

√
k2

0−ν2 z cos(νr )e−zz2
[
2i
√

k2
0 − ν2(4z− z2)+ 12− 8z+ z2

]
= ε e−zz2

[
2i
√

k2
0 − ν2(4z− z2)+ 12− 8z+ z2

]
1+ ε · z4e−z

Eright

= −εk2
0 Fright · Eright. (67)

We therefore conclude thatEright of (66a) satisfies the variable-coefficient equation

1Eright+ k2
right(z)Eright = 0,

wherek2
right(z) = k2

0(1+ εFright(z)) and Fright(z) is defined by equalities (67). We indeed
see thatε controls the extent of spatial variation of the wavenumberkright. The solution
Eright is driven by the incoming wave

Einc = ei
√

k2
0−ν2 z cos(νr ), z≤ 0. (68)

Similarly, the backscattered solutionEleft of (66b) satisfies the variable-coefficient equation

1Eleft + k2
left(z)Eleft = 0,

wherek2
left(z) = k2

0(1+ Fleft(z)) and

Fleft(z) = − 1

k2
0

[
4i
√

k2
0 − ν2

z

β2
− 2

β2
+ 4z2

β2

]
. (69)

For the overall solutionE of (65) we obviously have

1E + k2(z)E = 0, (70)

where

k2(z) = k2
right

Eright

E
+ k2

left
C · Eleft

E
.

The driving incoming signal for Eq. (70) isEinc of (68), evaluated atz= 0. The variable-
coefficient linear equation (70) forE will be solved on the domain [0, rmax] × [0, zmax] with
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the homogeneous radiation boundary condition (18a) atz= zmax and the non homogeneous
(two-way) radiation boundary condition (20) atz= 0. The boundary conditions atr = 0
andr = rmaxare symmetry and zero Dirichlet, respectively, which correspond to the general
construction of Section 5, as well as to the particular explicit form of the solution (65), (66)
that we use here. The solution will be obtained by iterations described in Section 4.2; the
corresponding discrete solution methodology is delineated in Sections 5 and 6.

Our primary goal when solving numerically the foregoing linear problem is to demon-
strate that the algorithm that we have constructed indeed possesses the design properties,
i.e., (1) it converges with the fourth order of accuracy when the grid is refined, and (2)
it properly handles the radiation of waves (including backscattering) or in other words,
introduces no reflection from the boundariesz= 0 andz= zmax back into the domain. A
secondary goal is deriving the guidelines for subsequent nonlinear simulations, for example,
how geometric parameters such as domain size may affect the solution.

The forthcoming series of computational experiments corroborates our expectations in
terms of grid convergence and handling the backscattered waves and also provides for a
comparison between the following two algorithms: the one constructed in this paper with
the two-way ABC at the boundaryz= 0, and a more traditional one with the Dirichlet
boundary condition atz= 0 (at the far-field boundaryz= zmax we set the same radiation
ABC in both cases).

7.1.1. Traditional approach—Dirichlet boundary condition.The algorithm that we
have just referred to as a more traditional one is formulated with the Dirichlet boundary
condition forE at z= 0. In fact, from the standpoint of physics one can already anticipate
that this algorithm is not going to perform well when backscattering is present. Indeed,
the physical setup of the model implies that all the information available atz= 0 pertains
only to the incoming wave. Thus, we basically cannot say anything about the backscattered
signal ahead of time because it is generated inside the domain (in the current example
we of course know everything because we simply construct a sample solution including
the backscattering, then produce the corresponding sources/inhomogeneities, and finally
recover the same solution by the numerical method, but this is done only for demonstration
purposes.) When constructing the two-way ABCs, we do not make and do not need any
assumptions regarding the backscattered wave; we simply make the boundary transparent
for all such waves. In contrast, in the Dirichlet case we can only specify the incoming
wave as the boundary data because no explicit information about other waves is available.
Mathematically, this amounts to making the assumption/approximation that

E(r, 0) = E0
inc(r ), (71)

which, as opposed to (5), prescribes the entire field atz= 0, rather than its incoming
component only. Consequently, the Dirichlet boundary condition will essentially reflect
all backscattered waves reachingz= 0 back into the medium, in contrast with the two-
way ABC, which will let them go through. We therefore expect that the algorithm with
the Dirichlet boundary condition (71) atz= 0 may produce reasonable results only if no
backscattered waves are present in the solution. Otherwise, the error should be roughly of
the magnitude of the backscattered signal. The numerical results below corroborate these
expectations.

