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Abstract. The critical nonlinear Schrödinger equation (NLS) models the propagation of intense
laser light in Kerr media. This equation is derived from the more comprehensive nonlinear Helmholtz
equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves.
It is known that if the input power of the laser beam (i.e., L2 norm of the initial solution) is
sufficiently high, then the NLS model predicts that the beam will self-focus to a point (i.e., collapse)
at a finite propagation distance. Mathematically, this behavior corresponds to the formation of a
singularity in the solution of the NLS. A key question which has been open for many years is whether
the solution to the NLH, i.e., the “parent” equation, may nonetheless exist and remain regular
everywhere, particularly for those initial conditions (input powers) that lead to blowup in the NLS.
In the current study we address this question by introducing linear damping into both models and
subsequently comparing the numerical solutions of the damped NLH (boundary-value problem) with
the corresponding solutions of the damped NLS (initial-value problem) for the case of one transverse
dimension. Linear damping is introduced in much the same way as is done when analyzing the
classical constant-coefficient Helmholtz equation using the limiting absorption principle. Numerically,
we have found that it provides a very efficient tool for controlling the solutions of both the NLH
and NLS. In particular, we have been able to identify initial conditions for which the NLS solution
does become singular, while the NLH solution still remains regular everywhere. We believe that our
finding of a larger domain of existence for the NLH than for the NLS is accounted for by precisely
those mechanisms that have been neglected when deriving the NLS from the NLH, i.e., nonparaxiality
and backscattering.
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1. Introduction. The focusing critical nonlinear Schrödinger equation (NLS)

iψz(z,x ) + ∆⊥ψ + |ψ|4/dψ = 0, ψ(0,x ) = ψ0(x ),(1.1)

where x ∈ R
d and ∆⊥ = ∂x1x1 + · · · + ∂xdxd

, arises in a variety of physical con-
texts. Of foremost interest is the case d = 2, which corresponds to the propagation
of intense laser beams in Kerr media. In this case, z is the axial coordinate in the di-
rection of propagation, x = (x, y) are the spatial coordinates in the transverse plane,
∆⊥ = ∂xx+∂yy is the diffraction term (transverse Laplacian), and |ψ|2ψ describes the
nonlinear polarization of the Kerr medium. It is well known that solutions to the crit-
ical NLS (1.1) can self-focus and eventually collapse, i.e., become singular, at a finite
propagation distance, provided that their initial power N(0) =

∫ |ψ0|2 dx exceeds a
threshold power Nc, whose value depends only on the dimension d (see [7,28]). Since,
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however, physical quantities do not become infinite, and since in experiments laser
beams continue to propagate beyond the NLS blowup point, the question arises as
to what specific physical mechanism(s), among those that have been neglected when
deriving the NLS from the Maxwell’s equations, actually arrest(s) the collapse. We
recall that the final stage in the derivation of the NLS is to disregard the backscat-
tering and apply the paraxial approximation (see section 2.2) to the critical nonlinear
Helmholtz equation (NLH)

∆E(z,x ) + k2
0(1 + ε|E|4/d)E = 0, ∆ ≡ ∂zz +∆⊥,(1.2)

where k0 is the linear wavenumber and the extent of nonlinearity is measured by the
quantity ε = 4ε0cn2, where n2 is the Kerr coefficient; see, e.g., [3,19]. Therefore, it is
natural to ask whether going back from the NLS to the NLH, i.e., adding nonparax-
iality and backscattering, is sufficient to guarantee existence of the solution with no
singularities. In other words, for a given initial condition that leads to blowup in the
critical NLS, does the NLH (always) have a solution that remains regular everywhere?

The foregoing question has been open for many years. In his celebrated 1965
paper [15], which was the first paper in the literature to predict that the solutions to
the critical NLS could become singular, Kelley was careful to note that the paraxial
approximation, and hence the entire NLS model, breaks down near the singularity.
Feit and Fleck [4] were the first to demonstrate that nonparaxiality of the beam can
arrest the blowup, by showing numerically that the initial conditions that lead to sin-
gularity formation in the NLS result in focusing-defocusing oscillations in the NLH. In
these simulations, however, they did not solve a true boundary-value problem for the
NLH. Instead, they solved an initial-value problem for a “modified” NLH that only
describes the right-propagating wave (while introducing several additional assump-
tions along the way). Akhmediev and collaborators [1, 2] analyzed an initial-value
problem for a different “modified” NLH; their numerical simulations also suggested
that nonparaxiality arrests the singularity formation. Neither numerical approach [4]
nor [1, 2], however, accounted for the effect of backscattering. Fibich [5] applied
asymptotic analysis to derive an ODE in z for self-focusing in the presence of small
nonparaxiality. His analysis suggests that nonparaxiality indeed arrests the singular-
ity formation, resulting instead in decaying focusing-defocusing oscillations. However,
backscattering effects were neglected in this asymptotic analysis.

The aforementioned studies [1,2,4,5,15] have prompted a general belief that non-
paraxiality arrests the collapse. However, no rigorous proof of global existence for
the NLH has ever been provided. Moreover, all the simulations in the above studies
neglected the backscattering and considered only the forward-propagating field. The
first numerical solutions of the NLH as a true boundary-value problem, with backscat-
tering effects fully included, have been obtained by Fibich and Tsynkov in [12], using
a high-order discretization supplemented by a new two-way artificial boundary condi-
tion (ABC). In that study only the case of one transverse dimension was considered, in
order to keep the computational costs low. The simulations in [12] were performed for
the values of the input power of up to 90% of the thresholdNc, and they have captured
the mild self-focusing of the corresponding solutions. In a subsequent paper [10], we
have corroborated experimentally the prediction of the asymptotic analysis that the
magnitude of the backscattered signal scales quadratically with the nonparaxiality
parameter f (see section 2.2), and that the computed NLH solutions converge to the
corresponding NLS solutions as f goes to zero.

The numerical methodology of [12] was obviously not free of limitations of its
own. Foremost, we could not obtain converging solutions for initial powers equal
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to or higher than the critical value Nc. In [12], we considered initial powers only
up to 90% of Nc; in the current paper we computed the NLH solutions for up to
N(0) = 0.99Nc; see section 4. In the course of these simulations we have noticed
that, as N(0) approaches the critical power from below, the convergence rate of the
iterations slows down noticeably. This makes the simulations for higher subcritical
values of N(0) (0.99Nc < N(0) < Nc) difficult to conduct, although it is reasonable
to assume that the NLH solution will converge for input powers all the way up to Nc.
However, for the input power N(0) exactly equal to Nc the convergence of nonlinear
iterations of [12] is lost; see section 4.

