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Abstract. The formation of singularities of self-focusing solutions of the nonlinear Schrödinger
equation (NLS) in critical dimension is characterized by a delicate balance between the focusing
nonlinearity and diffraction (Laplacian), and is thus very sensitive to small perturbations. In this
paper we introduce a systematic perturbation theory for analyzing the effect of additional small terms
on self-focusing, in which the perturbed critical NLS is reduced to a simpler system of modulation
equations that do not depend on the spatial variables transverse to the beam axis. The modulation
equations can be further simplified, depending on whether the perturbed NLS is power conserving
or not. We review previous applications of modulation theory and present several new ones that in-
clude dispersive saturating nonlinearities, self-focusing with Debye relaxation, the Davey–Stewartson
equations, self-focusing in optical fiber arrays, and the effect of randomness. An important and some-
what surprising result is that various small defocusing perturbations lead to a generic form of the
modulation equations, whose solutions have slowly decaying focusing-defocusing oscillations. In the
special case of the unperturbed critical NLS, modulation theory leads to a new adiabatic law for the
rate of blowup which is accurate from the early stages of self-focusing and remains valid up to the
singularity point. This adiabatic law preserves the lens transformation property of critical NLS and
it leads to an analytic formula for the location of the singularity as a function of the initial pulse
power, radial distribution, and focusing angle. The asymptotic limit of this law agrees with the
known loglog blowup behavior. However, the loglog behavior is reached only after huge amplifica-
tions of the initial amplitude, at which point the physical basis of NLS is in doubt. We also include
in this paper a new condition for blowup of solutions in critical NLS and an improved version of the
Dawes–Marburger formula for the blowup location of Gaussian pulses.
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1. Introduction. The nonlinear Schrödinger equation in critical dimension
(CNLS)

iψz + ∆⊥ψ + |ψ|2ψ = 0 , ∆⊥ =

(
∂2

∂x2
+

∂2

∂y2

)
, ψ(z = 0, x, y) = ψ0(x, y)(1.1)

is the simplest model for the propagation of a laser beam in a medium with a Kerr
nonlinearity. Here ψ(z, x, y) is the electric field envelope, z is axial distance1 in the
direction of the wave propagation, and (x, y) are the coordinates in the transverse
plane. In 1965, Kelley used (1.1) to show that for optical beams whose power is above
a critical value, “self-focusing effect ... is not compensated for by diffraction” [32].
This result was a turning point in nonlinear optics, since until that time diffraction
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was believed to prevent singularity formation in optics, both linear and nonlinear,
much as viscosity is believed to prevent singularity formation in fluid flow. Inten-
sive experimental work followed, in which self-focusing and the existence of a critical
power, above which beams may collapse, were observed. For a review of self-focusing
experiments see [66].

Self-focusing in critical nonlinear Schrödinger equations (NLS) also attracted the
attention of mathematicians, since it serves as a simple model of nonlinear dispersive
wave propagation where a solution with smooth initial conditions can become singular
in finite time (i.e., z). A lot has been accomplished in the last 30 years (e.g., [16, 61,
62, 69]), but the theory for CNLS self-focusing is far from complete. For example,
sharp conditions for blowup or global existence in (1.1) are still unknown.

1.1. The loglog law. Considerable effort has been devoted to the study of the
blowup rate near the singularity. Initially, self-focusing was analyzed by reducing
CNLS to an ordinary differential equation for the beam width L by assuming that the
solution maintains a modulated Gaussian profile. This approach was only partially
successful. It predicted the existence of a critical power for self-focusing, but only
up to a constant [7] and its prediction for the axial location of the singularity was
quite inaccurate. There were also attempts to look for non-Gaussian self-similar
solutions, but it gradually became clear that in critical transverse dimension D = 2
self-focusing solutions of (1.1) are only quasi self-similar and that the rate of focusing
is determined by a delicate balance between the focusing nonlinearity and transverse
diffraction. This delicate balance in critical self-focusing, which the Gaussian ansatz
cannot capture, was at the heart of the difficulties in finding the blowup rate of
CNLS. It is why it took so long for the structure and dynamics of the function ψ
near the blowup point finally to be resolved by Fraiman [29] and, independently (and
in a different manner), by Landman, Papanicolaou, C. Sulem, and P. Sulem [39] and
Lemesurier, Papanicolaou, C. Sulem, and P. Sulem [43], who showed that as the beam
approaches the singularity it follows the loglog law (3.23).

1.2. The adiabatic approach. Although with the loglog law the mathematical
problem of finding the blowup rate was finally solved, it turned out that the loglog
behavior is very hard to observe numerically, even in careful simulations where the
solution was amplified by more than ten orders of magnitude (e.g., Figure 3.5). How-
ever, the validity of CNLS as a physical model for beam propagation breaks down
much earlier, when the field intensity reaches the threshold for material breakdown.
Even at subthreshold intensities, some small terms that are neglected in the derivation
of (1.1) from Maxwell’s equations (e.g., nonparaxial terms [22, 68], time-dispersion
[27, 44, 59], etc.) may become important, because the delicate balance between the
focusing nonlinearity and the defocusing Laplacian in critical dimension allows for
even small terms to have a large effect on self-focusing and even to arrest it.

It is therefore clear that even though the loglog law is established, there is still a
need for a description of CNLS self-focusing which is valid in the domain of physical
interest and which can be extended to the analysis of the effect of small perturba-
tions. In the last few years a new adiabatic approach was developed which achieves
this. This approach is based on the main result of the analysis leading to the loglog
law, which is the derivation of the reduced equation (3.13) for the slow rate of radi-
ation losses of the focusing part of the solution. However, rather than solving this
equation asymptotically, the adiabatic approach uses it only as a small correction to
the adiabatic focusing-rate equation (3.5). This approach was first used by Malkin
[47] and it led to an adiabatic law for the blowup rate of CNLS that is accurate in
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physically relevant regimes. An improved adiabatic law, which becomes accurate with
even less amplification and also preserves the lens transformation property of CNLS,
was later obtained by Fibich [24]. In this paper we give a detailed derivation of these
laws and show that near the singularity, Fibich’s adiabatic law reduces to Malkin’s
adiabatic law, whose asymptotic limit is in turn the loglog law. Thus, the three laws
agree when the amplification is very large but have different domains of validity.

An immediate consequence of the adiabatic law is an analytic formula for the loca-
tion of the singularity. A previous result of this type is that of Dawes and Marburger
[20] and Marburger [48], derived by curve-fitting values obtained from numerical sim-
ulations with Gaussian initial conditions. We give here a new curve-fitted formula for
Gaussian initial conditions which is more accurate than either the adiabatic formula
or the one of Dawes and Marburger.

1.3. Perturbed critical self-focusing. Since the adiabatic approach is valid in
regimes of physical interest, it may be used to analyze the effect of small perturbations
on critical self-focusing. The main result of this paper is an extension of this approach
to a general modulation theory for analyzing the effects of small perturbations on self-
focusing. In this modulation theory the perturbed CNLS is averaged around a modu-
lated Townes soliton ψR (see (4.6)) over the transverse variables, leading to a simpler
system of reduced equations (Proposition 4.1). The analysis of the reduced system
of modulation equations is further simplified by distinguishing between conservative
perturbations (perturbations under which the total power (L2 norm) is conserved)
and nonconservative perturbations (Proposition 4.2). It is interesting to note that in
the conservative case the modulation equations have a generic form (Proposition 4.3).

The adiabatic approach was used by Malkin to study the effect of a small defocus-
ing fifth-power nonlinearity [47]. In [27], Fibich, Malkin, and Papanicolaou analyzed
the effect of small normal time-dispersion, using for the first time the systematic ap-
proach presented in this paper. This approach was also used by Fibich to analyze the
effect of beam nonparaxiality [25], and the unperturbed CNLS [24] by Fibich and Pa-
panicolaou to analyze the combined effect of time-dispersion and nonparaxiality [28],
and by Fibich and Levy to analyze self-focusing in the complex Ginzburg–Landau
limit of CNLS [26].

1.4. Outline. The paper is organized as follows. In section 2 we review the
analytic theory of existence and blowup for CNLS and use the lens transformation of
critical NLS to derive a new condition for blowup and to relate solutions of CNLS with
solutions of CNLS with an additional quadratic potential term. In section 3 we present
the adiabatic approach for self-focusing in the unperturbed CNLS, derive and compare
the three laws for self-focusing, derive the formula for the location of the blowup point,
and present a new empirical formula for Gaussian initial conditions. In section 4 we
develop the modulation theory for analyzing the effect of small perturbations of CNLS
self-focusing, which is summarized by Propositions 4.1–4.4. In section 5 we review
previous applications of this approach and apply it to several new situations (see
Table 1.1).

2. Basic theory of self-focusing for CNLS. We begin with a review of the
basic theory of self-focusing. More details can be found in [16, 61, 62, 69, 70]. We
emphasize the importance of the lens transformation (2.16) in the analysis of critical
NLS and use it to derive new results regarding blowup.

In order to understand the special character of blowup in the cubic Schrödinger
equation in two dimensions, it is instructive to begin with the two-dimensional (2D)
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Table 1.1
Perturbations of critical NLS which are analyzed in this paper using modulation theory.

Perturbed CNLS Application Section

iψz + ∆⊥ψ + |ψ|2ψ + εψxxxx +
2

5
ε2ψxxxxxx = 0 fiber arrays 5.1

iψz + ∆⊥ψ + |ψ|2ψ − ε|ψ|4ψ = 0 quintic nonlinearity 5.2

iψz + ∆⊥ψ +
1− exp(−2ε|ψ|2)

2ε
ψ = 0 saturating nonlinearity 5.3

iψz + ∆⊥ψ +
|ψ|2

1 + ε|ψ|2 ψ = 0 saturating nonlinearity 5.3

iψz + ∆⊥ψ + |ψ|2ψ − εφxψ = 0 , Davey–Stewartson 5.4

αφxx + φyy = −(|ψ|2)x equation

iψz + ∆⊥ψ + |ψ|2ψ + εψzz = 0 nonparaxiality 5.5

iψz + ∆⊥ψ + |ψ|2ψ + ε(x2 + y2)h(z)ψ = 0, randomness 5.6

h random

iψz + ∆⊥ψ + |ψ|2ψ + ε1(x2 + y2)h(z)ψ − ε2|ψ|4ψ = 0, quintic nonlinearity + 5.6

h random randomness

iψz + ∆⊥ψ + |ψ|2ψ − εψtt = 0 time-dispersion 5.7.1

iψz + ∆⊥ψ +Nψ = 0 , Debye relaxation 5.7.2

εNt +N = |ψ|2

iψz + ∆⊥ψ + |ψ|2ψ + ε1ψzz time-dispersion + 5.8

+ ε2
[
2i
n0cg
c

(|ψ|2ψ)t − ψzt
]
− ε3ψtt = 0 nonparaxiality

NLS with a general power nonlinearity

iψz + ∆⊥ψ + κ|ψ|2σψ = 0, κ = ±1,(2.1)

where κ positive/negative corresponds to the focusing/defocusing NLS, respectively.
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Two important invariants of (2.1) are the power2

N =
1

2π

∫
|ψ|2 dx dy ≡ N(0)(2.2)

and the Hamiltonian

H =
1

2π

(∫
|∇⊥ψ|2 dx dy − κ

σ + 1

∫
|ψ|2σ+2 dx dy

)
≡ H(0),(2.3)

where

∇⊥ =

(
∂

∂x
,
∂

∂y

)
.

We say that a solution exists at z if it has a finite H1 norm

||ψ(z, ·)||H1 <∞ , ||ψ||H1 =

(∫
|ψ|2 dxdy +

∫
|∇⊥ψ|2 dxdy

)1/2

and that ψ blows up at z = Zc if it exists for 0 ≤ z < Zc and

lim
z→Zc

||ψ(z, ·)||H1 =∞,

which by (2.2) is equivalent to blowup of the gradient norm

lim
z→Zc

∫
|∇⊥ψ|2 dxdy =∞.

From the theory for local existence of solutions of (2.1), it is known that if
||ψ(z, ·)||H1 is bounded, the solution exists for all z [30, 31]. As a result, when NLS
is defocusing (κ < 0), conservation of the Hamiltonian implies that

∫ |∇⊥ψ|2 dxdy
is bounded and the solution exists globally. Since we are interested in singularity
formation, from now on we restrict ourselves to the case of focusing NLS κ = 1.