Note that to enforce the Dirichlet boundary condition atz= 0 for the discretization
we obviously assign a prescribed value to the solution at the leftmost grid noden = 0.
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Besides, in the framework of the fourth-order scheme we are using, we need an additional
relation to be specified right next to the boundary atn = 1. This is similar to obtain-
ing the discrete one-way Helmholtz equations in the form oftwo scalar relations; see
Section 6.2. The additional relation for the Dirichlet boundary conditions should be merely
an approximation of the underlying differential equation atn = 1, but this cannot be the
same approximation that we are using for the interior nodes (n ≥ 2) because the latter em-
ploys a five-node-wide symmetric stencil. Thus, either a one-sided difference or a compact
Padé-type approximation needs to be used atn = 1. We chose the fourth-order Pad´e [6]
on a three-node-wide stencil in the particular form proposed in [30] because as opposed
to the “long” nonsymmetric differences, it preserves the pentadiagonal structure of the
matrix.

7.1.2. Results. For the simulations in the linear case we have chosen the following
particular values of parameters (see formulae (65), (66)):k0 = 20, ε = 0.2, ν = 3 or ν =
1, zmax= 30 or zmax= 10, β = 3, C = 1/2 for the case with backscattering, andC = 0
for the case with no backscattering. The wavelengths in ther andz directions areλr =
2π/ν andλz = 2π/k0, respectively. We choose the grid sizeshr andhz accordingly as
fractions of the corresponding wavelengths: For the grid convergence study we refine the grid
synchronously in both ther andzdirections. We note that having the same resolution (nodes
per wavelength) in both directions yields the cell aspect ratio ofhr /hz = λr /λz = k0/ν,
which in our simulations is equal to either 20/1 or 20/3.

We have looked at the values of the relative error (the difference between the computed
and exact solution normalized by the maximum of the exact solution over the domain) in
the maximum norm:

Error= max(r,z) |Ecomputed− Eexact|
max(r,z) |Eexact| . (72)

The results are summarized in Tables I and II forν = 1 andν = 3, respectively. In both
tables all values, except those in the last column, correspond tozmax= 30.

From Tables I and II we first conclude that, as expected, the Dirichlet boundary condition
(71) provides no convergence when the backscattering is present (third column). In all other
columns we observea fourth-order grid convergence, because every time the grid is refined

TABLE I

Maximum Relative Error (72) of the Calculated Solution in the Linear Case forν = 1

Backscattering

Off (C = 0) On (C = 1/2)
Boundary condition atz= 0

Dirichlet Two-way Dirichlet Two-way Two-way

Grid sizes zmax = 30 zmax = 10

hr = λr /10,hz = λz/10 0.256 0.257 0.33 0.24 0.16
hr = λr /20,hz = λz/20 0.0165 0.0165 0.33 0.016 0.01
hr = λr /40,hz = λz/40 0.001 0.001 0.33 0.001 0.0012
hr = λr /80,hz = λz/80 6.5 · 10−5 6.5 · 10−5 0.33 6.5 · 10−5 0.00075
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TABLE II

Maximum Relative Error (72) of the Calculated Solution in the Linear Case forν = 3

Backscattering

Off (C = 0) On (C = 1/2)
Boundary condition atz= 0

Dirichlet Two-way Dirichlet Two-way Two-way

Grid sizes zmax = 30 zmax = 10

hr = λr /10,hz = λz/10 0.25 0.25 0.33 0.24 0.089
hr = λr /20,hz = λz/20 0.016 0.016 0.33 0.015 0.0064
hr = λr /40,hz = λz/40 0.001 0.001 0.33 0.001 0.0012
hr = λr /80,hz = λz/80 6.3 · 10−5 6.3 · 10−5 0.33 6.3 · 10−5 0.00075

by a factor of two in each direction, the value of the error drops by approximately a factor of
sixteen(except for the last column of each table, as discussed below). Thus, the algorithm we
have constructed indeed possesses the design convergence properties. Besides, we clearly
see that the left propagating waves in the solution present no problem from the standpoint
of numerics for the algorithm with the two-way ABC atz= 0.

Let us now return to the data appearing in the rightmost column of both Table I and
Table II. These data clearly do not demonstrate the fourth-order grid convergence. The only
difference between these data and all other data in the tables is that the rightmost columns
correspond to a smaller computational domain in thez direction,zmax= 10, as opposed to
zmax= 30. The breakdown of the grid convergence that we observe on the small domain
has the following explanation.

The boundary condition that we specify atz= zmax is the homogeneous radiation bound-
ary condition (18a), which is approximated by the one-way-to-the-right discrete Helmholtz
Eq. (48). Both the continuous (18a) and discrete (18) radiation boundary conditions at
z= zmax were obtained under the key assumption that the governing equation nearz= zmax

reduces to the constant-coefficient Helmholtz equation1E + k2
0 E = 0. In other words,

this means that the modeEright of (66a) has to reduce to the “pure” propagating mode
ei
√

k2
0−ν2z cos(νr ), and that the modeEleft of (66b) has to effectively vanish atz= zmax.