The aforementioned slowdown of convergence for input powers slightly below Nc

should be attributed either to deficiencies of the method itself, or to the limits that
insufficient computer resources may impose on the parameters that control the quality
of the discrete approximation, or to both. As concerns the iteration method of [12], it
is the most straightforward approach based on simply freezing the nonlinearity; most
likely, it can be improved or replaced by a more advanced technique, and we plan on
looking into this issue in the future. As for the computer resource requirements, they
are determined by the size of the computational domain, which should be sufficiently
large so as to meet the condition of near-linear propagation in the far field (see [12]),
and by the grid size, which should be sufficiently fine to resolve a given wavelength
and the sharp near-blowup profile. These requirements become more stringent for
higher input powers, which decay at larger distances and/or undergo stronger focus-
ing. In other words, the higher the input power, the larger the domain and/or the
finer the grid that one needs to use in order to maintain the same solution quality
and/or convergence rate. In our previous simulations we have, indeed, seen exam-
ples of diverging NLH solutions with subcritical input powers which converged on a
larger computational domain and/or at a finer resolution. It is still unclear, however,
whether having more computer resources and/or a better nonlinear iteration scheme
will allow one to solve the NLH for initial conditions that lead to collapse in the NLS,
or whether the convergence breakdown at N(0) > Nc is an indication of the loss of
solvability of the NLH or loss of regularity of the solution.

As such, in the current paper we explore an alternative approach to the issue of
solving the NLH in the blowup regime of the NLS, by considering the linearly damped
NLH and the corresponding linearly damped NLS. The addition of linear damping
is not an ad hoc procedure. Indeed, an electromagnetic wave is always partially
absorbed by the medium through which it propagates, an effect neglected in the
original undamped NLH and NLS, both of which model the propagation under “ideal
transparency.” A mathematical motivation to add linear damping comes from the so-
called limiting absorption principle that is used for identifying the unique solutions of
the linear Helmholtz equation; see, e.g., [27]. It is known that the classical constant-
coefficient homogeneous Helmholtz equation

∆E + k2
0E = 0(1.3a)

has nontrivial solutions on the entire space even in the class of functions that van-
ish at infinity, which obviously amounts to nonuniqueness. To fix the problem, the
additional Sommerfeld boundary conditions need to be introduced at infinity that
basically distinguish between the incoming and outgoing waves. On the other hand,
when a complex absorption coefficient is added, the new damped equation

∆E + k2
0(1 + iδ)E = 0(1.3b)
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has only trivial solution. Consequently, its inhomogeneous counterpart will be unique-
ly solvable for any compactly supported right-hand side in rather wide classes of
functions, such as tempered distributions; see [27]. Moreover, when δ −→ ±0, the
unique solution of the inhomogeneous damped equation will converge uniformly on
the entire space to the solution of the respective undamped equation that corresponds
to either the radiation of waves toward infinity (outgoing waves) or, conversely, the
incidence of waves from infinity (incoming waves), where the distinction is rendered
by the sign of δ. This, in particular, implies that if we decide to keep a small but
finite damping in the equation, we may expect its solution to be uniformly close to
the solution of the undamped equation that is driven by the same source terms and is
composed of either only outgoing or only incoming waves in the far field. The latter
consideration is especially important in the context of our iteration algorithm (see
section 3 and [12] for detail), which basically reduces to a repeated solution of the
constant-coefficient Helmholtz equation driven by a variety of compactly supported
right-hand sides and subject to the radiation boundary conditions in the far field.

Solving the damped NLH numerically as a true boundary-value problem required
only minor changes in the algorithm of [12] for the undamped NLH, which are de-
scribed in section 3. At the same time, the addition of damping allows us to better
control the solution. In particular, damping decreases the solution magnitude in the
far field, which is a key requirement for the validity of the ABCs of [12]. As a result,
we have been able to consider initial conditions with powers well above Nc.

Let us recall that, for a given initial condition that leads to the blowup in the
undamped critical NLS, there is a threshold value δS

th of the damping parameter δ
such that if δ > δS

th, then linear damping arrests the collapse, whereas when δ < δS
th,

the solution of the NLS blows up; see [6].1 In the numerical simulations of the
damped NLH reported hereafter we found a similar threshold value δH

th such that
for δ > δH

th the solution exists and is regular everywhere, whereas when δ < δH
th

the iteration scheme diverges. As has been mentioned, in the latter case it is not
clear whether the divergence indicates that there is no solution to the NLH or that
our computational resources are insufficient (or the iteration scheme is suboptimal)
to calculate the solution. Therefore, we can conclude that the actual (analytical)

threshold value δ̂H
th, such that regular solutions to the NLH exist for all δ > δ̂H

th,
is less than or equal to the computed threshold δH

th, which is determined from the

simulations, i.e., that 0 ≤ δ̂H
th ≤ δH

th.
The main result of the current study is that

δH
th < δS

th.

In other words, for a given initial condition that leads to the blowup in the undamped
NLS, there is an entire range of values for the damping coefficient, δH

th < δ < δS
th, for

which the damped NLS solution will blow up, but the NLH solution will be regular
everywhere. Therefore, we can conclude that nonparaxiality and backscattering arrest
the collapse when the damping parameter is in the range δH

th < δ < δS
th. Whether NLH

solutions exist for infinitely small linear damping as well, i.e., in the limit δ −→ 0, is
a question that yet remains to be answered. We believe, however, that this question

1Self-focusing in the critical NLS is highly sensitive to the effect of small perturbations. Some
perturbations can arrest the collapse even if they are initially infinitesimally small [11]. In contrast, an
infinitesimally small linear damping does not arrest the collapse, and a sufficient amount of damping
must be present to regularize the solution.
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should be considerably easier to address, both numerically and analytically, than the
question of solvability of the original undamped NLH.

2. Formulation of the problem.

2.1. The nonlinear Helmholtz equation. A typical setup for the propagation
of electromagnetic waves in a Kerr medium is shown in Figure 2.1. An incoming laser
beam with known characteristics impinges normally on the planar interface z = 0 be-
tween the linear and the nonlinear medium. The electric field E = E(z,x ) is governed
by the NLH (1.2). For simplicity, we consider the cylindrically symmetric case,2 where
E = E(z, r) and r =

√
x2

1 + · · ·+ x2
d. The nonlinear medium occupies the semispace

z ≥ 0 (see Figure 2.1). Consequently, the NLH (1.2) has to be supplemented by
boundary conditions at z = 0 and z −→ +∞. We require that as z −→ +∞, E have
no left-traveling components and that the propagation be diffraction-dominated, with
the field amplitude decaying to zero, i.e., limz→∞ max0≤r<∞ |E(z, r)| = 0, which
also means that the nonlinear wavenumber k2 ≡ k2

0(1 + ε|E|4/d) approaches its linear
limit: limz→+∞ k2 = k2

0. In other words, at large z’s the solution should be a linear
superposition of right-traveling waves. Since the actual numerical simulation is car-
ried out on a truncated domain 0 ≤ z ≤ zmax (Figure 2.1), the desired behavior of the
solution as z −→ +∞ has to be captured by a far-field ABC at the artificial bound-
ary z = zmax. This boundary condition should guarantee a reflectionless propagation
of all the waves traveling towards z = +∞. Often, boundary conditions designed
to ensure the transparency of the outer boundary to the outgoing waves are called
radiation boundary conditions [24].