Because of the minus sign in the Hamiltonian of the focusing NLS, its conservation
does not prohibit

∫ |∇⊥ψ|2 dxdy from growing to infinity. To see that this can indeed
happen, we note that solutions of (2.1) satisfy the variance identity [75]

Vzz ≡ 8H − 8(σ − 1)

2π(σ + 1)

∫
|ψ|2σ+2dxdy, V (ψ) =

1

2π

∫
(x2 + y2)|ψ|2 dxdy.(2.4)

From the variance identity (2.4), the invariance of the Hamiltonian (2.3), and the
uncertainty principle

N2(ψ) ≤ V (ψ)

∫
|∇⊥ψ|2 dxdy,

it follows that for σ ≥ 1 the condition

H(0) < 0(2.5)

is sufficient for blowup in a finite z.

2In the nonlinear optics context, the L2 norm corresponds to the power of the laser beam.
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In the supercritical case σ > 1, sharper conditions for blowup can be obtained [36,
73] and singularity formation is characterized by dominance of self-focusing over wave
diffraction, resulting in a finite z blowup which is stable under small perturbations.
Conversely, for σ < 1, the subcritical case, there is no finite z blowup and the solution
exists globally [69], as in the case of solitons in the cubic NLS in one transverse
dimension. In the physically important case of critical self-focusing σ = 1 which
we study here, wave diffraction and self-focusing are nearly balanced and blowup is
extremely sensitive to perturbations and to changes in the initial condition (a physical
argument that explains the role of criticality in the balance between nonlinearity and
diffraction is given at the beginning of section 4). A necessary condition for blowup
in critical NLS (1.1) is that

N(0) ≥ Nc ,(2.6)

where Nc ∼= 1.862 is the critical power for self-focusing. More precisely, there is no
blowup when N < Nc but for any ε ≥ 0, there exist solutions with N = Nc + ε for
which there is finite z blowup [76].

The proof of these results makes use of the Gagliardo–Nirenberg inequality

||f ||2σ+2
2σ+2 ≤ Cσ||∇f ||2σ2 ||f ||22 , 0 < σ,(2.7)

which holds for any function on 2D space that has square integrable derivatives.
Specifically, by combining

||ψ||22 = H +
1

σ + 1
||ψ||2σ+2

2σ+2 ,(2.8)

the invariance of the Hamiltonian and the Gagliardo–Nirenberg inequality, we obtain
an estimate for the L2 norm of the gradient of solutions of NLS:

||ψ||22 ≤ H +
Cσ
σ + 1

||∇ψ||2σ2 ||ψ||22 .(2.9)

When σ < 1 this gives a bound for the L2 norm of the gradient of the solution, since
the L2 norm of the solution and H are constants. When σ = 1, the critical case, the
optimal constant Cσ can be used to get a bound for the L2 norm of the gradient of the
solution provided that N(0) < Nc. The optimal constant in the Gagliardo–Nirenberg
inequality is obtained when f = R (the waveguide solution of the next section), in
which case (2.7) becomes an equality [76].

We note that if in (2.1) the transverse Laplacian is in D dimensions, the subcrit-
ical, critical, and supercritical cases correspond to the product σD being less than,
equal to, or greater than 2, respectively. For this reason, the case D = 2 for NLS with
cubic nonlinearity is called “critical dimension.”

2.1. Waveguide solutions and the Townes soliton. From now on we restrict
our analysis to the critical case σ = 1 and D=2. Critical NLS (1.1) has radially
symmetric waveguide solutions

ψ(z, r) = exp(iz)R(r), r =
√
x2 + y2,(2.10)

where R satisfies the nonlinear boundary value problem

∆⊥R−R+R3 = 0, R′(0) = 0, lim
r→∞R(r) = 0 , ∆⊥ =

(
∂2

∂r2
+

1

r

∂

∂r

)
.(2.11)
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Fig. 2.1. The Townes soliton R(r).

This ordinary differential equation has an enumerable set of solutions (see [61] and
its references). Of most interest is the solution with the lowest power (ground state),
often called the Townes soliton. The Townes soliton is positive and monotonically
decreasing (Figure 2.1). In addition, it has exactly the critical power for blowup [76]∫ ∞

0

R2 rdr = Nc(2.12)

and its Hamiltonian is equal to zero,

H(R) = 0.(2.13)

Therefore, the waveguide solution (2.10), being a borderline case for blowup, is un-
stable.

Some additional relations, which will be used later are (Lemma A.1)∫ ∞
0

(
dR

dr

)2

rdr = Nc ,

∫ ∞
0

R4 rdr = 2Nc .(2.14)

The asymptotic behavior of R is given by

R(r) ∼ ARr−1/2 exp(−r), 1� r,(2.15)

where

AR =
(π

2

)1/2
∫ ∞

0

R3(r′)I0(r′) r′dr′ ∼= 3.52

and I0 is the modified Bessel function.
The Townes soliton plays an important role in CNLS theory and can be used to

construct exact and approximate blowup solutions, as will be seen in the following
sections. Although Gaussians look roughly like the Townes soliton (Figure 2.1), in the
critical case there is no Gaussian that can satisfy the two conditions (2.12) and (2.13)
simultaneously. Therefore, Gaussians cannot capture the delicate balance between
diffraction and nonlinear focusing in critical self-focusing, which is the reason why
CNLS analysis that is based on representing the solution by a modulated Gaussian is
unreliable.
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Fig. 2.2. The lens transformation (2.16) with L(z) given by (2.17) and F < 0 maps the values
of ψ in the shaded semi-infinite strip into the corresponding values of ψ̃ in the shaded triangle.

2.2. The lens transformation. An important tool in the analysis of critical
NLS is the lens transformation. Let ψ and ψ̃ be related through

(2.16)

ψ̃(z, x, y) =
1

L(z)
ψ(ζ, ξ, η) exp

(
i
Lz
L

r2

4

)
, ξ =

x

L
, η =

y

L
, ζ =

∫ z

0

1

L2(z′)
dz′.

Then, as noted by Talanov [71], if L depends linearly on z,

L = 1 +
z

F
, F constant,(2.17)

and if ψ is a solution of (1.1) with initial condition ψ0, then ψ̃ is also an exact solution
of (1.1) with the initial condition

ψ̃0(x, y) = ψ0(x, y) exp

(
i
r2

4F

)
.(2.18)

The addition of a quadratic phase term to the initial condition corresponds to adding
at z = 0+ a thin lens whose focal point is at (z = −F, 0, 0). Since z and ζ are related
by

1

z
+

1

F
=

1

ζ
(2.19)

and in addition

ρ :=
√
ξ2 + η2 =

r

L
,

the lens transformation (2.16) shows that the effect of the lens in the diffractive case
(linear, or with cubic nonlinearity) is to map the solution exactly as in ray optics
(Figure 2.2). It is interesting to note that the lens transformation is valid in the
linear case in all dimensions but the only nonlinearity for which the transformation
will remain valid is the critical one.

The lens transformation can also be used to analyze CNLS with an additional
quadratic potential term

iψ̃z +

(
∂2

∂x2
+

∂2

∂y2

)
ψ̃ + |ψ̃|2ψ̃ + γ̃(z)(x2 + y2)ψ̃ = 0 .(2.20)

In the linear case this is the basic equation of Gaussian optics, which in the non-
isotropic case can be solved by the ABCD law (e.g., [80]). Let ψ̃(z, x, y) be a solution
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of (2.20) with γ̃(z) given, and define ψ(ζ, ξ, η) by the lens transformation (2.16) with
a general L(z), which is not necessarily linear in z as in (2.17). Then ψ(ζ, ξ, η) also
satisfies CNLS with a quadratic potential term

iψζ +

(
∂2

∂ξ2
+

∂2

∂η2

)
ψ + |ψ|2ψ + γ(ζ)(ξ2 + η2)ψ = 0,(2.21)

where

γ(ζ) =

(−L3Lzz
4

+ L4γ̃(z(ζ))

)
, z(ζ) =

∫ ζ

0

L2(ζ ′) dζ ′.

Therefore, the family of solutions of (2.20) with a general γ̃(z) is closed under the lens
transformation with a general L(z). If L(z) is chosen so that it satisfies the ordinary
differential equation

Lzz = 4γ̃(z)L

and ψ is a solution of CNLS (1.1), then ψ̃(z, x, y) satisfies the nonlinear Gaussian
optics equation (2.20). Thus, (2.20) can always be reduced to (1.1).

2.3. Applications of the lens transformation. By applying the lens trans-
formation to the CNLS waveguide solution (2.10) with L = Zc − z, we get that

ψex(z, r) =
1

Zc − zR
(

r

Zc − z
)

exp

(
i
1− r2/4

Zc − z
)

(2.22)

is an exact solution of CNLS which blows up at Zc:

lim
z→Zc

||ψex||H1 =∞.

This solution has a linear blowup rate, L = (Zc − z), and the power concentration
property

|ψex(z, r)|2 → Ncδ(r), as z → Zc.

However, it is unstable [61, 76] since N(ψex) = Nc, and it has not been seen in
numerical experiments.

We can also use ψex to construct exact blowup solutions of

iψz + ∆⊥ψ + |ψ|2ψ + α(x2 + y2)ψ = 0, α constant,(2.23)

by defining

ψ̃ex(z, r) =
1

L(z)(Zc − ζ(z))
R

(
r

L(z)(Zc − ζ(z))

)
exp

(
i
1− r2/4L2(z)

Zc − ζ(z)

)
exp

(
i
Lz
L

r2

4

)
,

ζ =

∫ z

0

1

L2(z′)
dz′ , L = L0Re[exp(±2

√
αz)] .

Note that with a proper choice of L0 and the sign in L, this construction of exact
blowup solutions for (2.23) works for both positive and negative values of α.

The variance identity in the critical case has the form

Vzz = 8H(0).(2.24)
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Therefore, in addition to (2.5), it can be used to derive conditions for blowup when
H(0) ≥ 0 which involve V (0) and Vz(0) [76]. However, these conditions are not sharp,
since they are based on the vanishing of variance and typically blowup occurs well
before the vanishing point of the variance [41]. Thus, the problem of finding sharp
conditions for global existence or blowup in CNLS is still open. The following new
result rules out many potential candidates.

Proposition 2.1. Let ψ be a solution of (1.1) such that V (ψ0) < ∞. Any
condition which involves only the absolute value of the initial condition |ψ0| cannot be
sufficient for blowup.

Corollary 2.2. There is no critical threshold NTH such that

N(ψ0) > NTH

is a sufficient condition for blowup.
Proof of Proposition 2.1. Assume that there is such a condition. Let ψ be a

solution of CNLS with initial condition ψ0 that satisfies this condition and V (ψ0) <∞.
Then there exists 0 < Zc <∞ such that

lim
z→Zc

∫
|∇⊥ψ|2 dxdy =∞.

Let ψ̃ be the solution of (1.1) corresponding to the initial condition (2.18) with

0 < F < Zc.(2.25)

Then ψ̃ is given by (2.16). Since |ψ̃0| = |ψ0|, there exists 0 < Z∗c <∞ such that

lim
z→Z∗c

∫
|∇⊥ψ̃|2 dxdy =∞.

To see that this leads to a contradiction we first note that∫
|∇⊥ψ̃(z, x, y)|2 dxdy ≤ 2

L2

∫
|∇⊥ψ(ζ(z), x, y)|2 dxdy + 2L2V (ψ(ζ(z))).(2.26)

Since F > 0, at any finite value of z the value of L and of L−1 are finite. In addition,
by (2.19),

0 ≤ ζ(z) < F < Zc for 0 ≤ z,(2.27)

V (ψ(ζ(z))) is well defined and finite (2.24). Therefore, the right-hand side of (2.26)
can become infinite only at Z̃c such that 0 ≤ Z̃c ≤ Z∗c and

lim
z→Z̃c

∫
|∇⊥ψ(ζ(z), x, y)|2 dxdy =∞.

Clearly,

1

Z̃c
+

1

F
=

1

Zc
(2.28)

and ζ(Z̃c) = Zc, leading to a contradiction with (2.27).
The proof shows that any initial condition, however large its L2 norm may be,

will not result in blowup if defocused at z = 0 by a sufficiently strong defocusing
lens that maps the blowup point Zc “beyond infinity” (Figure 2.3). The converse, of
course, is not true. If the initial power is below critical, no focusing lens can cause
the solution to blow up.
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Fig. 2.3. Sketch of proof of Proposition 2.1: If ψ, a CNLS solution which blows up at Zc, is
defocused so that the point F is mapped to infinity, the defocused solution ψ̃ will not blowup.

2.4. Theoretical results on the nature of blowup. There is substantial nu-
merical evidence that near the blowup point the ground state R serves as an attractor
for the radial profile of the solution3

|ψ| ∼ 1

L(z)
R
( r
L

)
as z → Zc(2.29)

and we will be using this assumption in the asymptotic analysis of the next section.
Partial support for (2.29) can be found in the following result, due to Weinstein [78],
which in the radially symmetric case is as follows.

