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Abstract: We solve the (2+ 1)D nonlinear Helmholtz equation (NLH)
for input beams that collapse in the simpler NLS model. Thereby, we
provide the first ever numerical evidence that nonparaxiality and backscat-
tering can arrest the collapse. We also solve the (1+ 1)D NLH and show
that solitons with radius of only half the wavelength can propagate over
forty diffraction lengths with no distortions. In both cases we calculate the
backscattered field, which has not been done previously. Finally, we com-
pute the dynamics of counter-propagating solitons using the NLH model,
which is more comprehensive than the previously used coupled NLS model.
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The nonlinear Schrödinger equation (NLS) is the canonical model in nonlinear optics for prop-
agation of intense laser beams in isotropic Kerr media. In the case of propagation through a
bulk medium, Kelley [1] used the 2D NLS to predict the possibility of a catastrophic collapse
of beams whose input power is above the critical power for collapse. In the case of propagation
through planar waveguides, the 1D NLS was used to predict the existence of spatial solitons [2].
Both beam collapse in bulk medium and spatial solitons in planar waveguides were observed
in experiments [3, 4]. More recently, configurations of two counter-propagating beams were
modeled by two coupled NLS equations [5].

In nonlinear optics, the NLS is derived from the nonlinear Maxwell equations via a series
of approximations. First, if the electric field is monochromatic and third harmonic generation
is neglected, Maxwell’s equations reduce to the vector nonlinear Helmholtz equation (NLH).
If the field is also linearly polarized, the vector NLH reduces to the scalar NLH [6]. Finally,
the NLS is derived from the scalar NLH using the paraxial approximation, which is valid when
the beam radius is sufficiently large compared with the wavelength. As, however, the 2D NLS
predicts that the beam radius shrinks to zero at collapse, the paraxial approximation breaks
down at this point. In the case of spatial 1D solitons, the paraxial approximation sets a lower
limit on the soliton radius.

The singular behavior of the 2D NLS solutions for collapsing beams is non-physical. There-
fore, an important question is whether the singularity formation is already arrested by taking
one step back in the aforementioned series of approximations and employing the scalar NLH
model, or only in a more comprehensive model. Both the mathematical analysis and simula-
tions of the scalar NLH have proved to be considerably more difficult than for the NLS, since
for the NLH one solves a nonlinear boundary-value problem, whereas the NLS requires solving
an initial value problem. An additional computational obstacle is that unlike the NLS, which
governs the slowly varying envelope, the NLH has to be approximated with sub-wavelength
resolution. For these reasons, the question of collapse in the scalar NLH model was not fully
answered for over 40 years.

Previously, numerical simulations and asymptotic analysis [7, 8, 9] suggested that nonparax-
iality arrests the collapse in bulk medium. These studies, however, applied various simplifying
approximations to the scalar NLH. In particular, they considered only forward traveling waves
and completely neglected the backscattered field. Even though backscattering is generally be-
lieved to be “small”, it may still significant affect the overall propagation, because collapse
dynamics in the 2D cubic NLS is extremely sensitive to small perturbations [10].

To study the arrest of collapse in the scalar NLH with no simplifying assumptions (and in
particular, with the backscattering included), Fibich and Tsynkov developed a fixed-point itera-
tive numerical method for solving the NLH as genuine boundary value problem [11, 12], which
is based on freezing the nonlinearity at each iteration. This method converged for input powers
below the critical power for collapse Pcr, but diverged for input powers higher than Pcr. It was
unclear, however, whether the divergence above Pcr was due to limitations of the numerical
method, or because collapse is not arrested in the scalar NLH model. Subsequently, the method
of [11, 12] was used to show numerically the arrest of collapse in the linearly-damped scalar
NLH [13]. In that work, however, the magnitude of damping was much larger than in actual
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Fig. 1. The physical setup: A: single beam, B: counter-propagating beams. C: A schematic
of the upstream BC at z = Zmax + δ , which freely admits all forward propagating waves
(red). D: A schematic of the downstream BC at z = −δ , which freely admits all the back-
ward propagating waves (blue) to pass, and also specifies the (forward moving) incoming
beam.

physical settings, and could not be reduced to zero. More recently, Sever proved existence of
solutions (and hence arrest of collapse) in the scalar NLH with self-adjoint boundary condi-
tions [14]. The proof in [14], however, relies heavily on self-adjointness, whereas propagating
fields satisfy radiation boundary conditions (BCs), which are non self-adjoint. Therefore, un-
til now, there has been no conclusive evidence that the collapse is arrested in the scalar NLH
model.