The situation is more complex at the interface z = 0, where the total field E(0, r)
is composed of a given incoming (right-traveling) component Einc(0, r) and an un-
known backscattered (left-traveling) component Escat(0, r), i.e.,

E(0, r) = Einc(0, r) + Escat(0, r).

As such, the boundary condition at z = 0 has to guarantee the reflectionless propa-
gation of any left-traveling wave through the interface and at the same time be able

wave

0

r

impinging

wave

Einc

backscattered

wave

zzmax

Kerr-type medium

forward

propagating

Fig. 2.1. Schematic of propagation of waves in Kerr media.

2This assumption is quite reasonable, since even when the initial conditions of the NLS are not
cylindrically symmetric, near the singularity the solution becomes cylindrically symmetric [8].



LINEAR DAMPING OF NONLINEAR WAVES 1723

to correctly prescribe the incoming signal. Implementation of such a two-way ABC
was first carried out in [12] for the undamped NLS, and is extended to the damped
case in section 3.3.

Finally, the electric field vanishes as r −→ +∞. In practice, we truncate the do-
main at some large but finite rmax and require that E(z, rmax) = 0. Similar approaches
to the treatment of remote transverse artificial boundaries have been introduced and
tested previously; see the discussion in the end of section 3.2. In order to avoid
possible problems with reflections from the boundary r = rmax, the computations
of section 4 were conducted with rmax being 40 times larger than the radius of the
impinging beam.

2.2. Paraxial approximation and the NLS. We first introduce the dimen-
sionless quantities r̃, z̃, and ψ as

r̃ =
r

r0
, z̃ =

z

2LDF
, E = eik0z(εr2

0k
2
0)

−d/4ψ(z, r),(2.1)

where r0 is the transverse width of the input beam and LDF = k0r
2
0 is the diffraction

length. Then, by substituting the quantities (2.1) into the NLH (1.2) and dropping
the tildes, we obtain

iψz +∆⊥ψ + |ψ|4/dψ = −4f2ψzz,(2.2)

where f = 1/r0k0 = λ/2πr0 is the nonparaxiality parameter.
The standard derivation of the NLS is motivated by the observation that f � 1,

since typically λ � r0. This suggests that one can neglect the ψzz term, i.e., apply
the paraxial approximation, and obtain the NLS

iψz(z, r) + ∆⊥ψ + |ψ|4/dψ = 0,(2.3)

which is the same as the previously introduced (1.1), except that in (2.3) we use r
instead of x for simplicity. The NLS (2.3) is supplemented by the initial condition at
z = 0:

ψ(0, r) = (εr2
0k

2
0)

d/4Einc(0, r).

Subsequently, it needs to be integrated by a “time”-marching algorithm, where the
direction of propagation z plays the role of time. We reemphasize that backscattering
effects are not taken into account by the NLS (2.3). Indeed, once (2.3) is solved,
the overall solution, according to (2.1), is the slowly varying amplitude ψ times the
forward-propagating oscillatory component eik0z.

2.3. Linear damping. When damping, i.e., linear absorption, is included, the
NLH (1.2) becomes

∆E(z,x ) + k2
0(1 + iδ + ε|E|4/d)E = 0,(2.4)

where k0 is the (real part of the) wavenumber,

δ =
Im(n2

0)

Re(n2
0)
,

and n0 is the linear index of refraction of the medium. The corresponding NLS (2.3)
becomes (see (2.1))

iψz +∆⊥ψ + |ψ|4/dψ + ir2
0k

2
0δψ = 0.(2.5)
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By definition, optical transparency of the medium means that the damping is small.
For example, for water in the visible regime [14],

Im(n2
0)

Re(n2
0)

∼ 10−7.

Having small physical values of damping also agrees well with the mathematical
reasoning behind the limiting absorption principle. As indicated in section 1 (see,
e.g., [27] for detail), for a classical constant-coefficient Helmholtz operator of (1.3a),
the introduction of a small complex absorption coefficient of the appropriate sign [as
in (1.3b)] implies that there will be a unique solution for any compactly supported
excitation, and that this solution will be uniformly close in the entire space R

d+1 to
the solution of the corresponding undamped linear Helmholtz equation driven by the
same sources and subject to the radiation boundary conditions in the far field. In
the following section 3, we show that for the formulation analyzed in this paper the
proper sign of δ is positive.

As we have noted before, the physical case that corresponds to the propagation of
laser beams in bulk Kerr media is d = 2. However, in order to reduce the complexity
of the computations we rather consider a simpler case d = 1, as was previously done
in [12]. Thus, the damped NLH for E = E(z, r) and the damped NLS for ψ = ψ(z, r)
that are solved numerically in this study are

Ezz(z, r) + Err + k2
0(1 + iδ + ε|E|4)E = 0(2.6)

and

iψz(z, r) + ψrr + ir2
0k

2
0δψ + |ψ|4ψ = 0,(2.7)

respectively.

3. Numerical methods. The damped NLH (2.6) is solved using fourth-order
finite differences. The methodology of solution is outlined below in section 3.1; it is
similar to the one that we have introduced in our previous work [12] for solving the
undamped NLH. The choice of a higher-order method is motivated primarily by the
necessity to resolve a small-scale phenomenon of backscattering at the background
of the forward-propagating waves. Indeed, it is generally known that higher-order
methods provide for a better resolution of waves. The damped NLS (2.7) is also
solved using a fourth-order approximation in all coordinate directions. Since the
Schödinger equation models the evolution of the slowly varying envelope, one can
expect the magnitudes of the corresponding higher-order derivatives involved in the
truncation error terms to be smaller for the NLS than for the NLH. This implies that
on a grid of comparable size the accuracy of the numerical approximation for the NLS
should be better than of those for the NLH. Moreover, in our simulations we typically
employ finer grids for the NLS than those that we use for the NLH, thus obtaining
an accurate numerical solution for the simpler model. It then serves as a natural
reference point for the more “elaborate” NLH solution to be compared against.