Theorem 2.3. Let ψ be a radially symmetric solution of (1.1) such that ψ0 ∈ H1

and limz→Zc
∫ |∇⊥ψ|2 =∞. Then, for any sequence zk → Zc there is a subsequence

zkj such that

1

L(z)
ψ

(
r

L(z)
, z

)
exp(iγ(z))→ Ψ(r) 6≡ 0

in Lp for 2 < p <∞, where γ(z) ∈ [0 , 2π). Furthermore,∫
|Ψ|2 ≥ Nc .

Note that in order to make (2.29) rigorous one has to show that Ψ ≡ R(r).
Relation (2.29) implies that blowup solutions of critical NLS have a unique local

power concentration property

|ψ|2 ∼ Ncδ(r) as z → Zc,

namely, the amount of power which goes into the singularity is always equal to the
critical power for self-focusing, independent of the initial condition. Based on simu-
lations and asymptotic arguments it is also widely believed that the rate of blowup is
slightly faster than a square root,

(Zc − z)1/2+ε � L(z)� (Zc − z)1/2 as z → Zc ∀ε > 0.

Partial support for this can be found in the concentration theorems of Merle and
Tsutsumi [53] and Tsutsumi [72] which in the radial case is as follows.

Theorem 2.4. Let ψ be a radially symmetric solution of (1.1) that blows up at
a finite Zc.

3For clarity, we are considering here the radially symmetric case with a single blowup point
located at the origin. For the possibility of multiple singularity points, see, e.g., [51, 55].
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1. If a(z) is a decreasing function from [0, Zc) to R+ such that limz→Zc a(z) = 0
and limz→Zc(Zc − z)1/2/a(z) = 0, then

lim inf
z→Zc

∫
r<a(z)

|ψ(z)|2 ≥ Nc .

2. For any ε > 0, there exists a K > 0 such that

lim inf
z→Zc

∫
r<K(Zc−z)1/2

|ψ(z)|2 ≥ (1− ε)Nc .

Note that the two theorems (2.3, 2.4) give only an upper bound on the amount
of power that goes into the singularity (≥ Nc). Strictly speaking, we cannot hope
to prove that the power that goes into the singularity is exactly Nc, because there
are exact blowup solutions which do not satisfy it. For example, if in the focusing
waveguide solution (2.22), R is any of the nonground state solutions of (2.11), the
power going into the singularity is greater than Nc.

Similarly, the concentration theorem suggests an upper bound on the blowup
rate L � (Zc − z)1/2−ε. In fact, it has been proved [17, 52] that for z near Zc,∫ |∇ψ|2 ≥ c(Zc − z)−1/2 which implies

L ≤ C(Zc − z)1/2 .

However, we cannot hope to prove that for all blowup solutions L � (Zc − z)1/2+ε

because the blowup rate of the focusing waveguide (2.22) is L = Zc − z. Of course,
these exact blowup solutions are unstable but their mere existence helps to explain
the difficulty in making a completely rigorous theory for CNLS self-focusing.

The concentration Theorem 2.4 illustrates the fact that blowup in critical NLS is
a local phenomenon, which is why global quantities, such as N , H, and the variance,
cannot capture the sharp conditions for blowup. For example, if ψ0 is composed of K
well-separated pulses, each of which would not blow up by itself, e.g.,

ψ0 =
K∑
k=1

0.8R(
√
x2 + (y − 100k)2) ,

then ψ will not blow up, although N(ψ0) > Nc. Similarly, if

ψ0 = 1.1R(
√
x2 + y2) + 0.8R(

√
x2 + (y − 100)2) ,

ψ would have a finite variance when its 1.1R component blows up, due to its 0.8R
component.

3. Self-focusing in the unperturbed CNLS—an adiabatic approach. In
this section we describe the local structure and dynamics of self-focusing near the
blowup point. Unlike the previous section, most of the results presented in this
section have not been made rigorous at present (see section 2.4).

3.1. Derivation of reduced equations—modulation theory. Self-focusing
in critical dimension has the unique property that the amount of power which goes
into the singularity is always equal to the critical power for blowup Nc. For this
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Fig. 3.1. Most self-focusing (L ↘ 0) and power loss (NS ↘ Nc) occur near the singularity.
Initial conditions are ψ0 = 2.77 exp(−r2) with near critical power (top), and ψ0 = 4 exp(−r2)
(bottom).

to happen as the total beam power is conserved (2.2), the beam separates into two
components as it propagates,4

ψ = ψs + ψback,

where ψs is the high intensity inner core of the beam which self-focuses toward its
center axis and ψback is the low intensity outer part which propagates forward fol-
lowing the usual linear propagation mode, i.e., it diffracts and slowly diverges. This
“reorganization” stage takes place almost until the singularity in terms of the axial
distance z (Figure 3.1) and is characterized by relatively slow focusing and fast power
transfer from ψs to ψback (nonadiabatic self-focusing). Close enough to the singularity,
ψs has only small excess power above the critical one and it approaches the radially
symmetric5 asymptotic profile (see Figure 3.2)

ψs(r, z) =
1

L(z)
V (ζ, ρ) exp

[
iζ + i

Lz
L

r2

4

]
, arg V (ζ, 0) = 0,(3.1)

where L(z) is a yet undetermined function that is used to rescale ψs and the inde-
pendent variables

ρ =
r

L
,
dζ

dz
=

1

L2
.(3.2)

Note that (3.1) can be viewed as a generalized lens transformation (2.16), in which
nonlinear self-focusing is replaced by a continuum of thin lenses with a variable focal
length.

4If N > 2Nc the beam may split into several self-focusing filaments. In this case our discussion
is applicable to each filament.

5The convergence of nonisotropic initial conditions toward a radially symmetric profile around
the singularity was observed numerically in [40].
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Fig. 3.2. Convergence of the radial profile V (ρ) = |ψs(r/L)|/L (dots) to the Townes soliton
R(ρ) (solid) for the initial condition ψ0 = 4 exp(−r2).

Because L is a measure of the radial width of ψs, we can use it to give a more
precise definition of ψs and ψback. A possible definition is6

ψ =

 ψs 0 ≤ r ≤ ρcL(t)

ψback ρcL(t) ≤ r
with 1� ρc constant.(3.3)

The resulting equation for V is

iVζ + ∆⊥V − V + |V |2V +
1

4
βρ2V = 0(3.4)

with

β(z) = −L3Lzz.(3.5)

As the beam is focusing, β ↘ 0. In addition, we shall see that when 0 < β � 1 its rate
of change is exponentially small compared with that of the focusing (L). Therefore,
if we expand V in an asymptotic series

V ∼ V0 + V1 + . . . ,(3.6)

the leading order solution of (3.4) is quasisteady, i.e., V0 = V0(ρ;β(ζ)). This suggests
that the equation for V0 is

∆⊥V0 − V0 + |V0|2V0 +
1

4
βρ2V0 = 0, V ′(0) = 0, V (∞) = 0.(3.7)

However, if V0 satisfies this real equation then V0 ∼ ρ−1 cos(
√
βρ2/4) for ρ� β−1/2.

Since
√
β ∼ −LLz (J.1),

ψs ∼ 1

ρ
exp

(
i

√
β

2
ρ2

)
and it is not possible to match ψs with ψback which has no such fast oscillations.

The difficulty in resolving the asymptotics of ψs for large ρ was the main reason
it took so long to determine the blowup rate of CNLS. Eventually, it was shown that
for the leading order quasi-steady solution V0 to have the correct behavior for large
ρ, one has to add to (3.7) a term which is exponentially small in β [39, 43]:

∆⊥V0 − V0 + |V0|2V0 +
1

4
βρ2V0 − i M

2Nc
ν(β)V0 = 0 ,(3.8)

6Recall that |ψs| ∼ R(ρ)/L has an exponential decay (2.15).
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where

ν(β) ∼ 2A2
R

M
e−π/
√
β , M =

1

4

∫ ∞
0

r3R2(r) dr ∼= 0.55 .

The original asymptotics beyond all orders derivation of (3.8) is based on an analysis
of (3.4) in the supercritical case d > 2. By defining ∆ = ∂ρρ + (d − 1)/ρ∂ρ and
allowing d to vary continuously, it is shown that for every d > 2 there is a positive
limit limζ→∞ β(ζ) = β∗(d) > 0. Taking the limit of β∗(d) as d↘ 2 leads to the ν(β)
term. Parts of this derivation were later made rigorous in [34]. A clear presentation
of this derivation is given in [70].

Once it is known that V0 satisfies (3.8), we can proceed with regular perturbations
and expand V0 in an asymptotic series in β:

V0(ρ) ∼ R(ρ) + βg(ρ) +O(β2) , g =
∂V0

∂β

∣∣∣∣∣
β=0

, 0 < β � 1 .(3.9)

The corresponding equations for R and g are (2.11) and

∆⊥g + 3R2g − g = −1

4
ρ2R , g′(0) = 0 , g(∞) = 0 .(3.10)

The leading order equation for V1 follows from (3.4), (3.6), (3.8), and (3.9):

∆⊥V1 − V1 + 2R2V1 +R2V ∗1 = −iβζg − i M
2Nc

ν(β)R .(3.11)

The equation for the real part of V1 is solvable, while the solvability condition for
the imaginary part of V1 is that R is perpendicular to the right-hand side of (3.11)
(Lemma F.1): ∫ ∞

0

R

[
gβζ +

M

2Nc
ν(β)R

]
ρdρ = 0 .

Using (2.12) and ∫ ∞
0

Rg ρdρ =
M

2
(3.12)

(Lemma B.1), the solvability condition leads to the important relation

βζ ∼ −ν(β).(3.13)

With this relation, the goal of reducing CNLS self-focusing to a system of equations
which do not depend on the transverse variables ((3.2), (3.5), and (3.13)) is achieved.

In the original derivation of (3.13) in [39, 43], this relation was written as

aζ ∼ −1

a
exp(−π/a) , a = −LLz = − L

Lζ
.(3.14)

To see that this equation agrees with (3.13) we note that β = a2+aζ and that aζ � a2

(3.14), so that β ∼ a2. Nevertheless, when we later extend this approach to analyze
perturbed CNLS it is better to use (3.13), because with the approximation β ∼ a2
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we add a constraint that β > 0, while in many cases of perturbed CNLS β becomes
negative.

We remark that we use the terminology modulation theory to emphasize that it
is based on perturbations of the (focusing part of the) solution around a modulated
Townes soliton:

ψs ∼ ψR :=
1

L
R(r/L) exp

[
iζ + i

Lz
L

r2

4

]
.

The delicate balance between the nonlinearity and diffraction in critical self-focusing is
reflected in the above analysis by the fact that self-focusing dynamics are determined
from the O(β) deviation of ψs from ψR.

3.2. Adiabatic self-focusing. Malkin suggested a different way to derive (3.13)
[46, 47]. Expansion of V0 in an asymptotic series in β shows that β is proportional to
the excess power above critical of the focusing part of the beam (Lemma B.2):

Ns −Nc ∼ βM, |β| � 1,(3.15)

where

Ns := N(ψs)

is the power of the focusing part of the beam. Note that relation (3.15), as well as
adiabatic theory in general, have O(β) accuracy, since they are based on the expansion
(3.9).

When β is small, the problem of finding the rate of power radiation of ψs can be
formulated by analogy with the probability of penetration through a potential barrier
and it can be solved using the WKB method (Appendix C):

d

dζ
Ns ∼ −Mν(β).(3.16)

If we combine (3.15)–(3.16), we again get (3.13).7 Thus, the small term ν(β) is the
rate of power radiation of ψs. In particular, near the focal point β is small and
self-focusing is essentially adiabatic, that is, the beam collapses much faster than the
excess power Ns −Nc goes to zero.

The rate of change of the Hamiltonian of ψs is given by (Appendix C)

d

dζ
Hs ∼ −M

L2
ν(β), Hs := H(ψs).(3.17)

From (3.15), (3.16), and (3.17) we see that as the solution approaches the blowup
point,

lim
z→Zc

Ns = Nc , lim
z→Zc

Hs = −∞ .

The rate at which Hs goes to infinity is given by (Appendix D):

Hs ∼ −M
2

ν(β)√
β

1

L2
.

These characteristics of adiabatic self-focusing can be seen in Figure 3.3.