In [15], we studied numerically the (0+ 1)D NLH, which models the propagation of plane
waves in a Kerr medium. In this case, the solution always exists, but becomes non-unique
(bistable) above a certain input power threshold [16]. Numerically, we observed that the fixed-
point frozen nonlinearity method of [11, 12] converges for low input powers, but diverges for
higher powers which are still below the threshold for non-uniqueness. This indicates that the
divergence of the fixed-point frozen nonlinearity method is due to the numerical methodology
itself, rather than to non-uniqueness or non-existence of the solutions. Therefore, an alternative
iterative solver, based on Newton’s method, was constructed and shown to have much bet-
ter convergence properties. In this Letter, we extend the Newton-based method of [15] to the
multi-dimensional case. The resulting technique enables us to solve the (2+ 1)D NLH for in-
put powers above Pcr. Hence, we obtain the first ever computational evidence that the collapse
of the beam is indeed arrested in the scalar NLH model. We also calculate the field backscat-
tered from the domain. Moreover, we solve the (1+ 1)D NLH for a “nonparaxial” soliton with
radius equal to half a wavelength, and observe that it propagates virtually unchanged over 40
diffraction lengths. This indicates that such beams are still in the paraxial regime. Finally, we
solve the (1+ 1)D NLH for two counter-propagating beams and compare the results to those
obtained using the coupled NLS model.

The propagation of linearly polarized, continuous wave beams in isotropic Kerr media is
governed by the scalar nonlinear Helmholtz equation:

Ezz(z,x⊥)+ Δ⊥E + k2
0

(
1+(2n2/n0)|E|2

)
E = 0, (1)

where E is the electric field, k0 is the linear wavenumber, n0 is the linear index of refraction and
n2 is the Kerr coefficient. In the bulk medium (2+ 1)D case x⊥ = (x,y) and Δ⊥ = ∂ 2

x + ∂ 2
y ;

in the planar waveguide (1+ 1)D case x⊥ = x and Δ⊥ = ∂ 2
x . We consider an incoming beam

traveling in the positive z direction (henceforth “forward” or “right”) impinging on a finite-
length Kerr material slab at the z = 0 interface and exiting the Kerr medium at the z = Z max

interface, see Fig. 1(A). A portion of the field may be reflected by the interfaces at z = 0 or
z = Zmax, or backscattered inside the Kerr medium, because of the variations of the index of
refraction induced by the forward-propagating beam. To derive the NLS, the standard approach
is to represent the field as E = Aeik0z, where the envelope A is assumed slowly varying. Using
the standard rescaling x̃⊥ = x⊥/r0, z̃ = z/2LDF and Ã(z̃, x̃⊥) =

√
2n2/n0r0k0 ·A(z,x⊥), where

r0 is the input beam radius and LDF = k0r2
0 is the diffraction length, the NLH can be written in
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the dimensionless form

f 2Ãz̃z̃(z̃, x̃⊥)+ iÃz̃ + Δ⊥Ã+ |Ã|2Ã = 0, (2)

where f 2 = (r0k0)−2 = ( λ0
2πr0

)2 is the nonparaxiality parameter. Typically λ0 � r0 so that

f 2 � 1 and f 2Ãz̃z̃ � Ãz̃. Therefore, the paraxial approximation, which consists of neglecting
f 2Ãz̃z̃, leads to the NLS

iÃz̃(z̃, x̃⊥)+ Δ⊥Ã+ |Ã|2Ã = 0. (3)

In our simulations, the (2+ 1)D NLH with cylindrical symmetry, i.e., E = E(z,r) where
r = |x⊥| =

√
x2 + y2, is approximated with a fourth order finite-difference scheme. The solu-

tion is computated for −δ ≤ z ≤ Zmax + δ in order to implement the BCs in the linear regions.
At the material interfaces z = 0 and z = Zmax where the index of refraction is discontinuous,
Maxwell equations for a normal-incident field imply that E and E z are continuous across the
interfaces. At z = Zmax + δ we imposed the radiation BC that the field does not have any left-
going component for z > Zmax, see Fig. 1(C). Similarly, at z = −δ we implement the two-way
radiation BC that for z < 0 the field does not have right-going components except for the pre-
scribed incoming beam which impinges on the interface z = 0 with a transverse profile E inc(r),
see Fig. 1(D). Because z = −δ and z = Zmax + δ are outside the Kerr slab, the field propaga-
tion there is linear, which simplifies the implementation of the radiation BCs, see [11, 12] for
more details. The discretized system of nonlinear algebraic equations is solved using Newton’s
method [15].

In order to focus on the effects of the Kerr nonlinearity, the values of n 0 in the Kerr medium
(0 ≤ z ≤ Zmax) and in the surrounding linear medium (z < 0 and at z > Z max) are chosen to
be equal, so that to eliminate the reflections due to discontinuity of n 0 at the interfaces. How-
ever, discontinuities in the nonlinear coefficient are not eliminated, and are a source of reflec-
tions at z = 0,Zmax. Our numerical method can be applied to the case of different n 0 with no
change [15]. Note that, since we solve the NLH in non-dimensional form, simulations in this
Letter are valid for any physical value of k0,n0,n2 that corresponds to the same dimensionless
quantities f 2 and P/Pcr.