3.1. Discretization of the NLH and solution methodology. We use a con-
ventional fourth-order central-difference discretization for the Laplacian ∆ = ∂zz+∂rr
of (2.6); thus the stencil is five nodes wide in each coordinate direction. As the equa-
tion is nonlinear, we implement a nested iteration scheme. On the outer loop, we
freeze the nonlinearity, i.e., consider the coefficient k2 ≡ k2

0(1 + iδ + ε|E|4) as a given
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function of the coordinates z and r, which is actually obtained by taking the quantity
|E|4 from the previous iteration; see (2.6). This way we arrive at a linear equation
with variable coefficients. The latter is also solved by iterations on the inner loop of
the nested scheme. Here, we leave the entire varying part of the equation, which is
proportional to ε, on the lower level, and on the upper level need to invert only the
constant-coefficient linear damped Helmholtz operator ∆+ k2

0(1 + iδ)I (cf. (1.3b)).
Formally, our iteration scheme resembles the fixed-point approach; however, no

rigorous convergence theory is available yet, and the convergence is assessed ex-
perimentally. The advantages of using these nested iterations are twofold. First,
the method eventually reduces to the repeated solution of one and the same linear
constant-coefficient equation driven by different source terms, which can be done ef-
ficiently at the discrete level. Second, the radiation boundary conditions at z = zmax

and the two-way ABCs at z = 0 (see Figure 2.1) are most convenient to set on the
upper time level of the iteration scheme already for the linear constant-coefficient
operator.

To solve the linear constant-coefficient damped discrete Helmholtz equation

∆(h)E + k2
0(1 + iδ)E = g,(3.1)

where g is the right-hand side generated on the previous iteration, we first separate the
variables by implementing the discrete Fourier transform in the transverse direction
r; the boundary conditions are symmetry at r = 0 and zero Dirichlet at r = rmax (see
section 2.1). This yields a collection of fourth-order one-dimensional finite-difference
equations (grid index n corresponds to the continuous variable z):

−Ên−2 + 16Ên−1 − 30Ên + 16Ên+1 − Ên+2

12h2
z

+ (k2
0(1 + iδ)− λm)Ên = ĝn(3.2)

parameterized by the dual Fourier variable λm; the latter is defined by formula (29)
of [12]. Each equation (3.2) needs to be solved independently.3 The two-way and radi-
ation ABCs at z = 0 and z = zmax, respectively, for the discrete equation (3.1) are set
in the Fourier space, i.e., individually for each one-dimensional equation (3.2). This
is done by first identifying the linearly independent eigenmodes for the homogeneous
version of this equation. It is important to note that, even though the original dif-
ferential equation is of the second order, we are using its fourth-order approximation,
and thus each homogeneous discrete one-dimensional equation of type (3.2) has four
linearly independent solutions. These solutions are qn1 , q

−n
1 , qn2 , and q−n

2 (see [12]),
where q1, 1/q1, q2, and 1/q2 are roots of the characteristic algebraic equation

−1 + 16q + (12h2
z(k

2
0(1 + iδ)− λm)− 30)q2 + 16q3 − q4 = 0.(3.3)

3.2. Roots of the characteristic equation. It is indeed easy to see that (3.3)
has two pairs of mutually inverse roots. We first notice that this equation originates
from a central-difference, i.e., symmetric, discretization (3.2). Given that, if q is a
root, then q−1 is obviously a root as well, which can be verified by direct substitution.
Then, to actually find the roots we rewrite the polynomial on the left-hand side of
(3.3) as

(q − q1)(q − q−1
1 )(q − q2)(q − q−1

2 )

≡− 1 + (d1 + d2)q − (2 + d1d2)q
2 + (d1 + d2)q

3 − q4,

3Note that the discrete equations (3.1) and (3.2) are very similar to the corresponding discrete
equations studied in [12], except that previously we had no damping.
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where

d1 = q1 + q−1
1 , d2 = q2 + q−1

2 ,

and match the coefficients. In so doing, we obtain

d1 + d2 = 16, −2− d1d2 = 12h2
z(k

2
0(1 + iδ)− λm)− 30,(3.4)

so that each pair of roots, q1, q
−1
1 and q2, q

−1
2 , can be found by solving the corre-

sponding quadratic equation,

q2 − d1q + 1 = 0(3.5a)

or

q2 − d2q + 1 = 0,(3.5b)

while the coefficients d1 and d2 are, in turn, determined by solving quadratic equations
(3.4).

At this stage, the key difference between the current analysis for the damped
equation and the previous analysis for the undamped equation of [12] needs to be em-
phasized. As shown in [12], when δ = 0, the first pair of solutions of the homogeneous
equation (3.2), qn1 and q−n

1 , approximates the genuine “longitudinal,” i.e., z-aligned,
modes of the undamped homogeneous differential equation (1.3a):

Ê1 = eikcz and Ê2 = e−ikcz,(3.6)

respectively. The functions Ê1 = Ê1(z) and Ê2 = Ê2(z) are two linearly independent
solutions of the ODE

Êzz + (k2
0 − λ)Ê = 0(3.7)

obtained by Fourier transforming (1.3a) with respect to r; λ is the dual variable.
In formulae (3.6), we have denoted kc =

√
k2
0 − λ, and a particular branch of the

square root that we always take is
√
ρeiθ = ρ1/2eiθ/2. The two continuous modes

(3.6) may be either traveling or evanescent waves, depending on whether the real
quantity k2

c = (k2
0 − λ) is positive or negative, or in other words, whether the dual

Fourier variable λ is less or greater than k2
0. To demonstrate the aforementioned

approximation property for the undamped (δ = 0) discretization (3.2), we redefine
kc =

√
k2
0 − λm, introduce α = h2

zk
2
c , and show in [12] that if α > 0, then q1 and

q−1
1 are complex conjugate roots of the characteristic equation (3.3). Both these roots
have unit magnitude |q1| = |q−1

1 | = 1, which indicates that qn1 and q−n
1 are pure

discrete traveling waves. Moreover, if α � 1, then (see [12])

q1 = eikchz +O((kchz)
5), q−1

1 = e−ikchz +O((kchz)
5).(3.8)

Equalities (3.8) imply that in the undamped case δ = 0, qn1 is a discrete counterpart
of the right-traveling wave Ê1, and q−n

1 is a discrete counterpart of the left-traveling

wave Ê2; the approximation is obviously fourth-order accurate because on the grid
zn = hzn. If α < 0 and still δ = 0, then we again show in [12] that |q1| < 1
and |q−1

1 | > 1, which indicates that qn1 is a right-evanescent wave and q−n
1 is a left-

evanescent wave.
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The situation changes drastically with the introduction of damping. In contradis-
tinction to the undamped case, when δ �= 0 the homogeneous differential equation no
longer has pure propagating, i.e., constant-amplitude, longitudinal modes. Indeed,
by Fourier transforming equation (1.3b) in the r direction, we arrive at the family of
ODEs

Êzz + (k2
0(1 + iδ)− λ)Ê = 0(3.9)

parameterized by the dual variable λ. Each of the equations (3.9) has two linearly
independent solutions:

Ê1 = eiz
√

k2
c+ik2

0δ = e
ikcz

√
1+i

k2
0

k2
c
δ
,

Ê2 = e−iz
√

k2
c+ik2

0δ = e
−ikcz

√
1+i

k2
0

k2
c
δ
.