7In [21] ν(β) was calculated using a nonlinear eigenvalue formulation. Recently, Pelinovsky
suggested a derivation of the relation (3.13) from a multiple-scales argument [58].
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Fig. 3.3. After an initial non-adiabatic stage with relatively fast power radiation and slow
self-focusing, self-focusing become adiabatic: Changes in Ns are very slow and HsL2 ∼ constant =
o(β). Initial conditions are ψ0 = 1.02R(r) (solid line), ψ0 = 2.77 exp(−r2) (dashed line) and
ψ0 = 4 exp(−r2) (dots).

3.3. The loglog law. Equation (3.13) cannot be solved analytically. In order
to solve it asymptotically, we rewrite it as

λζ =
cν

2π2
λ3 exp(−λ), λ =

π√
β
, cν =

2A2
R

M
.(3.18)

Integration by parts of ζ =
∫ λ
λ0

(λ̄ζ)
−1 dλ̄ shows that

ζ ∼ 2π2

cν

expλ

λ3
, λ− λ(0)� 1

and

λ ∼ log ζ , β ∼ π2

log2 ζ
,(3.19)

where now cν has disappeared. Using (J.1), we can rewrite (3.19) as

Aζζ − π2

log2 ζ
A ∼ 0, A =

1

L
.

The leading order solution for this equation is

A ∼ A0 exp

(
πζ

log ζ

)
.

Therefore,

log ζ ∼ log logA(3.20)

and

Zc − z ∼
∫ ∞
ζ

1

A2(ζ̄)
dζ̄ ∼ log ζ

2πA2
.(3.21)

Combining (3.20) and (3.21) gives

log ζ ∼ log log
1

Zc − z ,(3.22)
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which together with (3.21) results in the loglog law

L ∼
(

2π(Zc − z)
ln ln 1/(Zc − z)

) 1
2

.(3.23)

Although mathematically correct, it turns out that the loglog law becomes appli-
cable only for huge and nonphysical amplifications. This is because (3.19) becomes the
leading order solution of (3.18) only at huge focusing factors. To see why this is true,
we note that (3.19) holds when λ−λ0 � 1. However, from (3.18) and λ−λ0 < ζλζ(0)
we see that a necessary, but clearly not sufficient, condition for the loglog law to hold
is that

ζ � β
3/2
0

ν(β0)
.(3.24)

3.4. Adiabatic analysis of modulation equations. In order to derive an
asymptotic law for critical self-focusing which is valid in the domain of physical inter-
est, we note that (3.5) and (3.13) which govern self-focusing evolve on very different
length scales:

Lzz = − β

L3
small scale,(3.25)

βz = −ν(β)

L2
large scale.(3.26)

The loglog law is derived by solving (3.26) to leading order and then using (3.25).
However, since the length scale for power changes in (3.26) is exponentially long
compared with the one for changes in the focusing rate in (3.25), we should do just the
opposite: First integrate (3.25) while ignoring the slow changes in β (strictly adiabatic
self-focusing) and only then use (3.26) in order to get the next order correction [24].
Therefore, strictly adiabatic self-focusing is given by

Lzz = − β

L3
, β ≡ β0 := β(0).(3.27)

If we multiply (3.27) by 2Lz and integrate, we get

L2
z =

β

L2
+ C0, C0 := C(0), C(z) := L2

z −
β

L2
= (L2)zz.(3.28)

Multiplying (3.28) by L2 gives

(L2)z = ±2
(
β + C0L

2
)1/2

,

where the plus/minus sign corresponds to the cases of initial defocusing/focusing
at z = 0, respectively. Integrating one more time and using the initial condition
L(0) = L0 gives the corrected version of adiabatic law of Fibich, first obtained in [24]:

L2(z) ∼ L2
0 + (L2)z(0) z + C0z

2 .(3.29)

Note that (3.29) implies that

(L2)zz ≡ (L2)zz(0) .(3.30)
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If we set L(Zc) = 0 in (3.29) we get a quadratic equation for the blowup point Zc
whose smaller positive solution is [24]

Zc ∼


L2

0√
β − L0Lz(0)

L0Lz(0) ≤ β,

no blowup L0Lz(0) > β .

(3.31)

It is instructive to compare (3.31) with the necessary and sufficient conditions for
blowup (i.e., conditions (2.5)–(2.6)). Equation (3.31) shows that the condition β > 0
(i.e., power above critical) is necessary for blowup. This condition is also sufficient
when Lz(0) ≤ 0. However, if the beam is initially defocusing, the necessary and
sufficient condition for blowup is β ≥ L0Lz(0).

The expression (3.31) for Zc inherits the lens transformation property (2.28). To
see this, let us consider the case of a collimated beam (ψ0 real). Since in this case
Lz(0) = 0, the strict adiabatic law for ψ0 real is

L ∼ L0

√
1− z2

Z2
c

, Zc =
L2

0√
β0

.(3.32)

If we add a lens with focal length F at z = 0 the initial condition becomes (2.18).
Since this change does not affect the beam radius and power at z = 0+, L̃0 = L0 and
β̃0 ∼ β0 (the tildes denote the corresponding parameters for ψ̃). However,

L̃z(0) = L0/F.

Therefore, from (3.31) we see that the blowup point for ψ̃ is at

Z̃c =
L2

0√
β0 − L2

0/F
,

which is related to Zc by

1

Z̃c
=

1

Zc
− 1

F
,

showing that the adiabatic law (3.29) preserves the lens transformation property of
CNLS.

3.5. Nonadiabatic effects. Self-focusing, as given by (3.27) or by (3.32), is
strictly adiabatic, i.e., radiation losses are completely neglected. Therefore, if we are
interested in maintaining the O(β) accuracy of the adiabatic law up to the blowup
point, the slow scale changes in β and C(z) must be included. This can be done by
solving the fast equation (3.25) coupled with the slow equation (3.26), as in Figure 3.4.

It may seem that we can get a more accurate asymptotic law than the strictly
adiabatic one if we replace (3.27) with its Euler approximation,

Lzz = − β

L3
, β = β(0)− ζν(β(0)) ,

dζ

dz
=

1

L2
.(3.33)

However, this approximation is better than (3.27) only during the initial stage of
self-focusing and eventually becomes worse than the strict adiabatic approximation
(Figure 3.4(B)).
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Fig. 3.4. A: Strict adiabaticity (3.27; dotted line) is a better approximation to the evolution of
β according to the reduced system (3.25–3.26; solid line) than the asymptotic approximation (3.19;
dashed line) that leads to the loglog law, even after amplification by 200 orders of magnitude. B:
Except for the initial stage of self-focusing, strict adiabaticity (dotted line) is a better approximation
for the evolution of β (3.25–3.26; solid line) than the Euler ‘improvement’ (3.33; dash-dot line). In
all cases β(0) = 0.1 , L(0) = 1.

3.6. Comparison of Fibich’s adiabatic law, Malkin’s adiabatic law, and
the loglog law. The adiabatic law (3.29) can be rewritten in the form

L(z) =

√
2
√
β (Zc − z) + C(z) (Zc − z)2

.(3.34)

As z approaches the singularity point, the quadratic term becomes negligible (see
Appendix E) and (3.34) reduces to Malkin’s adiabatic law [47]:

L(z) =

√
2
√
β(Zc − z) .(3.35)

Thus, (3.34) and (3.35) agree asymptotically but (3.34) is valid earlier, since in addi-
tion to the beam power it also incorporates the focusing angle. Similarly, the asymp-
totic limit of (3.35) agrees with the loglog law. To see this, note that if in the derivation
of the loglog law we use (3.19) instead of (3.22) in (3.21), we get (3.35). Therefore,
the three laws are asymptotically equivalent; only their domains of validity differ.

In Figure 3.5 we compare the value of L from numerical simulations of CNLS
(solved by the method of dynamic rescaling; see section 6) with the predictions of the
three asymptotic laws. The initial conditions used are ψ0 = 1.02R(r) (power slightly
above critical and close to the asymptotic profile) and ψ0 = 4 exp(−r2) (large excess
power above critical). In both cases, the adiabatic laws become O(β) accurate early
on and maintain this accuracy, while the loglog law is not valid even after focusing
by more than 10 orders of magnitude. The advantage of Fibich’s law over Malkin’s
law during the initial stage can be seen in Figure 3.5(A) where the initial condition
is close to the asymptotic one. In Figure 3.5(B) the initial conditions are not close
to the asymptotic profile and the two adiabatic laws take longer to become valid, at
which point they are already in the domain where they agree.

In order to understand why the adiabatic laws become valid quite early and the
loglog law does not, we take a closer look at the point where their derivations become
different. For the adiabatic laws to be applicable, β should be moderately small so
that ν(β) � 1. In contrast to this, a necessary condition for the loglog law to be
valid is (3.24). To estimate the corresponding beam width, we apply the adiabatic
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Fig. 3.5. The relative error in the prediction for L of the adiabatic laws of Fibich (3.34; dashed
line) and Malkin (3.35; dotted line) and of the loglog law (3.23; solid line) for the initial conditions
(A) ψ0 = 1.02R(r) (B) ψ0 = 4 exp(−r2).

approximation to Lζ/L ∼ −
√
β to get L ∼ exp(−√βζ). Therefore, a necessary

condition for the loglog law to hold is

L� exp

(
− β2

0

ν(β0)

)
,

which shows that for β(0) = 0.1 the loglog law is not valid even when L ∼ 10−90.
Indeed, in Figure 3.4(A) it can be seen that when β(0) = 0.1, the approximation (3.19)
which is used to derive the loglog law does not become valid even after amplification
by 200 orders of magnitude.

As noted above, the adiabatic laws of Fibich and Malkin agree asymptotically
near the singularity. However, since Malkin’s law is less accurate during the initial
stage of focusing, the prediction for Zc derived from (3.35),

Zc =
L2

0

2
√
β0

(3.36)

is less accurate than (3.31). For example, for real initial conditions (Lz = 0) the
prediction (3.36) is off by a factor of 2 compared with (3.32), which is (3.31) for real
initial conditions. In addition, the estimate (3.36) does not satisfy the lens relation
(2.28), since it is independent of the initial focusing angle.

In Figure 3.6 we compare the dynamic predictions for the distance from the
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Fig. 3.6. The relative accuracy of the dynamic prediction for the location of the singularity
(Zc − z) based on Fibich’s adiabatic law (3.37; dashed line) and on Malkin’s adiabatic law (3.38;
dotted line). Initial conditions are as in Figure 3.5.

singularity of (3.31)

Zc − z =
L2(z)√

β(z) + a(z)
, a = −LLz(3.37)

and of (3.36)

Zc − z =
L2(z)

2
√
β(z)

.(3.38)

In the adiabatic regime both predictions have O(β) relative accuracy. The advantage
of (3.37) during the initial stages is again seen for the initial condition 1.02R (Fig-
ure 3.6(A)). In addition, only (3.37) will maintain the same relative accuracy for all
z if we add a focusing quadratic phase factor to the initial condition.

3.7. Location of the singularity. Equation (3.32) for the location of the sin-
gularity was derived under the assumptions that ψs is close to the asymptotic form
(3.1) and that the excess power above critical is small (β � 1). However, it is desirable
to have the value of Zc for any given power, focusing angle, and radial distribution.
To do that, we extrapolate (3.32) outside its stated domain of validity by estimating
the value of β from (3.15):

β ∼ Nc
M

(p− 1) , p =
N

Nc
,

even when β is not small. The value of L0 is determined by looking for the modulated
Townes soliton which best approximates the initial radial distribution:

|ψ0(r)| ∼ RL0
, RL0

=
1

L0
R

(
r

L0

)
.



SELF-FOCUSING IN NONLINEAR SCHRÖDINGER EQUATION 205

Fig. 3.7. The relative accuracy of the predictions for the location of the singularity for Gaussian
initial conditions of the formula of Dawes and Marburger (3.41, “*”) and of the theoretical adia-
batic formula (3.42, “o”) is around 10%. The new empirical formula (3.43, “x”) has a 1% relative
accuracy.

One possibility for matching is to set |ψ0(0)| = RL0
(0), which gives L0 = R(0)/|ψ0(0)|.

However, our simulations suggest that better results are obtained if matching is done
by setting

∫ |∇⊥ψ0|2 =
∫ |∇⊥RL0

|2. From this condition and (2.14) we get

L0 = N1/2
c

(∫ ∞
0

|∇⊥ψ0|2 rdr
)−1/2

(3.39)

and

Zc ∼
√
MNc
p− 1

(∫ ∞
0

|∇⊥ψ0|2 rdr
)−1

.(3.40)

Note that (3.40) takes into account beam power, radial distribution, and initial fo-
cusing angle. The validity of (3.40) for various initial conditions is shown in [24].