From the specific form of the modes that we analyze (see 66), we conclude that the larger
we make the domain [0, zmax], the better the quality of the agreement with the desired
properties nearz= zmax. In other words, for the smaller domainzmax= 10 we are essen-
tially trying to apply a homogeneous radiation boundary condition to the equation, which
is not “sufficiently homogeneous” itself, and therefore the error is dominated by this dis-
crepancy, rather than by the actual truncation error associated with the discretization of the
differential operator. As a consequence, we do not observe the fourth-order grid conver-
gence for the smaller domain. This demonstrates the importance of choosing azmax that is
sufficiently large, so that the homogeneous radiation boundary conditions can be applied
successfully.

Another interesting phenomenon we would like to discuss in the framework of the linear
case is the behavior of the error as a function of the coordinatez. A typical example in
Fig. 1, which corresponds to the case of no backscattering, shows a linear growth of the
error with z except in the area of a small “bump” near the boundaryz= 0. The actual



TWO-WAY BOUNDARY CONDITIONS FOR WAVE PROPAGATION 663

FIG. 1. Behavior of the error (73) forν = 1, two-way ABC atz= 0, hr = λr /20, hz = λz/20,β = 3, and
zmax = 30; no backscattering,C = 0.

quantity represented in Fig. 1 is

Error(z) = maxr |Ecomputed− Eexact|
max(r,z) |Eexact| . (73)

A similar error pattern is obtained for the case with backscattering, as shown in Fig. 2.
The curve in Fig. 2 can be described as an oscillatory region next to the boundaryz= 0
associated with backscattering (the magnitude of the error is still small there) followed
again by a stretch of linear growth.

It is, in fact, easy to see where this linear growth comes from. Proposition 6.1 implies
that the discrete right propagating modeqn

1 approximates the continuous right propagat-
ing modeeikcz ≡ eikc·hzn (in the notations of this section,k2

c =
√

k2
0 − ν2). Indeed, as-

suming thatkc · hz is small, we have obtainedq1 = eikc·hz +O((kc · hz)
5); see formula

(36a). Consequently, under the same assumption we haveqn
1 = eikc·hzn +O(n(kc · hz)

5) =
eikcz+O(zh4

z) becausez= hzn. As 0≤ z≤ zmax, we see that the error grows linearly
in z and that the maximal error isO(zmax · h4

z). The aforementioned linear growth of the
error explains, in particular, whyon coarser gridswe obtain a smaller maximal error for
zmax= 10 (fifth column) than forzmax= 30 (fourth column); see Tables I and II.

It is, in fact, instructive to see how the error curve similar to those displayed in Figs. 1
and 2 would look for a solution computed on the small domainzmax= 10. In Fig. 3 we show
such a curve for exactly the same set of parameters used for computations that led to Fig. 1,

FIG. 2. Same as Fig. 1 but with backscattering,C = 1/2.
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FIG. 3. Same as Fig. 1 withzmax = 10.

except thatzmax is equal to 10 instead of 30. Although the magnitude of the error is small, we
observe oscillations throughout the entire domain. As we have no backscattering in this case
(C = 0), the oscillations may come only from the right (far-field) boundaryz= zmax. In fact,
these oscillations are an early manifestation of the phenomenon we discussed above. On
small domains, the application of the homogeneous far-field radiation boundary conditions
(18a) and (48) is not fully “legitimate” because the governing equation itself is not yet
sufficiently close to the constant-coefficient version1E + k2

0 E = 0. The inconsistency
gives rise to the oscillations shown in Fig. 3. For finer grids this inconsistency, as we have
seen, prevents the methodology from converging on small domains with the theoretically
prescribed rate ofO(h4).

7.2. Nonlinear Problem

Having corroborated the design properties of the numerical algorithm in the linear regime
in Section 7.1, we now address its performance for the nonlinear case. In all cases that we
analyze hereafter we take the value ofk0 = 8 and as before denoteλz = 2π/k0. In addition,
in all simulations the solution is driven by the incoming signal

E0
inc(r ) = e−r 2

. (74)

The key quantity in the NLS model, as far as nonlinear self-focusing and singularity
formation are concerned, is the ratio of the power ofE0

inc and the critical powerNc (see
Section 3.1). Therefore, we now briefly review the calculation of the critical power for the
NLS (8).

7.2.1. Critical power. Weinstein [36] had proved that the critical power for singularity
formation in the critical NLS,Nc, is equal to the power of the so-called waveguide solution.
In the case of the (1+ 1)D critical NLS (8), the waveguide solutions are of the form

ψ(z, r ) = exp(iaz)Q(r ;a).



TWO-WAY BOUNDARY CONDITIONS FOR WAVE PROPAGATION 665

Substitution of this solution in (8) shows that the waveguide profileQ satisfies

Qrr − aQ+ Q5 = 0, Q′(0) = 0, Q(∞) = 0.