(3.10)

Clearly, the second equality in each formula (3.10) is valid only if kc �= 0. Formulae
(3.10) show that, as long as δ �= 0, there will always be a nontrivial real part in
each exponent. Consequently, the amplitudes of the waves (3.10) will always decrease
or increase exponentially for z −→ ±∞. In particular, if we analyze the traveling
waves regime of the undamped equation, i.e., the case of small λ: k2

0 − λ > 0, and
additionally assume that |δ| � 1, then formulae (3.10) yield (cf. formulae (3.6))

Ê
(damped)
1 ≈ e

ikcz

(
1+i 1

2

k2
0

k2
c
δ

)
= eikcz− 1

2

k2
0

kc
δz = Ê

(undamped)
1 · e− 1

2

k2
0

kc
δz,

Ê
(damped)
2 ≈ e

−ikcz

(
1+i 1

2

k2
0

k2
c
δ

)
= e−ikcz+

1
2

k2
0

kc
δz = Ê

(undamped)
2 · e 1

2

k2
0

kc
δz.

(3.11)

Since we identify Ê
(undamped)
1 = eikcz of (3.6) as the right-traveling wave, and

Ê
(undamped)
2 = e−ikcz of (3.6) as the left traveling wave, we can conclude that to

have the propagation toward infinity (i.e., the radiation of waves) accompanied by
the decay of the amplitude (as opposed to growth with no bound), we have to take
positive values of the damping factor δ > 0 (cf. section 1). In this case, the amplitude

of Ê
(damped)
1 will decay exponentially for z −→ +∞ (propagation to the right), and

the amplitude of Ê
(damped)
2 will decay exponentially for z −→ −∞ (propagation to

the left). As one can easily see from (3.11), the rate of decay is controlled by the value
of δ.

In connection to the aforementioned exponential behavior of the longitudinal
modes, a more general fact is also worth mentioning. The full Fourier symbol of the
undamped operator of (1.3a) obviously has real roots on the dual plane; these roots
occupy the entire circle of radius k0 centered at the origin. In contradistinction to
that, the symbol of the damped operator of (1.3b) does not have real roots on the dual
plane. As shown in [20], the damped operator will therefore have an exponentially
decaying fundamental solution. In practical terms it means that the outgoing waves
governed by the damped Helmholtz equation will decay exponentially toward infinity
in all directions. For comparison we recall that the fundamental solution of the
undamped operator is given by a zero-order Hankel function, which only decays at
infinity as the inverse square root of the distance from the origin.

To establish the properties of the propagating modes for the discretization (3.2)
in the presence of damping, and to demonstrate similarities to the continuous damped
case, we first introduce and prove the following result.
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Proposition 3.1. The characteristic equation (3.3) for δ �= 0 does not have roots
with unit magnitude.

Proof. Let us assume the opposite: There exists a unit magnitude root q = eiθ to
the algebraic characteristic equation (3.3). Then,

−1 + 16eiθ + (12h2
z(k

2
0(1 + iδ)− λm)− 30)e2iθ + 16e3iθ − e4iθ

=
[−e−2iθ + 16e−iθ + (12h2

z(k
2
0(1 + iδ)− λm)− 30) + 16eiθ − e2iθ

] · e2iθ

=
[−2 cos(2θ) + 32 cos θ + (12h2

z(k
2
0(1 + iδ)− λm)− 30)

] · e2iθ = 0.

As e2iθ �= 0, the expression in rectangular brackets has to be equal to zero. Since the
only imaginary contribution to this expression is proportional to δ, we conclude that
it is only possible when δ = 0.

Proposition 3.1 implies that, similarly to the continuous case, there will be no
constant-amplitude solutions to the homogeneous counterpart of the discrete equation
(3.2). Each of the four corresponding modes, qn1 , q

−n
1 , qn2 , and q−n

2 , will exponentially
decrease in one direction and exponentially increase in the opposite direction. In
particular, if we assume as before that α � 1 in the undamped traveling waves
regime,4 and if we in addition let δ � 1, then, solving (3.4) for d1 first, then (3.5a)
for q1 and q−1

1 , and finally using the Taylor expansion, we obtain (cf. (3.8))

q1 = eikchz− 1
2

k2
0

kc
δhz +O

([
kchz

(
1 + i

1

2

k2
0

k2
c

δ

)]5)
,

q−1
1 = e−ikchz+ 1

2

k2
0

kc
δhz +O

([
kchz

(
1 + i

1

2

k2
0

k2
c

δ

)]5)
.

(3.12)

Equalities (3.12) mean that the damped discrete traveling waves qn1 and q−n
1 approx-

imate the damped continuous waves (3.11) with the fourth order of accuracy. This
result is obviously similar to the one obtained in the undamped case; see formulae
(3.8).

Thus far, our discussion has focused on the first pair of roots q1 and q−1
1 of the

characteristic equation (3.3), because these roots correspond to the genuine modes
of the original differential equation. The second pair of roots q2 and q−1

2 is obtained
by solving (3.4) for d2 and subsequently solving (3.5b). The corresponding pair of
solutions qn2 and q−n

2 is, of course, a pure numerical artifact. In [12] we have shown
that for δ = 0 the roots q1 and q−1

1 cannot have unit magnitude: |q2| < 1 and
|q−1

2 | > 1, which means that the waves qn2 and q−n
2 are always evanescent. In the

damped case, Proposition 3.1 implies that these waves will remain evanescent as well.
The presence of the second pair of waves, however, implies that the discrete equation
requires two more boundary conditions compared to the original differential equation.

In section 1, we have outlined a general two-fold motivation behind the intro-
duction of damping into the Helmholtz equation. One part was coming from physics
because absorption by the medium always accompanies the propagation of electro-
magnetic waves in real-life settings. Moreover, from the standpoint of mathematics
the introduction of damping helps select a unique solution using the limiting absorp-
tion principle. Besides these two key reasons, the presence of damping in the equation
also positively affects the properties of the numerical algorithm.

4This would also imply
k2
0

kc
hz � 1 because λm is small and kc ∼ k0.
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First, having no roots of unit magnitude presents a significant advantage from
the viewpoint of numerical stability. In this case, every discrete system (3.2), sup-
plemented by the boundary conditions that are discussed below in section 3.3, will
be well posed in the classical sense of [13, 21]. In contrast to that, in the original
undamped case existence of the roots with unit magnitude may, generally speaking,
cause a weak polynomial growth of the error when the grid size is refined, although
no major exponential instability will be possible.