3.7.1. Gaussian initial conditions. The only available formula for the loca-
tion of the singularity, with reasonable accuracy, is that of Dawes and Marburger8 [20],

Zc = 0.184[(p1/2 − 0.852)2 − 0.0219]−1/2 .(3.41)

This formula was derived for the special case of Gaussian initial conditions ψ0 =
c exp(−r2) by curve-fitting values of Zc obtained from simulations. For comparison,
in the case of Gaussian initial conditions L0 ∼

√
1/2p and the theoretical formula,

(3.40) becomes

Zc ∼ 1

2p

√
M

Nc

√
1

p− 1
.(3.42)

Both (3.41) and (3.42) have a relative accuracy of around 10% in the range 1.05 ≤
p ≤ 2 (Figure 3.7). Based on our numerical simulations we suggest a new empirical
formula for Gaussian initial conditions,

Zc = 0.1585 ∗ (p− 1)−0.6346,(3.43)

which has a relative accuracy of 1% in this range (Figure 3.7).

8The value of Zc here is half of the one given in [20], since the initial condition in [20] is ψ0 =
c exp(−r2/2).
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4. Modulation theory for self-focusing in the perturbed CNLS. In the
previous sections we saw that self-focusing in critical NLS is controlled by the delicate
balance between the focusing nonlinearity and defocusing Laplacian. As a result, if a
small perturbation is added to CNLS it will have a large effect on self-focusing as soon
as it becomes comparable to (∆⊥ψ + |ψ|2ψ), even though it is small compared with
each of these terms separately. This property is unique to critical focusing, which
is the borderline case between subcritical self-focusing where diffraction dominates
and supercritical self-focusing where nonlinear focusing dominates. Indeed, if the
solution of the focusing NLS (2.1) is self-similar, i.e., ψ ∼ V (r/L)/L, then ∆⊥ ∼ L−3

and |ψ|2σψ ∼ L−1−2σ. Therefore, only when σ = 1 can nonlinearity and diffraction
remain of the same order as L ↘ 0. In fact, diffraction and critical nonlinearity
exactly balance each other in the special case of the waveguide solution (2.22), where
V = R and β ≡ 0. Therefore, in critical self-focusing, given by (3.1) with V ∼ R and
0 < β � 1, diffraction and critical nonlinearity almost completely balance each other.

4.1. Modulation theory. We have seen that the adiabatic approach is very
effective in the analysis of self-focusing in CNLS. In this section we extend this ap-
proach to a modulation theory for analyzing the effects of various small perturbations
on self-focusing. We consider a general perturbed critical NLS of the form

iψz + ∆⊥ψ + |ψ|2ψ + εF (ψ,ψz,∇⊥ψ,ψt, . . .) = 0 , |ε| � 1 ,(4.1)

where F is an even function in x and y. Using modulation theory, the perturbed
CNLS (4.1) is replaced with a system of reduced equations which is much simpler
for analysis and simulations because it is independent of the transverse variables. For
example, in section 5 we apply modulation theory to the perturbations of CNLS listed
in Table 1.1.

Modulation theory is valid when the following three conditions hold.
Condition 1. The focusing part of the solution is close to the asymptotic profile (3.1)–

(3.2),

ψs(z, x, y, ·) ∼ 1

L(z, ·)V (ζ, ξ, η, ·) exp

[
iζ(z, ·) + i

Lz
L

r2

4

]
,(4.2)

where

ξ =
x

L
, η =

y

L
, ζz =

1

L2

and V = R+O(β, ε).
Condition 2. The power is close to critical∣∣∣∣ 1

2π

∫
|ψs(z, x, y, ·)|2 dxdy −Nc

∣∣∣∣� 1

or, equivalently,

|β(z, ·)| � 1 .

Condition 3. The perturbation εF is small compared with the other terms in (4.1):

|εF | � |∆⊥ψ| , |εF | � |ψ|3 .
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The dots in the arguments of ψ and of the modulation parameters indicate that
they may depend on additional variables, such as t in the case of time-dispersion.

In general, at the onset of self-focusing only Condition 3 holds. Therefore, if the
power is above critical the solution will initially self-focus as in the unperturbed CNLS.
As a result, near the location of the blowup point in the absence of the perturbation,
Conditions 1–2 will also be satisfied. It is only at this stage that the Laplacian and
the nonlinearity almost completely balance each other, so that the small perturbation
can have a significant effect. Therefore, one can identify at least three stages in the
evolution of self-focusing in the perturbed CNLS:

• Nonadiabatic self-focusing. Self-focusing is as in the nonadiabatic stage of the
unperturbed CNLS. Only Condition 1 holds.
• Unperturbed adiabatic self-focusing. Self-focusing is as in the adiabatic stage

of the unperturbed CNLS. Conditions 1–3 hold.
• Perturbed adiabatic self-focusing. The perturbation is small but has a signif-

icant effect. Conditions 1–3 hold.
Note that Conditions 1–3 hold in the second and third stages, both of which are
therefore covered by modulation theory. In some cases (e.g., nonparaxiality, saturat-
ing nonlinearity) one can show that the reduced system remains valid for all z by
showing that all three conditions remain satisfied in the reduced system. However, in
other cases (e.g., small normal time-dispersion) it is unclear for how long modulation
theory remains valid, and self-focusing may enter a new stage which is not covered by
modulation theory.

The main result of modulation theory is the following proposition.
Proposition 4.1. If Conditions 1–3 hold, self-focusing in the perturbed CNLS

(4.1) is given to leading order by the reduced system

βz +
ν(β)

L2
=

ε

2M
(f1)z − 2ε

M
f2 , Lzz = − β

L3
.(4.3)

The auxiliary functions f1 and f2 are given by

f1(z, ·) = 2L(z, ·)Re

[
1

2π

∫
F (ψR) exp(−iS)[R(ρ) + ρ∇⊥R(ρ)] dxdy

]
,(4.4)

f2(z, ·) = Im

[
1

2π

∫
ψ∗RF (ψR) dxdy

]
,(4.5)

where

ψR =
1

L
R(ρ) exp(iS), ρ =

r

L
, S = ζ(z, ·) +

Lz
L

r2

4
,
∂ζ

∂z
=

1

L2
.(4.6)

We note the following:
• Assuming that we can carry out the transverse integration, f1 and f2 are

known functions of the modulation variables L, β, ζ, and their derivatives.
• The reduced system (4.3) is much easier for analysis and simulations than

(4.1) because it does not depend on the transverse variables (x, y).
A proof of Proposition 4.1 is postponed until section 4.2.

4.1.1. Conservative and nonconservative perturbations. Considerable
simplification can be achieved by distinguishing between conservative perturbations,
i.e., those for which the power remains conserved in (4.1),

d

dz

∫
|ψ(z, x, y, ·)|2 dxdy ≡ 0
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and nonconservative perturbations.
Proposition 4.2. Let Conditions 1–3 hold.
1. If F is a conservative perturbation, i.e.,

Im

∫
ψ∗F (ψ) dxdy ≡ 0 ,

then f2 ≡ 0, then to leading order (4.3) reduces to

−L3Lzz = β0 +
ε

2M
f1 , β0 = β(0, ·)− ε

2M
f1(0, ·) ,(4.7)

where β0 is independent of z.
2. If F is a nonconservative perturbation, i.e.,

Im

∫
ψ∗F (ψ) dxdy 6≡ 0,

then to leading order (4.3) reduces to

βz = − 2ε

M
f2 , Lzz = − β

L3
.(4.8)

Note that in both cases, nonadiabatic effects disappear from the leading order
behavior of (4.3). The proof of Proposition 4.2 is given in Appendix G.

A useful relation which is derived in the proof of Proposition 4.1 in section 4.2.2
is that the power of the focusing part of the beam is given by

Ns ∼ Nc + βM − ε

2
f1 .

Therefore, in the case of a “purely nonconservative” perturbation (i.e., f1 ≡ 0), rela-
tion (3.15) and the interpretation of β as the excess power above critical still hold.
Similarly, the Hamiltonian of ψs is given by9 (H.5),

Hs ∼ M

2
(L2)zz +

εf1

2L2
.

4.1.2. Generic effect of conservative perturbations. As we shall see in
section 5, for various conservative perturbations f1 turns out to have the generic form

f1 ∼ −C1

L2
, C1 = constant .(4.9)

The following two propositions cover this canonical case. The first deals only with
adiabatic effects and the second deals with nonadiabatic effects when the conservative
perturbation results in oscillatory focusing-defocusing behavior.

Proposition 4.3. When self-focusing is given by (4.7) and f1 is given by (4.9),
then

y := L2

9This is true except when (f1)z = f2 ≡ 0, as in the case of the Davey–Stewartson equations
(section 5.4).
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Fig. 4.1. The leading-order effect of the generic conservative perturbation (4.9). (A) Defocusing
perturbation and H0 < 0 (Proposition 4.3 part 1(a)(i)); (B) defocusing perturbation, H0 > 0 and
Lz(0) < 0 (Proposition 4.3 part 1(b)(i)); (C) focusing perturbation and Lz(0) < 0 (Proposition 4.3
part 2). In all cases β0 > 0 (i.e., power above critical).

satisfies the generic oscillator equation

(yz)
2 = 4β0 − εC1

M

1

y
+

4H0

M
y(4.10)

or, equivalently,

(yz)
2 =
−4H0

M

1

y
(yM − y)(y − ym),(4.11)

where

yM =

√
β2

0 + εC1H0/M2 + β0

−2H0/M
=
Mβ0

−H0

[
1 +O

(
εH0

β2
0

)]
,(4.12)

ym =
εC1

2M

1√
β2

0 + εC1H0/M2 + β0

=
εC1

4Mβ0

[
1 +O

(
εH0

β2
0

)]
,(4.13)

β0 = β(0) +
εC1

2ML2(0)
, H0 ∼ H(0) +

εC1

4

1

L4(0)
.

Let us define

Lm := y1/2
m , LM := y

1/2
M .

1. If the perturbation is defocusing, i.e.,

εC1 > 0 ,(4.14)

then it will arrest blowup in (4.7), i.e., L remains positive for all z.
(a) If in addition to (4.14), β0 > 0 and H0 < 0, then

0 < Lm < LM

and L goes through periodic oscillations between Lm and LM (Figure 4.1(A)).
The period of the oscillations is

∆Z = 2

√
MyM
−H0

E

(
1− ym

yM

)
,(4.15)

where E(m) =
∫ π/2

0
(1 −m sin2 θ)1/2 dθ is the complete elliptic integral

of the second kind [2].
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(b) If in addition to (4.14), β0 > 0 and H0 > 0, then
(i) if Lz(0) < 0, self-focusing is arrested when L = Lm > 0, after which

L is monotonically defocusing to infinity (Figure 4.1(B)).
(ii) if Lz(0) > 0, L is monotonically defocusing to infinity.

2. If the perturbation is focusing, i.e.,

εC1 < 0,

and if in addition β0 > 0 and one of two conditions holds—(1) H0 > 0 and
Lz(0) < 0 or (2) H0 < 0—then the solution of (4.7) will blow up in a finite
distance (Figure 4.1(C)), i.e.,

there exists Z∗ such that 0 < Z∗ <∞ and L(Z∗) = 0.

3. The location z0 of the (first) arrest in Proposition 4.3 parts 1(a) and 1(b) (i)
is almost the same as that of the singularity in the unperturbed case with the
same initial conditions:

z0 =

∫ ym

y(0)

zy dy ∼ Zc , Zc given by (3.31) .

In particular, if ψ0 is real, then

z0 =
1

2
∆Z = Zc

(
1 +O

(
εH0

β2
0

))
, Zc given by (3.32) .

The proof of Proposition 4.3 is given in Appendix H.

4.1.3. Nonadiabatic effects. Proposition 4.2 shows that the exponentially
small term ν(β), which plays such an important role in CNLS self-focusing, disappears
from the leading-order behavior of perturbed CNLS. (In the nonconservative case the
effect of ν(β) is even smaller than the (f1)z term, which is also ignored.) Nevertheless,
if the leading-order effect of the perturbation according to Proposition 4.2 results in
periodic focusing-defocusing oscillations, ν(β) may provide the only mechanism for
the decay of the oscillations. In that case, if the perturbation is conservative, in order
to account for the nonadiabatic effects we should use

βz +
ν(β)

L2
=

ε

2M
(f1)z, Lzz = − β

L3
.(4.16)

If in (4.16) the power loss during one oscillation is small, then the oscillations are
slowly decreasing and the effect of ν(β) can be lumped into the change in Ns over one
period:

∆Ns := Ns(z + ∆Z)−Ns(z) ∼ −M
∫ z+∆Z

z

ν(β)

L2
dz.