Integration of this equation yields

Q(r ;a) = (3a)1/4sech1/2(2
√

ar).

Therefore, a necessary condition for singularity formation in (8) is that∫ ∞
0
|ψ0(r̃ )|22 dr̃ ≥ Nc,

where

Nc =
∫ ∞

0
Q2(r ) dr =

√
3π

4
.

In dimensional variables, this condition is∫ ∞
0

∣∣E0
inc(r )

∣∣2
2 dr ≥ Nc

k0
√
ε
.

Therefore, the fractional critical power ofE0
inc of (74) is

p =
∫∞

0

∣∣E0
inc

∣∣2 dr

Nc/k0
√
ε
=
√

2

3π
k0
√
ε. (75)

7.2.2. Results. We start with a moderate nonlinearity in Eq. (7),ε = 0.04, which ac-
cording to (75), corresponds to 74% of the critical power whenk0 = 8. Our goal is to first
demonstrate the grid convergence of the algorithm. We also compare the two-way ABC
against the standard Dirichlet boundary condition atz= 0, as we did in the linear case, both
from the standpoint of accuracy of the solution and the rate of convergence of our iterative
scheme.

For the grid convergence study we first choose the following parameters:zmax= 20,
rmax/zmax= 1,hz = λz/10,hr = λz/2. In our computations we have observed that changing
the discretization parameters in ther direction may exert a more noticeable influence on the
solution than changing the discretization in thez direction. Therefore, we initially refine
the grid in ther direction only and in Fig. 4 present three solution curves: absolute value
|Ecomputed(0, z)| on the axis of symmetryr = 0 as a function ofz for hr = λz/2,λz/4, and
λz/8. We see that the last two curves that correspond tohr = λz/4 andλz/8 are virtually
indistinguishable from one another and both differ noticeably from the first one obtained
on a coarser gridhr = λz/2. We therefore conclude thatas the grid is refined the numerical
solution does converge; even so in this nonlinear case we do not know what the exact
solution is and consequently cannot explicitly find the error.

We note that we plot the values of the computed solution on the axis of symmetryr = 0
because this is the most interesting location in the domain where the genuinely nonlinear
phenomena take place. A clear manifestation of these nonlinear phenomena is the “bump,”
or peak, on the solution curve in Fig. 4, whose value ishigher than that of the incoming
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FIG. 4. Grid convergence forε = 0.04, zmax = 20, rmax/zmax = 1, hz = λz/10, for hr = λz/2 (solid line),
hr = λz/4 (dotted line), andhr = λz/8 (dashed line).

wave E0
inc(0) = 1. Clearly, in the absence of nonlinear effects (i.e.,ε = 0), an unfocused

input beam, such as (74), would simply diffract while propagating to the right, i.e., toward
largez’s, with its maximum amplitude monotonically decreasing. The amplification of the
incoming signal due to the nonlinear response of the medium is calledself-focusing, and is
wellknown within the NLS framework.

Another interesting phenomenon, which is actually the one that our methodology has
been specifically designed to capture, isbackscattering. In the previous linear studies in
Section 7.1, the extent of backscattering was predetermined by the value ofC. To es-
timate the extent of backscattering in the current nonlinear case, we plot the quantity
|Ecomputed(r, 0)− E0

inc(r )| as a function ofr . In Fig. 5 we show the corresponding graph for
ε = 0.04,zmax= 20,rmax/zmax= 1, hz = λz/10, andhr = λz/4. From Fig. 5 we conclude
that most backscattering occurs around the axis of symmetryr = 0, and that the magnitude
of backscattering there is about 1.2% of the incoming power. Backscattering obviously
accounts for the deviation of the solution curve atz= 0 in Fig. 4 from the incoming signal
value there, which is equal to 1.

A comprehensive grid refinement study should, of course, include refinement in thez
direction along with the refinement in ther direction. In addition to the cases reported

FIG. 5. Backscattering forε = 0.04,zmax = 20, andrmax/zmax = 1. Gridsizes:hz = λz/10 andhr = λz/4.
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TABLE III

Grid Refinement and Domain Enlargement Study forε = 0.04

Maximum Maximum
zmax rmax/zmax hz hr self-focusing backscattering

20 1 λz/10 λz/4 1.0136 0.013
20 1 λz/10 λz/8 1.0129 0.0128
20 2 λz/10 λz/4 1.0135 0.0128
40 1 λz/10 λz/4 1.0132 0.0127
20 1 λz/20 λz/4 1.0124 0.0112
20 1 λz/20 λz/8 1.0119 0.0111

previously, we have run several others, refining the grid either separately in each direction
or synchronously in both directions, and also changing the size of the computational domain.
Note that determining the correct, i.e., sufficiently large, size of the computational domain is
important, because choosing one too small in thez direction may cause reflections from the
boundaryz= zmax (Section 7.1), and choosing a domain that is too small in ther direction
is dangerous because the boundaryr = rmax is reflecting and the reflections may, in fact,
completely destroy the solution (we have actually observed the latter phenomenon in our
computations).