We recall that the original formulation of the problem requires that E(z, r) vanish
as |r| −→ ∞. Instead, when solving the problem numerically, we set E(z, r) = 0
at a large but still finite distance r = rmax. Of course, we expect that on some
fixed bounded region of interest located next to the axis of the propagating beam
our solution will converge to the original infinite-domain solution with the increase
of rmax. A general methodology for solving infinite-domain problems based on a
similar idea was first introduced and studied in [22, 23, 25, 26] in the context of fluid
flow. It was shown, in particular, that one may obtain the convergence rate inversely
proportional to the square of the domain size (i.e., ∼ 1/r2

max using our particular
notations). Besides, for a specific example that involves the Laplace equation that
transforms into a Yukawa equation by introducing small “dissipation,” Mishkov and
Ryaben’kii have shown in [18] that one may expect a much faster convergence of the
damped solution to the undamped one on a fixed-size domain rather than on the
original unbounded domain. Even though the formulation of the problem in [18] is
not quite the same as the one analyzed here, there are still similarities that allow us
to consider the results of [18] as another argument for using the damped equation.

3.3. Boundary conditions. Apart from the foregoing key difference in the
properties of the roots of (3.3) in the undamped and damped case (see section 3.2), the
algorithm for solving the damped NLH remains basically the same as the undamped
algorithm of [12]. Each equation (3.2) needs to be supplemented by the radiation
boundary conditions at z = zmax and two-way ABCs at z = 0.

The radiation boundary conditions are constructed by requiring that on the right
boundary z = zmax the solution of (3.2) be composed of only the waves that prop-
agate/decay to the right, i.e., Ên = c1q

n
1 + c2q

n
2 . The selection is rendered by the

so-called one-way discrete Helmholtz equation [12], which is a linear homogeneous
relation that defines the span of all the appropriate modes. Specifically, let us con-
sider (3.2) on the grid n = 0, 1, . . . , N − 1, N , and assume that the right-hand
side ĝn is small and can therefore be neglected near the right boundary n = N ,
i.e., that the propagation is almost linear in the far field. Then, we require that
the vector [ÊN−3, ÊN−2, ÊN−1, ÊN ]T be a linear combination of the two vectors
[qN−3

1 , qN−2
1 , qN−1

1 , qN1 ]T and [qN−3
2 , qN−2

2 , qN−1
2 , qN2 ]T , which obviously translates into

Rank


 ÊN−3 ÊN−2 ÊN−1 ÊN

1 q1 q2
1 q3

1

1 q2 q2
2 q3

2


 = 2.(3.13)

Relation (3.13) is, in turn, equivalent to the two scalar equalities

q1q2ÊN−3 − (q1 + q2)ÊN−2 + ÊN−1 = 0,(3.14a)

q1q2ÊN−2 − (q1 + q2)ÊN−1 + ÊN = 0,(3.14b)

which constitute the one-way-to-the-right discrete Helmholtz equation. Relations
(3.14a) and (3.14b) supplement the scheme (3.2) at n = N − 1 and n = N , respec-
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tively, i.e., at the two near-edge nodes of the grid where the regular five-point-wide
stencil of (3.2) cannot be applied.

The two-way ABC at z = 0 also has to possess the capability of radiation bound-
ary conditions, i.e., it has guarantee the transparency of the interface for all the waves
that propagate/decay to the left. In other words, we require that at the left boundary

the outgoing, i.e., scattered, waves be given by Ê
(scat)
n = c1q

−n
1 + c2q

−n
2 . Assuming

for a second the homogeneity ĝn = 0 near n = 0, we could obtain, similarly to (3.13),

Rank


 Ê

(scat)
0 Ê

(scat)
1 Ê

(scat)
2 Ê

(scat)
3

1 q−1
1 q−2

1 q−3
1

1 q−1
2 q−2

2 q−3
2


 = 2.(3.15)

Relation (3.15), again, is equivalent to the one-way-to-the-left discrete Helmholtz equa-
tion:

Ê
(scat)
0 − (q1 + q2)Ê

(scat)
1 + q1q2Ê

(scat)
2 = 0,(3.16a)

Ê
(scat)
1 − (q1 + q2)Ê

(scat)
2 + q1q2Ê

(scat)
3 = 0.(3.16b)

Equations (3.16a), (3.16b), however, cannot be immediately used as the ABC at
z = 0 because the foregoing assumption of homogeneity near the interface is, generally
speaking, not correct, and moreover, (3.16a), (3.16b) do not account for the incoming
wave at z = 0 (see section 2.1), i.e., do not have the important two-way capability. The
analysis of [12] shows that to accurately address both issues, i.e., the inhomogeneity
that comes from the previous iteration and the presence of the incoming wave, it is
sufficient to introduce particular modifications to the right-hand side gn at only two
nodes: n = 0 and n = 1. The corresponding modification due to the incoming signal

is obtained by simply substituting the right-traveling incoming wave Ê
(inc)
0 qn1 into

the one-way-to-the-left Helmholtz equation (3.16a), (3.16b). Altogether, the two-way
ABCs at z = 0 are given by (cf. formulae (3.16a), (3.16b))

Ê0 − (q1 + q2)Ê1 + q1q2Ê2 = ĝ′0,(3.17a)

Ê1 − (q1 + q2)Ê2 + q1q2Ê3 = ĝ′1,(3.17b)

where a prime denotes the aforementioned modification of the right-hand side; see [12].
Again, relations (3.17a) and (3.17b) supplement the scheme (3.2) at the near-edge
nodes n = 0 and n = 1, respectively, where the regular five-point stencil cannot be
applied. Straightforward considerations based on the linear superposition principle
and uniqueness (see [12]) guarantee that inhomogeneous relations (3.17a), (3.17b)
correctly specify the incoming signal at z = 0 and still ensure the reflectionless prop-
agation of all the outgoing waves through z = 0 toward z = −∞.

3.4. Computational complexity. The computational complexity of one solu-
tion of (3.1) is O(NzNr lnNr) operations, where Nz and Nr are the corresponding
grid dimensions. Indeed, the cost of solving each of the Nr one-dimensional systems
(3.2) is linear with respect to Nz, because each of these systems needs to be solved
repeatedly for multiple right-hand sides. As such, the sparse LU decomposition can
be performed only once ahead of time, and the cost of backward substitution is linear.
Therefore, the overall complexity is dominated by the cost of Nz direct and inverse
FFTs of length Nr, which is O(NzNr lnNr).
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For the specific discretization parameters provided in section 4, the numbers of
iterations could vary significantly. The borderline cases, i.e., those with the mini-
mal damping necessary to allow the algorithm to converge, could take as many as
a thousand iterations to reduce the initial relative difference between two successive
iterations by three to four orders of magnitude. In contrast, the cases that involved
damping substantially larger than the required minimum could converge to machine
zero (fifteen orders of magnitude reduction) in as little as two hundred iterations.