In the conservative case when f1 is given by (4.9), β0 > 0 and H0 < 0 (Proposition 4.3
part 1(a)), the following proposition provides an estimate for ∆Ns. (A detailed anal-
ysis of nonadiabatic effects is given in [47].)

Proposition 4.4. If nonadiabatic effects are included in the case of Proposi-
tion 4.3 part 1(a) and if |∆Ns| � Ns−Nc, the oscillations are slowly decreasing and
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after each cycle there is an overall power loss due to radiation of ∆Ns. Most radiation
occurs when y ∼ yM and

∆Ns ∼ −Mν(βM )β
−1/4
M

(
yM
ym

)1/2

,(4.17)

where

βM := β(y = yM ) = −H0

M
(yM − ym) .

For a proof of Proposition 4.4 see Appendix I. Note that nonadiabatic effects
lead to slowly decaying focusing-defocusing oscillations only when the change in Ns
over one oscillation is small compared with the excess power above critical (|∆Ns| �
Ns − Nc). From Proposition 4.4 we see that this holds when ε is moderately small,
but not for a very small ε since ∆Ns ∼ ε−1/2 as ε→ 0.

4.1.4. Modulation theory for multiple perturbations. In some cases, one
is interested in the combined effect of several small perturbations, e.g., randomness
and quintic nonlinearity (section 5.6) or time-dispersion and nonparaxiality (sec-
tion 5.8). Modulation theory can easily handle these cases, since the modulation
equations are linear in F . Therefore, one simply adds the contribution of each per-
turbation to the modulation equations.

4.2. Proof of Proposition 4.1. In this section we derive the reduced equation
(4.3) of Proposition 4.1. This derivation generalizes the one for CNLS (section 3.1).

4.2.1. Perturbation analysis. When Condition 1 is satisfied, the focusing part
of the solution is described by (4.2) and the corresponding equation for V is

(4.18)

iVζ + ∆⊥V − V + |V |2V +
1

4
βρ2V + εL3F

(
V (ρ, ζ)

L(z)
exp(iS)

)
exp(−iS) = 0.

As in the case of CNLS, we expand V asymptotically for β and ε small

V ∼ V ε0 + V ε1 + · · · ,(4.19)

where V ε0 is quasi-steady in z, satisfying

∆⊥V ε0 − V ε0 + |V ε0 |2V ε0 +
1

4
βρ2V ε0 − i

M

2Nc
νε(β)V ε0 + εw(V ε0 ) = 0,(4.20)

w(V ε0 ) := L3Re

[
F

(
V ε0 (ρ)

L(z)
exp(iS)

)
exp(−iS)

]
.

When ε = 0 this is (3.8), which determines V0 and ν(β). We have now added the
dispersive part of the perturbation and we assume that there is a perturbed pair V ε0
and νε ∼ ν that satisfies (4.20). If we expand V ε0 in the two small parameters ε and
β we have

V ε0 ∼ R(ρ) + βg(ρ) + εh(ζ, ξ, η) + o(β, ε).(4.21)

The equations for R and g are (2.11) and (3.10) and the equation for h is

∆⊥h+ 3R2h− h = −w(R), (∂ξ, ∂η)h(ζ, 0, 0) = 0, h(ζ, ρ =∞) = 0.(4.22)
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Integration by parts shows that (Lemma A.1)

1

2π

∫
Rhdξdη = −1

4
f1.(4.23)

Equation (4.3) is obtained from the solvability condition for the next-order term
V ε1 . The equation for V ε1 is (4.18)–(4.20)

∆⊥V ε1 − V ε1 + 2|V ε0 |2V ε1 + (V ε0 )2(V ε1 )∗ +
1

4
βρ2V ε1

= −i
[
(V ε0 )ζ +

M

2Nc
νε(β)V ε0

]
− iεL3Im [F (ψ) exp(−iS)] .

Using (4.21), to principal order in β and ε this equation reduces to

∆⊥V1−V1+2R2V1+R2V ∗1 = −i
[
gβζ + εhζ +

M

2Nc
ν(β)R

]
−iεL3Im [F (ψR) exp(−iS)] .

(4.24)

From the solvability theory of Appendix F, the equation for the real part of V1 is
always solvable when h is even, and the solvability condition for the imaginary part
of V1 is that R is perpendicular to the imaginary part of the right-hand side of (4.24)
(Lemma F.1):∫

R

[
gβζ + εhζ +

M

2Nc
ν(β)R+ εL3Im [F (ψR) exp(−iS)]

]
dξdη = 0.

Using (3.2), (3.12), and (4.23), we see that this relation is (4.3).

4.2.2. Derivation of the reduced equation (4.3) from balance of power.
As in the case of CNLS (section 3.2), we can also derive the reduced equation (4.3)
from balance of power. To do that, we multiply (4.1) by ψ∗, subtract the conjugate
equation, and integrate over the transverse variables to get an equation for the balance
of power in (4.1):

∂

∂z

∫
|ψ|2 dxdy = −2ε Im

∫
ψ∗F (ψ) dxdy.(4.25)

The left-hand side has two components, the focusing part ψs and the nonfocusing one
(3.3): ∫

|ψ|2 =

∫
|ψs|2 +

∫
|ψback|2.

The focusing part can can be approximated using

1

2π

∫
|ψs|2 dxdy ∼ 1

2π

∫
0≤ρ≤ρc

|V0|2 dξdη

=

∫ ∞
0

R2 ρdρ+ 2β

∫ ∞
0

Rg ρdρ+
ε

π

∫
Rhdξdη + o(β, ε) ,

which can be rewritten as (3.12), (4.23):

Ns ∼ Nc + βM − ε

2
f1 .

In addition, to leading order, the radiation rate is still given by (3.16). If we combine
all the above and approximate ψ by ψR on the right-hand side, (4.25) reduces to (4.3).
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4.2.3. Derivation of the reduced equation (4.3) from a variational prin-
ciple. If the perturbed CNLS equation has a Lagrangian density, then we can derive
a Lagrangian density for the modulation equations by substituting the ansatz (4.2)
in the action integral and integrating over the transverse variables. For example, this
has already been done for the case of time-dispersive CNLS (see Figure 1 in [27]).

There are several problems with this approach, which is why we do not pursue
it here. For one thing, it can be applied only to perturbations of CNLS which have
a variational formulation. In addition, with this approach we can analyze only the
adiabatic effects of the perturbation, because the nonadiabatic term in (4.3) does not
appear in the averaged Lagrangian. Finally we note that when this approach is applied
to the perturbed CNLS with the wrong ansatz (typically a Gaussian or a sech), the
reduced equation fails to capture the delicate balance of critical self-focusing and can
lead to erroneous predictions.

5. Applications of modulation theory. In this section we apply modulation
theory to various perturbations of CNLS. We include several new applications and
present previous applications within the framework of modulation method.

5.1. Self-focusing in fiber arrays. In the last few years it has been suggested
that faster transmission in optical fibers may be achieved by using an array of coupled
optical waveguides arranged on a line in which the pulses undergo 2D self-focusing.
The model equation for the nth fiber is given by

iψnz − β2ψ
n
tt + 2γ|ψn|2ψn + δ(ψn+1 − 2ψn + ψn−1) = 0,(5.1)

where ψn(z, t) is the electric field envelope in the nth fiber, δ is the coupling coefficient
between neighboring fibers, β2 is the group velocity dispersion, and γ is the nonlinear
coefficient. For theoretical and numerical studies of (5.1), see, e.g., [3, 4, 5, 6, 37, 79].

Let

ψn = ψ(z, t, x = nh)(5.2)

and assume that the optical field is slowly varying over a number of fibers in the x
direction, i.e., h � 1. If time-dispersion is anomalous (β2 < 0), substitution of the
change of variables

z̃ = δh2z , ψ̃ =
1

h

(
2γ

δ

)1/2

ψ , ỹ =

[
h

(
δ

|β2|
)1/2

]
t,

and (5.2) in (5.1) yields (after dropping the tildes)

iψz + ψyy + |ψ|2ψ +
ψ(·, x+ h)− 2ψ(·, x) + ψ(·, x− h)

h2
= 0.(5.3)

In order to apply modulation theory to (5.3), we rewrite it as

iψz + ∆⊥ψ + |ψ|2ψ +

[
ψ(·, x+ h)− 2ψ(·, x) + ψ(·, x− h)

h2
− ψxx

]
= 0,

which in the notation of (4.1) corresponds to ε = h2/12 and

F =
12

h2

[
ψ(·, x+ h)− 2ψ(·, x) + ψ(·, x− h)

h2
− ψxx

]
.(5.4)
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It is easy to see that F is conservative. In addition, we can expand

F = ψxxxx +
2ε

5
ψxxxxxx + · · · .

Since ε� 1, let us begin by considering the perturbed nonlinear Schrödinger (PNLS)

iψz + ∆⊥ψ + |ψ|2ψ + εψxxxx = 0,(5.5)

i.e., the effect of the conservative perturbation

F = ψxxxx.(5.6)

The evaluation of

f1(z) =
1

π
Re

∫
[R(ρ) exp(iS)]xxxx exp(−iS)[R+ ρ∇⊥R] dxdy

can be simplified if we note that [R exp(iS)]x ∼ Rx exp(iS), because R = R(x/L),
S = S(x

√
Lz/L), and LLz ∼ β1/2 � 1. Therefore,

f1(z) =
1

π

(∫
[R(ρ)]xxxx[R+ ρ∇⊥R] dxdy

)
(1 +O(β1/2)) .

Since

1

π

(∫
[R(ρ)]xxxx[R+ ρ∇⊥R] dxdy

)
=

2

πL2

∫
(Rξξ)

2 dξdη ,

∫
(Rξξ)

2 dξdη =
3

8

∫
(∆⊥R)2 dξdη =

3π

4

∫
(∆⊥R)2 ρdρ ,

and (2.11), (2.14) ∫
(∆⊥R)2 ρdρ = I6 − 3Nc,

where10

I6 =

∫ ∞
0

R6 rdr ,

we have that

f1 ∼ −C1

L2
, C1 = −3

2
(I6 − 3Nc) ∼= −9Nc

2
.

Thus, self-focusing in (5.5) is covered by Proposition 4.3. Since εC1 < 0, we are in the
case of a focusing perturbation (case 2 of the proposition) that can result in a finite-z
blowup if the initial power is above critical.

Another way to see that εψxxxx is indeed a focusing perturbation is from the
Hamiltonian identity for (5.5): We multiply (5.5) by ψ∗z , add the conjugate equation,
and integrate to get∫

|∇⊥ψ|2 − 1

2

∫
|ψ|4 − ε

∫
|ψxx|2 ≡ constant.

10Numerical computations show that I6 ∼= 6Nc. However, this is not an exact identity.
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Therefore, from the relative signs we see that when ε > 0 the perturbation acts with
the focusing nonlinearity and against diffraction.

If the initial conditions are such that there is indeed blowup in (5.5), then it is
not justified to approximate (5.4) with (5.6) and we need to add the next-order term
in (5.4),

F = ψxxxx +
2

5
εψxxxxxx,

corresponding to the PNLS

iψz + ∆⊥ψ + |ψ|2ψ + εψxxxx +
2

5
ε2ψxxxxxx = 0.(5.7)

We can see immediately that the O(ε2) term is a defocusing perturbation by observing
the relative signs in the Hamiltonian identity for (5.7):∫

|∇⊥ψ|2 − 1

2

∫
|ψ|4 − ε

∫
|ψxx|2 +

2ε2

5

∫
|ψxxx|2 ≡ constant.

In order to evaluate f1 for (5.7) we note that as before∫
[R(ρ) exp(iS)]xxxxxx exp(−iS)[R+ ρ∇⊥R] dxdy ∼

∫
[R(ρ)]xxxxxx[R+ ρ∇⊥R] dxdy

and ∫
Rξξξξξξ(R+ ρ∇R) dξdη = −3

∫
(Rξξξ)

2 dξdη.

Therefore

f1 ∼ |C1|
L2
− C2ε

L4
(5.8)

with

C2 =
6

5π

∫
(Rξξξ)

2 dξdη > 0.

Plugging (5.8) into (4.7) gives that self-focusing in (5.7) is given to leading order by

−L3Lzz = β0 +
ε

2M

[ |C1|
L2
− C2ε

L4

]
.

Integrating this equation twice, as in the derivation of (4.10) in Appendix H, gives

(yz)
2 =

4H0

M
y + 4β0 +

ε|C1|
My

− 2ε2C2

3My2
.(5.9)

From (5.9) we see that there is no blowup (y cannot go to zero) in (5.9). In addition,
we can estimate the minimum value of y from the balance of the third and fourth
terms on the right-hand side of (5.9):

ym ∼ 2C2ε

3|C1| .
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Likewise, if H0 < 0 the solution of (5.9) is oscillatory and we can estimate the maxi-
mum value of y from the balance of the first and second terms on the right-hand side
of (5.9),

yM ∼ Mβ0

−H0
.