Basically, the solutions that we have obtained on all grids finer thanhr = λz/2, hz =
λz/10 (i.e., finer than the coarsest of the previous grids), and all domains larger than or
equal tozmax= rmax= 20, are almost identical. We do not plot these solutions as they are
very close to one another but rather summarize the results of our computations in Table III,
in which the two key quantities for each case are presented: the maximum value of self-
focusing, defined as maxz|E(0, z)| (i.e., the peak on the curve similar to those shown in
Fig. 4), and the maximum backscattering atz= 0, defined as maxr |E(r, 0)− E0

inc(r )| (i.e.,
the peak on the curve similar to those shown in Figs. 5 and 6).

From Table III we see that all values of maximum self-focusing we have computed
on different grids and different domains differ from one another by at most 0.17%. This
indicates that for the ranges of parameters (grid sizes and domain sizes) we have used,
the numerical solution is already “well converged.” The level of backscattering in all our
simulations is between 1.1 and 1.3% of the incoming power, which again constitutes an error
of only about 0.2% (relative to the maximum of the solution). One should probably regard
the computational variant presented in the last row of Table III as the most accurate one
because it was computed on the finest grid. The corresponding backscattering profile (for
hz = λz/20,hr = λz/8) is shown in Fig. 6. We again see that this profile is practically the
same as the one from Fig. 5, which corresponds to the grid twice as coarse in each direction.

We now look at the convergence histories for our numerical solutions. Let us recall that the
iteration scheme we employ is nested. On the inner loop we solve a variable-coefficient linear
equation, whereas on the outer loop we iterate with respect to the nonlinearity. Currently,
we update the coefficientk2 = k2

0

(
1+ ε|E|4), i.e., make one nonlinear iteration, every ten

linear iterations [i.e., in the notations of Section 4,M(n) = 10 in (12)]. In Figs. 7 and 8
we show the convergence histories for the two cases we have discussed already—those that
correspond to the first and last rows of Table III (Figs. 7 and 8, respectively).

The actual quantity shown in Figs. 7 and 8 is the maximum absolute difference between
the two consecutive iterations. The sawtooth character of both curves is accounted for by
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FIG. 6. Same as Fig. 5, but with the gridsizeshz = λz/20 andhr = λz/8.

FIG. 7. Convergence of iterations forε = 0.04, zmax = 20, rmax/zmax = 1. Gridsizes:hz = λz/10 and
hr = λz/4.

FIG. 8. Same as Fig. 7 but with the gridsizeshz = λz/20 andhr = λz/8.
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the nested structure of the iterative procedure. The fast-scale decay followed by a jump
back up is the convergence of linear iterations on the inner loop with subsequent update of
k2. The slow-scale decay all the way up to machine zero corresponds to the convergence of
nonlinear iterations on the outer loop.

Figures 7 and 8 demonstrate the convergence of iterations. Besides, we notice that on a
finer grid (see Fig. 8), this convergence is faster (about twice as fast) than on the coarser
one (see Fig. 7). In fact, we have observed in various simulations that the geometry in the
r direction influences the rate of convergence most noticeably. The larger the domain size
rmax and/or the finer the grid sizehr , the faster the iterations converge. As of yet, we do
not have a rigorous explanation of this computational phenomenon. We can only assume
that both refining the grid in ther direction and putting the boundaryr = rmax further away
somehow reduce the adverse influence of this reflecting boundary on the solution.

As stated at the beginning of this section, a major goal of the nonlinear simulations is to
compare the performance of the new two-way ABC against that of the traditional Dirichlet
boundary condition atz= 0 (71). In Fig. 9 we compare the actual computed solutions with
the two boundary conditions for the case that we have analyzed before:ε = 0.04,zmax= 20,
rmax/zmax= 1, hz = λz/10, hr = λz/4. We see a noticeable discrepancy between the two
curves. The dotted line that corresponds to the Dirichlet boundary conditions is above
the solid one, which corresponds to the two-way ABC. The extent of the aforementioned
discrepancy is roughly equal to the level of backscattering that we have recovered previously,
which is clearly a natural result.

We also compare the rates of convergence of the iterative algorithm for the two types of
boundary conditions that we set atz= 0. The convergence history for the two-way ABC is
shown in Fig. 7; the convergence history for the Dirichlet boundary conditions is shown in
Fig. 10. We see that the convergence with the two-way ABCs is about 1.5 times faster than
that with the Dirichlet boundary conditions, which presents another advantage of using
the new methodology. Let us mention that the phenomenon of convergence speedup for
iterative solvers caused by the application of highly accurate nonlocal ABCs (similar to
those developed in this paper) has been noticed previously by several authors, although in
completely different settings primarily associated with fluid flow computations; see [34].