4. Results. In this section we present simulation results for the Gaussian initial
conditions E0

inc = exp(−r2) and ψ0 = (εr2
0k

2
0)

1/4 exp(−r2/r2
0) for the NLH and NLS,

respectively. Denoting, as before, the input power of the incoming wave by N(0), we
define the fractional input power as

p =
N(0)

Nc
,(4.1)

i.e., p = 1 when the input power is equal to the NLS critical power Nc. For the
Gaussian initial conditions used in our simulations, p = k0

√
2ε/3π (see [12]). In all

simulations we set k0 = 8 and r0 = 1.
In Table 4.1 we show the calculated threshold values δH

th and δS
th. The quantity

δH
th in Table 4.1 represents the smallest nonnegative value of δ for which we obtain a
global solution of the NLH. By this we mean that the nonlinear iterations converge
in the sense that the value of maxz,r(E

(n+1) −E(n))/maxz,r E
(n+1) drops by at least

a factor of 10−6 in the course of iterations on the computational domain 0 ≤ z ≤ 40
and 0 ≤ r ≤ 40, with grid sizes hz = λ/20 and hr = λ/8, where λ = 2π/k0.
The particular choice of the domain size and grid resolution is “inherited” from our
previous numerical experiments; see [10,12]. The values of δH

th in Table 4.1 are obtained
with at least two significant digits by repeatedly running the code for a given ε and
varying δ, which allows one to “close in” on the threshold. However, as discussed in
section 1, with a larger computational domain and/or a finer grid it may be possible
to obtain regular solutions for smaller values of δ, hence, to obtain a lower value
of the threshold δH

th. For example, using the same computational domain and twice
as fine a grid, hz = λ/40 and hr = λ/16, we could obtain δH

th = 0.0133 instead

Table 4.1
Threshold values of linear damping δ.

Case No. ε p = N(0)/Nc δHth δSth

1 0.06 90% 0 0

2 0.07 97.5% 0 0

3 0.072165819 99% 0 0

4 3π/128 100% 9.6 · 10−5 0

5 0.075 100.9% 0.00023 0

6 0.08 104% 0.00071 0.00025

7 0.1 116% 0.0027 0.0025

8 0.125 130% 0.0049 0.0062

9 0.15 142% 0.0071 0.010

10 0.2 164% 0.0145 0.019

11 0.3 202% 0.030 0.035

12 0.4 233% 0.044 0.050

13 0.5 261% 0.058 0.065
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of δH
th = 0.0145 for the data in row 10 of Table 4.1 (ε = 0.2). Likewise, using the

original grid resolution hz = λ/20 and hr = λ/8 and a computational domain that
was twice as large, zmax = 80 and rmax = 80, we could obtain δH

th = 0.0022 instead of
δH
th = 0.0027 for the data in row 7 of Table 4.1 (ε = 0.1). In other words, the values
of δH

th from Table 4.1 should be considered upper bounds for the actual thresholds.
However, the quantitative limits of pursuing this venue are still unexplored, i.e., it
is not known how far down in δH

th one can go by increasing the domain size and/or
grid resolution. Our ability to answer this question is obviously limited by computer
resources, and as of yet the question remains open. In particular, it is unclear whether
we can achieve δH

th = 0 by choosing a sufficiently large domain and/or fine grid.
Similarly, the quantity δS

th in Table 4.1 represents the smallest nonnegative value
of damping δ for which the NLS solution does not blow up. In our NLS simulations
we use standard fourth-order finite-difference schemes for the spatial derivatives and
explicit fourth-order Runge–Kutta for marching in z. As has recently been shown
in [9], in finite-difference simulations of NLS solutions that are known analytically
to become singular, the computed solution still remains bounded. Therefore, there
is always an element of arbitrariness in selecting a numerical criterion for blowup in
NLS simulations. In our NLH simulations the largest relative increase in amplitude
due to self-focusing has never exceeded a factor of two. In order to make the blowup
criteria in NLH and NLS simulations as close to one another as possible, we define
the computed NLS solution as becoming singular once its amplitude increases by a
factor of two. We checked that altering this NLS blowup criterion leads to only minor
changes in the results for δS

th. For example, using the blowup criterion of relative
focusing by a factor of 4, rather than 2, for ε = 0.08 (row 6 of Table 4.1) gives
δS
th = 0.00021 instead of δS

th = 0.00025; and using this new criterion for ε = 0.15
(row 9 of Table 4.1) yields δS

th = 0.0089 instead of δS
th = 0.010. In particular, this

change does not affect our main finding of initial conditions for which δH
th < δS

th.
As expected, for both the NLS and the NLH the threshold values of δ increase

with ε (i.e., a larger amount of damping is needed to arrest collapse of beams with
higher input power). For ε = 0.06 and ε = 0.07 the input power is below critical.
Therefore, both the NLS and the NLH have global solutions for δ = 0. This behavior
for the NLH holds (at least) until ε = 0.072165819, which corresponds to the last
subcritical value5 that we have checked, N(0) being equal to 99% of Nc.

Starting from ε = 3π/2k2
0 ≈ 0.073631077, which corresponds exactly to N(0) =

Nc, the NLH requires a certain positive amount of damping δ to maintain the reg-
ularity of the solution. For the NLS, the solution with no damping remains regular
until ε = 0.75, which corresponds to p = N(0)/Nc = 1.009. Indeed, it is known
that Nc is only a lower bound for the threshold power for NLS collapse, and that any
initial condition which does blow up, and whose amplitude |ψ0| is not equal to the
ground state profile 31/4

√
sech(2r), has power strictly above Nc (see [7, 16, 17]). In

our simulations we have discovered that for ε = 3π/2k2
0, which is the critical value for

the NLH, as well as for the moderately supercritical values ε = 0.075, ε = 0.08, and
ε = 0.1, when the input power N(0) is only slightly above Nc, the threshold damping
for the NLH is larger6 than that for the NLS: δH

th > δS
th. However, for input powers

that are equal to or higher than 1.30Nc (which corresponds to ε = 0.125) this trend

5As mentioned in section 1, for larger subcritical values of N(0) the convergence of nonlinear
iterations becomes prohibitively slow.