The (2+ 1)D NLH (1) was solved for an incoming collimated Gaussian beam E inc =
(
√

2n2/n0r0k0)−1 e−(r/r0)2
of radius r0 = 1.27λ0, corresponding to nonparaxiality parameter

of f 2 = (k0r0)−2 = 1/64, and input power of P = 1.29Pcr. The NLH solution initially self-
focuses, until z ≈ 0.8LDF where the collapse is arrested, after which the solution defocuses,
see Fig. 2(A). The corresponding NLS solution collapses at zc = 0.68LDF , see Fig. 2(C). This
comparison of the NLH and NLS provides a direct numerical evidence that collapse is arrested
in the scalar NLH model.

The fast oscillations of |E|2 in the z direction in Fig. 2(A) are not a numerical artifact,
but rather account for the actual physics. Indeed, let us first note that a part of the forward-
propagating wave is reflected backwards by the material interfaces at z = 0 and z = Z max. In
addition, since the forward propagating beam induces changes in the refraction index, part of
the beam may be backscattered inside the Kerr medium. The presence of both forward and
backward traveling fields, i.e,

E ≈ Aeik0z +Be−ik0z, (4)

implies that |E|2 ≈ |A|2 + |B|2 +2Re
(
AB∗ei2k0z

)
. Hence, |E|2 should undergo oscillations with

wavenumber ∼ 2k0. Note that the analytical solutions of the (0+ 1)D NLH also exhibit these
2k0 intensity oscillations [16]. The prediction that the intensity undergoes 2k 0 oscillations im-
plies that the index of refraction also oscillates. In other words, the backward traveling field
induces a 2k0 Bragg grating. This prediction may be tested by pump-probe experiments. In

#94987 - $15.00 USD Received 15 Apr 2008; revised 23 Jun 2008; accepted 25 Jul 2008; published 14 Aug 2008

(C) 2008 OSA 18 August 2008 / Vol. 16,  No. 17 / OPTICS EXPRESS  13326



A Z/L
DF

r/λ
0

0 0.5 1

−1

−0.5

0

0.5

1

B Z/L
DF

r/λ
0

0 0.5 1

−1

−0.5

0

0.5

1

0 0.5 1
Z/L

DF

20

40

 |E|
2

−−−
|E

0
|
2

C
1

Fig. 2. (color online) Arrest of collapse in the (2+1)D NLH. A: |E|2. B: Sz. C: comparison
of normalized on-axis |E|2 (blue solid), Sz (red dashed), and NLS solution (black dotted)
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Fig. 3. (color online) NLH solutions with r0/λ0 = 3
π (blue, dots), 4

π (red, dash) and
6
π (green, solid). Solid black line is the NLS solution. A: Normalized on-axis intensity
|E/E(z = 0)|2. B: Normalized on-axis Poynting flux Sz/Sz(z = 0). C: Transverse profile of
the backward field at z = 0−.

order to find a smoother representation of the solution, recall that for the NLS (3) the con-
served beam power is PNLS =

∫ |Ã|2dx̃⊥. For the NLH (1), however, the conserved beam
power is PNLH =

∫
Szdx⊥, where S = k0Im(E∗∇E) is the energy flux, or Poynting vector, and

Sz = k0Im (E∗ ∂E
∂ z ) is its z-component. Specifically, for the field (4) the value of S z reduces to

the flux difference Sz ≈ k2
0

(|A|2 −|B|2). It is therefore much smoother than |E|2, and provides a
“more natural” depiction of the NLH solution, as confirmed by comparing S z of Fig. 2(B) with
|E|2 of Fig. 2(A). The energy flux Sz shows the arrest of collapse and the focusing-defocusing
dynamics more clearly, see also Fig. 2(C).

In order to analyze the effect of the nonparaxiality parameter f 2, in Fig. 3 we fix the
wavelength and vary the input beam radius r0 (while keeping the power unchanged) so that
f−2 = 36, 64, and 144. All the NLH solutions initially follow the collapsing NLS solution, but
later the collapse is arrested and the solution defocuses. As expected, for a wider input beam
(lower nonparaxiality), the deviations from the NLS solution and the arrest of collapse occur
later, and the maximum self-focusing is higher. Again we see that |E| 2 has 2k0 oscillations
(whose magnitude increases as the input beam becomes more nonparaxial), while the energy
flux Sz is smooth.