FIG. 9. |Ecomputed(0, z)| for the two-way ABC (solid) and for the Dirichlet boundary conditions (dots).
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FIG. 10. Same as Fig. 7, with the Dirichlet boundary condition atz= 0.

We now consider the caseε = 0.06, for which the input beam power is 90% of the critical
power. Basically, the results have the same qualitative features as for the caseε = 0.04. In
particular, the convergence of iterations is faster for finer grids and larger computational
domains, as well as for the two-way ABC compared with the traditional Dirichlet boundary
condition atz= 0. Moreover, we note that forε = 0.06 some cases with the Dirichlet
boundary condition did not converge at all.

In Fig. 11a, we plot the on-axis amplitude raised to the power 4 for the domain of the
same size as corresponds to Fig. 4 (but with a finer grid). We plot this particular quantity

FIG. 11. |Ecomputed(0, z)|4 for ε = 0.06,hz = λz/20,hr = λz/8, rmax/zmax = 1. (a)zmax = 20; (b)zmax = 40.
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FIG. 12. |Ecomputed(0, z)| for ε = 0.06, hz = λz/20, hr = λz/8, rmax/zmax = 1. Solid line—zmax = 20; dotted
line—zmax = 40.

because it is the one that controls the relative magnitude of nonlinearity, which is crucial for
our study, and it also allows us to see most clearly that the solution forzmax= 20 has small
oscillations throughout the domain, which are reminiscent of those seen in Fig. 3. In order
to verify that these oscillations are indeed due to the right boundaryz= zmax being placed
too close, we reran the same simulation but with the right boundary located at twice the
previous distance, i.e.,zmax= 40. The corresponding profile of|Ecomputed(0, z)|4 is shown
in Fig. 11b, but only for the half of the new range from 0≤ z≤ 20, to make the scale the
same as that in Fig. 11a. From Fig. 11b we see that in the casezmax= 40 the little wiggles
have almost disappeared, suggesting that this is indeed a numerical artifact, rather than
a true physical phenomenon. Apart from the little wiggles, the two solutions seem to be
identical, as Fig. 12 indicates.

The explanation for the appearance of the small wiggles throughout the domain when the
right boundary is too close is the same as in the linear case, namely, that in order for the ABC
atzmaxto perform well,ε|E|4 should be sufficiently small there so thatk2 ≈ k2

0 with sufficient
accuracy. Therefore, at higherε, one needs more decay in|E|4 for this approximation to
hold. On top of that, at higher powers self-focusing is stronger, implying that|E|4 would
decay slower inz. This, in turn, means that we may need to use larger and larger domains
at higher powers, otherwise, the quality of the computed solution will deteriorate. Besides,
the convergence rate of our iterations may also be affected by the location of the boundary
z= zmax. For higher powers on those domains we have considered it becomes prohibitively
slow (if there is convergence at all). This is why, at present, we could not go aboveε = 0.06.
We should note, however, that besides enlarging the domain, changing the iterative algorithm
itself to a more efficient one may alleviate the aforementioned problem. This issue will be
studied in the future.

The results of the grid convergence study forε = 0.06 are summarized in Table IV.
Comparison of Table III with Table IV shows that as the input power increases (relative
to the critical power), more energy gets backscattered and the self-focusing peak becomes
higher, which is expected from physical considerations.
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TABLE IV

Grid Refinement and Domain Enlargement Study forε = 0.06

Maximum Maximum
zmax rmax/zmax hz hr self-focusing backscattering

20 1 λz/10 λz/4 1.0567 0.0188
20 1 λz/20 λz/8 1.0528 0.0188
20 1 λz/20 λz/16 1.0526 0.0188
20 2 λz/20 λz/8 1.0527 0.0188
20 1 λz/40 λz/8 1.0518 0.0179
40 1 λz/20 λz/8 1.0512 0.0173

8. DISCUSSION

In this section we briefly describe the approaches that have been used previously in the
literature for solving similar problems. We then discuss the motivation behind making some
particular choices when constructing our algorithm, present the conclusions, and outline
directions for future research.

8.1. Previous Approaches for Solving the NLH

Feit and Fleck [7] solved the NLH by splitting the wave into its forward and backward
components and solving only for the forward propagating part. Under this approach it was
assumed that the “transverse variation in [k] is sufficiently small.” As for backscattering,
their algorithm “removes power that cannot propagate in the forward direction without
accounting explicitly for where it goes” [7]. Akhmediev and collaborators [1, 2] solved an
initial-value problem which can be viewed as a “modified” NLH. However, they neglected
theψzz term, as well as backscattering.