Therefore, we can rewrite (5.9) as

(yz)
2 =
−4H0

M

1

y2
(yM − y)(y − ym)(y − y3),

where

y3 =
ε2C2

6H0ymyM
∼ − ε|C1|

4Mβ0
< 0 .

Thus, self-focusing in (5.9) is very similar qualitatively to the generic case of Propo-
sition 4.3. In particular, when β0 > 0 and H0 < 0 the solution will oscillate between
yM and ym.

Equation (5.9) captures the leading-order behavior for (5.7), hence also for (5.3)
and (5.1). In the case of periodic oscillations in (5.9), nonadiabatic effects (which were
neglected so far) will gradually cause the oscillations in (5.7), (5.3), and (5.1) to decay,
in a manner similar to the one covered by Proposition 4.4. This qualitative picture
agrees with the simulations of (5.1) of Aceves et al. [5, 6], where it was observed that
the initial collapse towards the central fiber is arrested, followed by oscillations of
power between the central fiber and its neighbors.

5.2. Small defocusing fifth-power nonlinearity. The case of small dispersive
fifth-power nonlinearity

iψz + ∆⊥ψ + |ψ|2ψ − ε|ψ|4ψ = 0 , 0 < ε� 1(5.10)

was analyzed by Malkin [47]. In the notation of modulation theory we have

F = −|ψ|4ψ ,

which is conservative (f2 ≡ 0) and

f1 ∼ − 4I6
3L2

.

Therefore, self-focusing is covered by Proposition 4.3 with C1 = 4I6/3:

(yz)
2 =
−4H0

M

1

y
(yM − y)(y − ym), yM ∼ Mβ0

−H0
, ym ∼ εI6

3Mβ0
.(5.11)

5.3. Dispersive saturating nonlinearities. The use of (5.10) to model dis-
persive saturation of the nonlinearity is sometimes criticized because as |ψ| increases
the nonlinearity changes its sign and becomes defocusing. For this reason (5.10) is
often replaced by

iψz + ∆⊥ψ +
1− exp(−2ε|ψ|2)

2ε
ψ = 0, 0 < ε� 1(5.12)
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or by

iψz + ∆⊥ψ +
|ψ|2

1 + ε|ψ|2ψ = 0, 0 < ε� 1.(5.13)

Equations (5.12) and (5.13) can be viewed as regularizations of (5.10): the nonlinearity
is approximately the same as in (5.10) when ε|ψ|2 � 1, but it has a finite and positive
limit as |ψ| goes to infinity. It turns out that these regularizations have essentially
the same effect on self-focusing as the unregularized case (5.10). This is true only for
critical NLS and to the best of our knowledge its articulation is due to Malkin [45].

Proposition 5.1. Self-focusing in (5.12) and (5.13) is the same to leading order
as in (5.10).

Proof. The perturbation functions F corresponding to (5.12) and (5.13) are con-
servative and they satisfy

F = −ε|ψ|4(1 +O(ε|ψ|2), provided that ε|ψ|2 � 1.

Thus, as long as |ψ|2 � ε−1, the leading-order behavior of (5.12) and (5.13) is still
given by (5.11). Since for (5.11)

y ≥ ym ∼ ε

β
,

throughout the focusing-defocusing cycle ε|ψ|2 = O(β)� 1 and

F = −ε|ψ|4(1 +O(β)) .

We have, therefore, the important result that all small dispersive regularizations
of critical NLS lead to the same canonical focusing-defocusing effect.

The oscillatory behavior of solutions of (5.12) and (5.13), in accordance with
(5.11), was observed in numerical simulations of LeMesurier et al. [42]. In [74], special
attention was given to the nonadiabatic power radiation in (5.12).

5.4. Davey–Stewartson equations. The Davey–Stewartson equations

iψz + ∆⊥ψ + |ψ|2ψ − εφxψ = 0 , αφxx + φyy = −(|ψ|2)x(5.14)

arise in the study of gravity-capillary surface waves [1]. When 0 < ε� 1, the system
(5.14) can be viewed as a perturbation of CNLS with

F = −φxψ .

This is a conservative perturbation and

f1 = − 1

π
Re

[∫
(φR)xR(ρ)(R+ ρ∇⊥R) dxdy

]
,

where φR is the solution of

α(φR)xx + (φR)yy = −(|ψR|2)x .

Let φ̃R(ξ, η) be the solution of

α(φ̃R)ξξ + (φ̃R)ηη = −(R2)ξ(ξ, η) .
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Then φR(x, y) = L−1φ̃R(ξ, η) and

f1 = − 1

π

∫
(φ̃R)ξR(ρ)(R+ ρ∇⊥R) dξdη = constant.

Therefore, to leading order (4.16) reduces to

βz = −ν(β)

L2
,

as in the case of self-focusing in the unperturbed CNLS (3.13). It follows that self-
focusing in the Davey–Stewartson equations follows the adiabatic law for CNLS self-
focusing (3.34), which ultimately reduces to the loglog law. It is remarkable that this
perturbation has no effect on the blowup rate, as was first shown by Papanicolaou
et al. [56], who derived the asymptotically equivalent equation (3.14) for self-focusing
in the Davey–Stewartson equations and concluded that self-focusing in the Davey–
Stewartson equations is given by the loglog law.

5.5. Nonparaxiality. In the standard derivation of CNLS as the model equation
for laser beam propagation through a Kerr medium, the vectorial Maxwell equations
for the propagation of a laser beam are reduced to the vectorial Helmholtz equations in
the time-harmonic case. These equations are further reduced to the scalar Helmholtz
equation for the electric field E(

∆⊥ +
∂2

∂z2

)
E + k2E = 0 , k2 = k2

0

(
1 +

2n2

n0
|E|2

)
by neglecting vectorial effects [19]. Introducing the slowly varying envelope form E =
ψ exp(ik0z) for the electric field leads to the nondimensional form of the Helmholtz
equation [25]

εψzz + iψz + ∆⊥ψ + |ψ|2ψ = 0 , ε =

(
λ

4πr0

)2

.(5.15)

Since the beam wavelength λ is much smaller than the initial beam radius r0,

0 < ε� 1.

This suggests that εψzz can be neglected, in which case (5.15) reduces to CNLS.
Neglecting εψzz is called the paraxial approximation or the parabolic approxi-

mation and it is a valid approximation for rays which propagate almost parallel to
the z-axis. Mathematically, this is a problematic approximation, because a boundary
value problem (Helmholtz) is replaced with an initial value problem (NLS). Moreover,
the paraxial approximation breaks down near the focal point, as was already pointed
out by Kelley [32]. Indeed, from the asymptotic form of CNLS self-focusing solution
(3.1), we see that the magnitudes of ∆⊥ψ and |ψ|2ψ are O(L−3) and that of the
nonparaxial term is O(εL−5). This suggests that the paraxial approximation breaks
down when L = O(

√
ε). In fact, we will now show that the nonparaxial term does

not even get to be of the same size as the other terms because it arrests self-focusing
when it is still O(β)-small compared with the CNLS terms.

We analyze the effect of small beam nonparaxiality by applying modulation theory
with the perturbation

F = ψzz.
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This perturbation is nonconservative and

f2 ∼ Nc
(

1

L2

)
z

.

Therefore, (5.15) reduces to [25]

βz = −2εNc
M

(
1

L2

)
z

.(5.16)

Although this is a nonconservative perturbation, in light of (5.16) we can still apply
the results of Proposition 4.3 with C1 = 4Nc to get

(yz)
2 =
−4H0

M

1

y
(yM − y)(y − ym), yM ∼ Mβ0

−H0
, ym ∼ 2εNc

Mβ0
.(5.17)

It is remarkable that this nonconservative perturbation leads to the same generic
reduced equation as in the previous examples of conservative perturbations.

From (5.17) and Proposition 4.3 we see that even when β0 > 0 (i.e., initial power
above critical) the solution of (5.17) does not blow up. If in addition H0 < 0, the
behavior is given by focusing-defocusing oscillations which gradually decay because of
nonadiabatic effects. Note that throughout the focusing-defocusing cycle the relative
magnitude of the nonparaxial term is

[εψzz]

[|ψ|2ψ]
=

ε

L2
≤ ε

ym
= O(β) ,

providing an a posteriori justification for treating it as a small perturbation.
The prediction of modulation theory of decaying focusing-defocusing oscillations

is in qualitative agreement with the simulations of Feit and Fleck of the nonlinear
Helmholtz equation [22] and with the studies of [8, 68]. This suggests that the answer
to the open question

Is there blowup in the nonlinear Helmholtz equation?

is no, or that if there is blowup in the nonlinear Helmholtz equation, it is completely
different from that of CNLS. This is an important question, since the singularity
formation in CNLS is clearly nonphysical, indicating that some small terms that
were neglected in the derivation of CNLS should be included in a model of physical
self-focusing which is valid at and beyond the blowup point. Since the paraxial ap-
proximation is the last approximation in the derivation, if indeed there is no blowup
in the nonlinear Helmholtz equation, it may prove to be the physically regularizing
term, analogous to viscosity in fluid dynamics.

At present, a full picture of self-focusing in the nonlinear Helmholtz equation is
still lacking. In particular, the effect of backscattering is unclear. In addition, there
are no rigorous analytic results on singularity formation in the nonlinear Helmholtz
equation.

5.6. Effect of randomness. The propagation of a narrow laser beam in a
medium with impurities can be modeled by

iψz + ∆⊥ψ + |ψ|2ψ + ε1(x2 + y2)h(z)ψ = 0 , 0 < ε1 � 1 ,(5.18)
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where h(z) is a real-valued random function. The perturbation

F = (x2 + y2)h(z)ψ

is conservative and

f1 = 8ML4h(z).

Therefore, in this case the reduced equation (4.7) becomes

Lzz = − β0

L3
− 4εL(z)h(z),

showing that the effect of this random perturbation becomes negligible as L↘ 0.
Random inhomogeneities can become important if they act in conjunction with an

additional defocusing perturbation which leads to oscillatory behavior. One example
is defocusing quintic nonlinearity and randomness

iψz + ∆⊥ψ + |ψ|2ψ + ε1(x2 + y2)h(z)ψ − ε2|ψ|4ψ = 0,(5.19)

whose reduced equation is

−L3Lzz = β0 + 4ε1L
4h(z)− 4ε2Nc

M

1

L2
.(5.20)

Random inhomogeneities have, in general [15], the form h(z, x, y)ψ. However,
when the beam is narrow we can expand h about the beam axis

h = h0(z) + (x, y) · ∇⊥h+
1

2
(x, y) · ∇∇h · (x, y) + · · · .

The linear terms can be eliminated by preliminary transformations of the transverse
coordinates and the phase [49]. If we also assume, for simplicity, that the inhomo-
geneities are transversely isotropic then we get (5.19). We will also assume that h(z)
is stationary with mean zero 〈h(z)〉 = 0, where 〈〉 is ensemble average.

The reduced equation (5.20) can be written as a nonlinear oscillator equation
with a parametrically random, linear term:

Lzz + 4ε1h(z)L(z) + U ′(L) = 0 , U(L) =
ε2Nc
ML4

− β0

2L2
.(5.21)

The effects of randomness in (5.21) are not easy to assess and will be analyzed else-
where. In the following we present some preliminary results. The potential U(L) has
a minimum at Lmin = 2

√
ε2Nc/Mβ0. For small oscillations about this minimum we

can linearize (5.21) by writing L = Lmin + δL, with 0 ≤ δL� Lmin, to get for δL the
randomly forced linear oscillator equation

δLzz + ω2δL = h̃(z),(5.22)

where the frequency ω is given by

ω =
β

3/2
0 M

23/2ε2Nc
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and the random forcing by

h̃(z) = −8ε1

√
ε2Nc
Mβ0

h(z) .

Note that the frequency of the small oscillations decreases with β0 but increases as
ε2 → 0. The random forcing will make the energy of the small oscillations increase
on the average as z increases:

d

dz

〈
1

2
(δL)2

z +
ω2

2
(δL)2

〉
=

∫ z

0

cos(ωs)R̃(s)ds,

where R̃(z) = 〈h̃(z + s)h̃(s)〉 is the covariance of the random force h̃(z). For large z
the energy of the small oscillations grows linearly,〈

1

2
(δL)2

z +
ω2

2
(δL)2

〉
∼ z

2
R̂(ω),

where R̂(ω) ≥ 0 is the power spectral density [57] of the random forcing h̃,

R̂(ω) =

∫ ∞
−∞

eiωsR̃(s)ds .