6We recall that the values of δHth in Table 4.1 are only upper bounds for the threshold; lower
values may be obtained by refining the grid and/or enlarging the computational domain.
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Fig. 4.1. Threshold values δHth (open circles “◦”) and δSth (asterisks “∗”) as a function of (p−1)

for the data in Table 4.1. The solid line 0.035(p− 1)1.517 is the best fit to the values of δSth.

reverses (see Table 4.1), and we obtain δH
th < δS

th. Thus, for N(0) ≥ 1.30Nc,
7 there

must be other mechanisms in the NLH not present in the NLS that help suppress
the formation of singularity in the solution. Therefore, we may conclude that in this
regime nonparaxiality and backscattering help arrest collapse of nonlinear waves.8

In [6] Fibich has used asymptotic analysis to show that

δS
th ∼ c(p− 1)3/2,(4.2)

where p is the fractional critical power (4.1). In Figure 4.1 we put this theoretical
prediction to a test by plotting the values of δS

th and δH
th as a function of (p − 1).

When we computed the best fit of the values of δS
th with the two-parameter family

of curves δth = c(p − 1)α, we obtained α = 1.517, which is in excellent agreement
with formula (4.2). Relation (4.2) also provides a good approximation to the data
points δH

th; see Figure 4.1. The only exception is the lowest-power NLH data point
in Figure 4.1 that corresponds to ε = 0.08 (row 6 in Table 4.1), for which the value
of δH

th has most likely been overpredicted numerically because of the computational
constraints discussed previously.

In Figure 4.2 we plot the on-axis (r = 0) amplitudes of the NLH and NLS solutions
for ε = 0.2 and various values of δ. The on-axis behavior is most representative of
the physical processes that we are studying, because for symmetric beams this is the
location of the peak intensity. When δ = δH

th = 0.0145, the NLH solution exists
globally, but the NLS solution becomes singular at a finite propagation distance. As
the value of damping increases, both the NLS and the NLH solutions undergo less

7More precisely, N(0) higher than some value between 1.16Nc and 1.30Nc.
8The fact that for the input values just above the critical power we do not observe nonparaxiality

and backscattering helping arrest the collapse is apparently the “continuation” of the fact that we
have been unable yet to solve the undamped NLH for N(0) ≥ Nc, even though the NLS solution
exists globally for N(0) ≤ 1.009Nc. The reasons are probably the same in both cases; those for the
latter have already been discussed in the section 1.
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Fig. 4.2. On-axis amplitude of NLH (solid) and NLS (dashes) solutions for ε = 0.2 and various
values of δ.

focusing. For all the cases for which both solutions remain regular, the NLS solution
curve is higher than the NLH one from z = 0 until its maximum, i.e., the point of
the arrest of collapse. This provides additional support to the foregoing conclusion
that nonparaxiality and backscattering arrest collapse of nonlinear waves. Note that
after the collapse has been arrested, the NLS solution becomes lower than that of the
NLH. One possible explanation for this is that the NLS solution is undergoing higher
focusing, and hence it loses more power due to damping.

We emphasize that at z = 0 the NLH solution is not equal to E0
inc; see Figure 4.2.

The difference between the two is due to backscattering and can be used to quantify
the level of backscattering for a particular setting; see [10, 12].9 In Table 4.2 we
provide the values of maximum self-focusing and maximum backscattering in the
NLH, defined as maxr,z |E(z, r)| and maxr |E(0, r)−E0

inc(r)|, respectively, for various
values of ε and δ. The dash “—” in a particular cell of Table 4.2 means that the level
of damping was insufficient to guarantee the convergence of the numerical algorithm.
As expected, for a given level of damping δ, the NLH solution undergoes stronger self-
focusing as the nonlinearity coefficient ε increases. The level of backscattering also
increases with the increase of ε. As also expected, for a given input power ε, when the
damping δ increases, the NLH solution undergoes weaker self-focusing (see Figure 4.2).

9There are, in fact, two phenomena that account for the discrepancy between the NLH and NLS
curves: nonparaxiality of the forward propagating wave and backscattering. Because the problem
is nonlinear, these two mechanisms cannot be easily and explicitly told apart inside the domain.
The only location where we can clearly say that the difference is purely due to backscattering is the
“inflow” interface z = 0; see [10].
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Table 4.2
Maximum absolute levels of self-focusing and backscattering in the NLH for a variety of ε and δ.

Maximum self-focusing Maximum backscattering
δ = 0.0145 δ = 0.0175 δ = 0.0210 δ = 0.0145 δ = 0.0175 δ = 0.0210

ε = 0.15 1.1179 1.0601 1.0162 0.0372 0.0373 0.0373
ε = 0.175 1.2718 1.1538 1.0761 0.0420 0.0421 0.0421
ε = 0.2 1.5515 1.3158 1.1716 0.0465 0.0466 0.0467
ε = 0.225 — — 1.3242 — — 0.0509

Table 4.3
Maximum absolute levels of self-focusing and backscattering in the NLH for ε = 0.2.

Case No. Damping δ Max. self-focusing Max. backscattering

1 0.0145 1.5515 0.0465
2 0.0147 1.5296 0.0465
3 0.0150 1.4992 0.0465
4 0.0155 1.4538 0.0465
5 0.0160 1.4135 0.0466
6 0.0165 1.3776 0.0466
7 0.0170 1.3451 0.0466
8 0.0175 1.3158 0.0466
9 0.0180 1.2892 0.0466
10 0.0190 1.2428 0.0466
11 0.0200 1.2041 0.0466
12 0.0210 1.1716 0.0467

Surprisingly, however, changing the value of damping δ has very little or no effect
on the level of backscattering. To further corroborate this observation, we picked a
particular value of the nonlinearity coefficient, ε = 0.2, and ran an additional series
of numerical tests with a substantially finer sampling for δ. These results, which are
presented in Table 4.3, confirm that backscattering is not affected by linear damping.
This phenomenon certainly cannot be explained by saying that linear damping has
an overall negligible effect, since its effect on the focusing dynamics can be clearly
seen through the changing values of the maximum focusing both in Table 4.2 and in
Figure 4.2. At present, we have no good explanation for this surprising observation.

5. Concluding remarks. The question of whether nonparaxiality and backscat-
tering may arrest collapse of nonlinear waves has been open for many years. While
the answer to this question is probably positive, no conclusive argument toward it,
whether analytical or numerical, has been previously available in the literature. In
this study we addressed this question within the framework of the linearly damped
NLH and NLS. As has been mentioned, the addition of linear damping is not ad hoc,
because it has both physical and mathematical motivation. Methodologically, linear
damping provides a very useful “extra dimension” that allows us to efficiently control
the solutions of the NLH and NLS. Specifically, the variation along this extra dimen-
sion has helped us to numerically identify the regimes for which the NLS solution
blows up, while the NLH solution remains regular. In other words, our results furnish
the first ever definite numerical evidence that nonparaxiality and backscattering can
arrest collapse. The question of whether regular solutions to the NLH still exist in the
absence of damping remains open. However, we hope that the arguments based on
linear damping and the limiting absorption principle may be useful for proving global
existence and uniqueness, both for the damped NLH and for the undamped NLH.
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