In contrast to the aforementioned approaches, in this paper we solve the Helmholtz
equation as a true “unabridged” boundary-value problem. By doing that, we can account
correctly for the backscattering, without introducing any adhoc assumptions, the validity
of which is unclear.

8.2. Discontinuity at the Interface z= 0

In the current study we consider the simplest possible model for the interfacez= 0,
where we assume that this interface is nonreflecting, i.e., the wavenumberk is continuous
acrossz= 0 (Section 2.1). From the standpoint of physics this is, of course, not necessarily
true. For example, an incoming laser beam traveling through air which impinges on a water
interface would be partially reflected, due to the difference in the (linear) index of refraction
between air and water. The easiest way to incorporate the discontinuity ink at z= 0 into
the model would be to do that for the linear constant-coefficient Eq. (12) in the framework
of the iteration scheme, as we do all other boundary conditions. After the transverse Fourier
transform, we obtain a collection of one-dimensional Helmholtz equations. For each of the
latter, the application of the standard elliptic interface conditions, which for the second-
order equations are the continuity of the solution and its flux across the interface, yields
the standard expressions for the reflection and transmission coefficients, once the incoming
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wave is given. If we want to use the transmitted wave (i.e., already past the interface) as
the primary data for the problem, the same expressions will yield the amount of reflection
and the original incoming signal. Moreover, they will also apply to treating the possible
reflection of the backscattered waves by the interfacez= 0.

8.3. Nonlinear Iterations

The primary motivation behind our choice of the nonlinear iteration scheme (see
Section 4) was its simplicity. We note that Eqs. (9), (10) have been obtained by simply
freezing the nonlinear term rather than differentiating it in the sense of Frechet. For complex-
valued solutionsE (which is the case in our study), the nonlinearity in Eq. (7) is obviously
nondifferentiable and consequently, the direct implementation of Newton’s method is not
possible. However, as mentioned by Bayliss [3], Newton-type iterations may still apply to
Eq. (7) if it is solved separately for the real and imaginary components ofE. We did not
try to implement this idea in the current study. We acknowledge, however, that among the
different parts of our algorithm the nonlinear iteration scheme is apparently the primary can-
didate for improvements in order to achieve convergence with higher input power, i.e., for
largerε.

8.4. Linear Solver

The solver that we employ for the variable-coefficient linear Helmholtz equation is also
iterative and fits as the inner loop of the overall nonlinear solver. This choice is, of course,
by no means unique. In general, one can solve the linear Helmholtz equation with variable
coefficients using a variety of other methods, such as the Ricatti method [18]. A recent
review by Turkel of different approaches for solving the linear Helmholtz equation can be
found in [35]. We note, however, that combining a Helmholtz solver with global ABCs,
and in particular, a two-way ABC of the type constructed in this paper, presents a rather
difficult task, since the speed of propagation of plane waves in thez direction depends on
their transverse wavenumber. Indeed, most of the solvers available in the literature deal
with simpler boundary conditions, such as those of the Dirichlet type. The solver that we
have constructed involves a direct inversion of the constant-coefficient operator on every
iteration using the separation of variables. This approach, as mentioned, is most natural for
incorporating global ABCs into the model.

8.5. Fourth-Order Scheme

In this study we chose a fourth-order method, rather than a conventional second-order
one, for our simulations. The motivation behind this choice is, in fact, standard, and relies
primarily on the possibility of having less points per wavelength and accordingly reducing
the required overall grid dimension for a given level of accuracy. Besides, our numerical
simulations corroborate that the extent of backscattering in the model we study is indeed
small. In such cases, i.e., when the interesting phenomenon is small in magnitude compared
to the background, it is generally acknowledged that higher order methods perform better
than lower order ones.

We note in this connection that the construction of one-way discrete Helmholtz equations
and radiation ABCs for a second-order scheme would be conceptually the same as the
construction described in Section 6 but substantially less cumbersome in both derivation



674 FIBICH AND TSYNKOV

and implementation, as it would not require taking care of an extra pair of evanescent
waves. However, having a higher order method justifies, in our opinion, the additional work
invested in obtaining the more sophisticated ABCs.

8.6. Discrete Implementation

The implementation in this study of both the conventional radiation boundary condition
at z= zmax and the two-way ABC atz= 0, is done after the continuous problem has been
replaced with a discretized finite-difference formulation. The “fully discrete” approach that
we have adopted is quite different from the more common technique of deriving continuous
ABCs and subsequently discretizing them; see [34]. The advantage of working completely
at the discrete level is that discretizing (20) may be nontrivial, especially in the frame-
work of a higher order method. Another advantage of building the ABCs at the discrete
level is the “automatic” well-posedness of the resulting formulation. As mentioned, the
corresponding solvability and well-posedness analysis for general one-dimensional sys-
tems of finite-difference equations can be found in [14, 23]. To the best of our knowledge,
the proposed full-fledged discrete construction of the two-way ABCs for a higher order
finite-difference scheme is unique.