Our numerical algorithm for solving the NLH also enables the computation of backscattering
from the Kerr medium. In Fig. 3(C), we present the backward propagating field profiles for the
previous three solutions, just before the material interface at z = 0. To the best of our knowledge,
this is the first ever calculation of the backscattered field of collapsing beams, which is due to
backscattering from inside the Kerr medium and reflections from the nonlinear interface. As
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the input beam radius r0 decreases, the power of the backscattered field increases from 0.46%
to 0.63%, to 2.1% of the incoming beam power. This, as well as a comparison of magnitudes
of oscillations in Figure 3(A), shows that the backscattered field increases as the input beam
becomes more nonparaxial.

In (1+ 1)D configurations, the NLS possesses stable soliton solutions. It is generally be-
lieved that the paraxial approximation breaks down when the beam width becomes compa-
rable to λ0 and that, therefore, no solitons of such narrow width exist. To see that this is
not the case, the (1+ 1)D NLH (1) is solved for the incoming NLS-soliton profile E inc =
(
√

2n2/n0r0k0)−1 sech(x/r0) with width r0 = λ0/2, impinging on a Kerr slab of finite length
Zmax = 40LDF . As in the (2 + 1)D case, we impose continuity of E and Ez at the material
interfaces z = 0 and z = Zmax, and apply the radiation BCs in the linear regions at z = −δ
and z = Zmax + δ . The solution inside the Kerr-slab resembles a “nonparaxial soliton” which
propagates virtually unchanged, see Fig. 4(A). We note that even for such a narrow beam, the
nonparaxiality parameter is still moderate, as f 2 = 1/π2 ≈ 0.1, which may explain why there
there still exist soliton-like solutions. Similarly to the (2+ 1)D case, because a part of the
forward propagating beam is backscattered, |E|2 exhibits the fast 2k0 oscillations (Fig. 4(B)),
while Sz is smooth. In this case, the backscattered field leads to 10% oscillations in |E|2.

Posada, McDonald and New [17, 18] studied solutions of the (1+ 1)D Helmholtz equation
over a semi-infinite Kerr medium, of the form A(z,x) = (

√
2n2/n0r0k0)−1 sech(x/r0) · eic·z. In

later works they found similar stationary states for different nonlinearities [19, 20]. These solu-
tions do not have any backward propagating components. In contrast, for the finite-length Kerr
medium simulation of Fig 4, some backward moving waves must exist, because of reflections
from the material discontinuity at z = Zmax, and the full NLH as a boundary-value problem
must be solved.

Another (1+ 1)D configuration of recent interest is that of counter-propagatingbeams, when
a right traveling soliton impinges at the left interface and a left traveling beam impinges at the
right interface (Fig. 1(B)). This configuration was analyzed numerically by Cohen et al.[5] us-
ing a coupled NLS system, which is derived from the NLH by employing the paraxial approxi-
mation and further assuming that asynchronous terms of the Kerr nonlinearity can be neglected.
In doing so, the BCs should simultaneously account for the coupled incoming and outgoing
fields at each interface. As noted in [5], these BCs can only be approximately accommodated in
the coupled NLS model. In contrast, they can be fully implemented in the NLH model, without
any approximation. Figure 5 presents our solution of the NLH for counter-propagating beams
of radius r0 = λ0 that enter a Kerr material slab at the opposite interfaces with a transverse
displacement of d = 4.4λ0, and propagate over 10LDF . It shows that the beams are slightly
attracted toward each other and also become wider as they propagate. The results are in close
agreement with the coupled NLS model, see Fig. 5(B). Therefore, the more comprehensive
NLH model confirms the validity of the coupled NLS model for counter-propagating beams
even for the “extreme” parameters of r0 = λ0 and d = 4.4λ0.

In this work, we solve the scalar NLH (1), which is the simplest model for the propagation
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Fig. 5. (color online) Energy flux (Sz) of the (1+1)D NLH with counter-propagating
beams. A: Positive (forward) flux is red, negative (backward) flux is blue. B: The right-
going beam at its incoming (blue dashed) and outgoing interface (red solid). Green dotted
line is the coupled-NLS solution at the outgoing interface.

of light in Kerr media that incorporates nonparaxial effects, backscattering and reflections from
material interfaces. Moreover, unlike the NLS, it accurately models the propagation of oblique
beams and reflections from interfaces at arbitrary angles. This model neglects vectorial effects,
i.e., linear and nonlinear coupling between the three components of the electric field. We note
that the vectorial effects scale as f 2, and hence are of the same order of magnitude as nonparax-
iality. In bulk media, they have been shown to have the same effect as nonparaxiality, which is
to arrest the collapse [21, 6]. In contrast, in planar waveguides, the solitons are stable. Hence,
when r0 = λ0/2, f 2 is small, and so we expect that both nonparaxial and vectorial effects are
likely to have a secondary effect on the propagation dynamics. Therefore, the sub-wavelength
solitons predicted in the Letter are likely to remain stable also in the more comprehensive vector
NLH model.
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