8.7. Time-Dependence

In the present study we have focused on the nonlinear Helmholtz equation (NLH), which
models the propagation of stationary (cw) laser beams in a Kerr medium. It is important to
note that from the standpoint of physics, the natural formulation of the Kerr effect is a cubic
nonlinearity in the time-harmonic framework described by the NLH (4) and, accordingly,
a nonlinear convolution for time-dependent problems (of propagation of laserpulses) (see
[4]) rather than the other way around. As mentioned, the NLS in nonlinear optics is derived
from the NLH under the paraxial approximation; see Section 3. Therefore, our results can
be used to assess, for example, the effect of nonparaxiality and that of backscattering on
soliton propagation in the one-dimensional cubic NLS. We reemphasize that the “dynamic”
NLS (6a) in nonlinear optics describes stationary propagation, since the axial coordinate
variablezplays the role of “time” (recall that the initial condition (6b) is prescribed atz= 0
for all 0≤ r <∞).

In nonstationary models that are used in nonlinear optics for propagation of laser pulses,
one can formally consider time as an additional spatial variable, because the field intensity
(“initial condition”) is prescribed atz= 0 for all 0≤ r <∞ and all−∞ < t <∞. In
that case, the extension of our methodology is straightforward. Solving “genuine” time-
dependent problems in other nonlinear wave models can, of course, present a significant
independent interest. Without delving into details, we mention that construction of accu-
rate ABCs for time-dependent problems is often more demanding (both theoretically and
computationally) than for similar steady-state or time-harmonic problems. An approach
to constructing accurate global fully discrete ABCs for time-dependent wave propagation
problems is presented in [27, 28].

8.8. Conclusions

In the current paper we have developed and implemented a fourth-order finite-difference
method for solving the nonlinear scalar Helmholtz equation that accounts for the phenomena
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of self-focusing and backscattering. The method is supplemented by the highly accurate
global ABCs that make the external artificial boundaries fully transparent for all outgoing
waves (including the backscattered waves) and at the same time are capable of correctly
prescribing the incoming signal at the outer boundary of the computational domain. To the
best of our knowledge this is the first attempt ever to construct global ABCs that possess
the foregoing two-way capability.

The fourth-order grid convergence of the method has been directly verified by solv-
ing model linear problems. In the presence of backscattering, the new method clearly
outperforms a traditional technique based on the Dirichlet boundary condition. We have
also conducted a comprehensive experimental study of the nonlinear case in the regime
where the input power is below the critical one for blowup. As with the linear case, this
study corroborates the convergence of the method and its superiority over the traditional
approach.

The new method allows for a systematic quantitative study of backscattering in nonlinear
self-focusing. To the best of our knowledge, this is the first study that allows, for example,
a calculation of the actual extent of backscattering, its dependence on the input power,
etc. As mentioned, the new extended capabilities are accounted for by the fact that, unlike
previous studies, we solve the NLH as a true nonlinear boundary-value problem, without
introducing any simplifying assumptions on the continuous level prior to the discretization.
Therefore, the only error that we are actually left with is the truncation error associated with
the discrete approximation of derivatives.

8.9. Future Work

In this paper we have developed a new numerical methodology for solving the true
boundary-value problem for the NLH. We believe that our approach can be extended to
address various other issues that are not covered by the present study. For example, it is
interesting to conduct a systematic comparison of NLH simulations with the corresponding
NLS simulations. Such a comparison would enhance our understanding of the role of
nonparaxiality and backscattering. It is also interesting to compare our NLH simulations
with earlier approaches for solving the NLH, which did not treat the NLH as a true boundary-
value problem. In addition, future studies should attempt to go above the critical power for
blowup. If successful, this would provide strong support for the current belief that there is
no blowup in the presence of nonparaxiality.

In this study we have primarily focused on the NLH which corresponds to the crit-
ical NLS. However, our numerical approach can be applied for both subcritical NLS
(e.g., calculating the amount of backscattering for solitons), as well as the supercritical
case.

We finally note that the nonlocal homogeneous radiation ABC atz= zmax, as well as the
nonlocal nonhomogeneous two-way ABC atz= 0, can be cast into the general framework
of pseudo-differential boundary equations and projection operators of Calderon’s type (the
Calderon equation in the case of the two-way ABC will be nonhomogeneous as well) and
the difference potentials method by Ryaben’kii; see [5, 20, 24–26, 29]. This, in particular,
may allow considering curvilinear outer boundaries if necessary, as opposed to only linear
boundaries considered in the current study. Besides, such a reformulation will be generally
useful from the standpoint of understanding the fundamental connections between global
ABCs of various types that appear in the scientific computing literature.
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