Ultimately, the growth of the energy will make the linearization invalid and the full
nonlinear equation (5.21) should be considered. An important issue is to estimate the
probability of escape (i.e., L→ +∞) by the random inhomogeneities. This could be
done in a manner similar to the one used in [33]. The main result should be that the
amplitude of the focusing-defocusing oscillations grows until there is no more focusing.

5.7. Temporal effects. In nonlinear optics CNLS (1.1) is derived for time-
harmonic laser beams propagating in a medium with an instantaneous nonlinear po-
larization response. However, temporal effects, such as time-dispersion and Debye
relaxation, can become important in the propagation of ultrashort laser pulses. Since
in these nonstationary cases the initial condition is given at the medium interface
z = 0 for all (x, y, t), time behaves like a third spatial variable and z plays the role of
“time.” As a result, the reduced equations and the modulation variables L, β, and ζ
depend on both z (“time”) and t (“space”).

5.7.1. Small time-dispersion. The nonlinear Schrödinger equation with small
time-dispersion

iψz + ∆⊥ψ − εψtt + |ψ|2ψ = 0 , ψ(z = 0, x, y, t) = ψ0(x, y, t) , |ε| � 1(5.23)

arises in the study of the propagation of ultrashort laser pulses in media with an
instantaneous Kerr nonlinearity. The correct expression for ε is11

ε =
r2
0k0kωω
T 2

,

where r0 is the initial pulse radius, k = ωn0(ω)/c is the wavenumber, n0 is the linear
index of refraction, c is speed of light, and T is the pulse duration. Time-dispersion
is called normal if ε > 0 and anomalous if ε < 0.

11We would like to thank B. Rockwell [63] for pointing out to us the error in the expression for ε
in [27].
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If time-dispersion is anomalous, (5.23) is supercritical NLS, which has solutions
that undergo 3D collapse. However, the dynamics in the case of normal time-dispersion
are more complicated because of the opposite sign of diffraction and time-dispersion.
In particular, a new phenomenon occurs in the presence of small normal time-dispersion:
a temporal splitting of the pulse into two components (see Figure 5.1). Pulse split-
ting and the possibility of multisplitting has attracted considerable interest over the
last decade, as it may provide a physical mechanism which prevents the singularity
formation in CNLS.

Zharova et al. [81] were the first to show that in the case of small normal time-
dispersion self-focusing is arrested at tm, the t cross section (i.e., the plane (x, y, t =
tm) of the initial peak. As a result, the pulse undergoes a temporal split into two
components. They authors went on to conjecture that the new peaks would go on
splitting into “progressively smaller-scale.” Although in their simulations they ob-
served two splitting events, the reliability of their simulations is unclear. Indeed, in
subsequent numerical simulations of (5.23) [18, 27, 44, 64] secondary pulse splitting
was not observed. In [44], Luther, Newell, and Moloney derived reduced equations for
the evolution of the pulse at the tm cross section which show the arrest of self-focusing
there. The validity of their reduced system was supported by a direct comparison with
the numerical solution of (5.23).

In [27], Fibich, Malkin, and Papanicolaou derived the reduced system (5.24) for
self-focusing in (5.23), using for the first time the systematic approach of modulation
theory. Here

F = −ψtt
is nonconservative and

f2 = − 1

2π
Im

∫
ψ∗ψtt dxdy ∼ −Ncζtt .

Therefore, from (4.8), we see that (5.23) reduces to [27]

βz =
2εNc
M

ζtt , Lzz = − β

L3
, ζz =

1

L2
.(5.24)

The numerical agreement of (5.24) with (5.23) was demonstrated in [27]. The
reduced system (5.24) agrees with that of Luther, Newell, and Moloney [44] at tm.
However, (5.24) is valid for all t cross sections, not just at tm. In fact, analysis of (5.24)
shows that while self-focusing is arrested in an exponentially small neighborhood of tm
it continues elsewhere. Analysis of (5.24) also shows that peak splitting is associated
with the transition from self-similar 2D collapse to full 3D dynamics. Therefore, it
was suggested in [27] that the new peaks would not necessarily split again.

The effect of normal time-dispersion on the nonadiabatic radiation ν(β) was cal-
culated in [12, 13, 14].

At present, it is still unknown whether multiple splitting occurs. A related open
question is whether the solution of (5.23) can become singular. At present, these ques-
tions cannot be investigated numerically, since current numerical simulations cannot
go much further beyond the first pulse-splitting. In addition, the validity of the re-
duced system (5.24) after the formation of the two new self-focusing peaks is unclear.
Indeed, the large values of β and the large t gradients in Figure 5.1 after the pulse
splitting violate the assumptions under which (5.24) was derived. This may indicate
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Fig. 5.1. As a result of small normal time-dispersion the power (β) radiates away from the
center, leading to the formation of two symmetrical peaks which continue to self-focus. Results
are shown for the reduced system (5.24) with the initial conditions L(0, t) ≡ 1, Lz(0, t) ≡ 0 and
β(0, t) = (1.1 exp(−t2)−1)Nc/M and ε = 0.01. Although we do not observe secondary peak splitting,
the large values of β and the sharp t gradients suggest that the validity of (5.24) breaks down at some
point.

that after the first splitting ψR ceases to serve as an attractor for ψs. If so, this
nullifies the whole argument of multisplitting “by induction.”

Recently, pulse splitting was observed experimentally by Ranka, Schirmer, and
Gaeta [60], some 10 years after its theoretical prediction.

5.7.2. Debye relaxation. In models for the propagation of an intense laser
beam, the nonlinear cubic term in CNLS represents an instantaneous nonlinear mate-
rial polarization response. If the mechanism for the induced nonlinear polarization is
molecular orientation, then for sufficiently long pulses the frictional drag between the
molecules tends to make the rotation lag behind the torque induced by the electric
field. The resulting model equation in this case is CNLS with Debye relaxation:

iψz + ∆⊥ψ +Nψ = 0,(5.25)

εNt +N = |ψ|2 , ε =
τD
T

> 0 ,(5.26)

where t is retarded time (t − z/cg), τD is the characteristic response time for dipole
reorientation (∼ 10−11sec for water), and T is pulse duration.

In this section we use modulation theory to address the question of whether
Debye relaxation can arrest self-focusing when 0 < ε � 1. The Debye perturbation
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εF = (N − |ψ|2)ψ is conservative (f2 = 0). From (5.26), we get that

N ∼ |ψ|2 − ε(|ψ|2)t .

Therefore, we approximate (5.25)–(5.26) by (4.1) with

F = −(|ψ|2)tψ .

Evaluation of f1 yields

f1 ∼ CDLt
L

, CD =

∫
(∇⊥R2)2ρ3 dρ ∼= 6.43 .

Substitution in (4.7) shows that self-focusing in the presence of Debye relaxation is
given by

−L3Lzz = β0 +
εCD
2M

Lt
L

.(5.27)

From this equation we see that Debye relaxation slows focusing at times earlier than
the pulse peak (Lt ≤ 0) and enhances it at later times (Lt ≥ 0). As a result, self-
focusing becomes temporally asymmetrical, with the peak moving toward later times
(Figure 5.2), as can be expected from a delay mechanism and as was observed in
numerical simulations of (5.25)–(5.26) [67].

In order to further analyze the initial effect of Debye relaxation, we note that
during the nonadiabatic self-focusing and unperturbed adiabatic self-focusing stages
(see section 4.1), the effect of Debye relaxation is negligible and each t cross section
(i.e., the plane t = constant in the (x, y, t) space) focuses independently in a 2D
self-similar fashion,

L(z, t) = L(Zc(t)− z)

with Zc(t) given by (3.31). If we use this self-similar form in (5.27), we get

−L3Lzz = β0 − εCDŻc(t)

2M

Lz
L

, ˙ :=
d

dt
.

Making a change of variable, we can rewrite this equation as

Aζζ = β0A+
εCDŻc(t)

6M
(A3)ζ , A =

1

L
.

If the peak power is initially at t = t0, then Żc(t) > 0 for t > t0 and Żc(t) < 0 for
t < t0. Therefore, we see that if the power is above critical (β0 > 0), there is blowup
(A ↗ +∞) for t > t0 and arrest of blowup for t < t0. However, one cannot apply
this conclusion to (5.25)–(5.26) or even to (5.27), because as self-focusing starts to
deviate from that the unperturbed CNLS, the validity of the 2D self-similar argument
breaks down and the dynamics become fully 3D (i.e., (x, y, t)), as manifested by the
shift of the peak toward later times. At present, the question whether solutions of
(5.25)–(5.26) can become singular is still open.
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Fig. 5.2. Self-focusing in the presence of Debye relaxation according to the reduced equation
(5.27) with the initial conditions L0 ≡ 1 and β(0) = (1.1 exp(−t2) − 1)Nc/M . While most of the
pulse is defocusing (top), asymmetric self-focusing takes place in the center, with the peak moving
towards later times.

5.8. Time-dispersion and nonparaxiality. We have seen that both normal
time-dispersion and nonparaxiality can lead to self-focusing arrest. This raises the
question of determining which of these two mechanisms is dominant in self-focusing
of ultrashort pulses. Similarly, if time-dispersion is anomalous, it is enhancing self-
focusing as nonparaxiality is slowing it down, and we would like to know which of
the two effects will ultimately prevail. Therefore, we are interested in analyzing self-
focusing in the presence of both time-dispersion and nonparaxiality.

It may seem that all we need to do is add the separate contribution of each mecha-
nism in the corresponding reduced equation (5.16) and (5.24). However, more careful
examination of the derivation of CNLS shows that if one retains both time-dispersion
and nonparaxiality in the model, then the model equation contains additional terms
[28]:

iψz + ∆⊥ψ + |ψ|2ψ + ε1ψzz + ε2

[
2i
n0cg
c

(|ψ|2ψ)t − ψzt
]
− ε3ψtt = 0,(5.28)

where

ε1 =
1

4r2
0k

2
0

, ε2 =
1

cgk0T
=

1

ω0T

c

n0cg
, ε3 =

k0r
2
0kωω
T 2

,(5.29)

and cg is the group velocity. The dimensionless parameter ε1 ∼ (wavelength/radial
pulse width)2, ε2 ∼ (period of one oscillation/pulse duration), and ε3 is a dimensionless
measure of group velocity dispersion (GVD). Note that ε2 is proportional to the
geometric mean of ε1 and ε2:

ε22 = ε1ε3q , q =
4

c2gk0kωω
.

Therefore, if one retains time-dispersion and nonparaxiality, the mixed term and the
shock term (ψzt and (|ψ|2ψ)t, respectively) should also be included in the model.
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Moreover, in the visible spectrum q � 1, and the ε2 terms can dominate over both
time-dispersion and nonparaxiality [28].

The reduced system corresponding to (5.29) is

(5.30)

βz(z, t) = −γ1

(
1

L2

)
z

− γ2

(
1

L2

)
t

+ γ3ζtt , ζz(z, t) =
1

L2
, Lzz(z, t) = −β(z, t)

L3
,

where

γ1 = 2ε1Nc/M, γ2 = ε2(6cgn0/c− 2)Nc/M, γ3 = 2ε3Nc/M.

Following [27], we can analyze the initial effect of the three terms in (5.28) by looking
at special solutions of (5.30). Away from the focal point, the three perturbing terms
in (5.28) are small and each t cross section of the pulse (i.e., the 2D plane t = constant
in the (x, y, t) space) focuses independently with

L(z, t) = L(Zc(t)− z), β(z, t) = β(Zc(t)− z), ζ(z, t) = ζ(Zc(t)− z).(5.31)

Here Zc(t) is the location of the focus in the (z, t) plane when ε1 = ε2 = ε3 = 0 (3.31).
Therefore, (5.30) becomes

βz = −γ1

(
1

L2

)
z

+ γ2Żc

(
1

L2

)
z

+ γ3(−Z̈cζz + Żc
2
ζzz) , ˙=

d

dt
.(5.32)

This equation can be transformed into a nonlinear Airy equation [27]

gss = sg + κg3, with g = L−1 > 0.(5.33)

Here

s = (β0 − γ3Z̈cζ)(γ3Z̈c)
−2/3 , β0 ∼ β(0, t),

κ = −(γ1 − γ2Żc − γ3Żc
2
)(γ3Z̈c)

−2/3.

The initial conditions for (5.33) are given at

s0(t) := s(z = 0, t) ∼ β(0, t)(γ3Z̈c)
−2/3 .

At the time t0 of the initial peak power of the pulse, Zc(t) attains its minimum,
Żc(t0) = 0, and the evolution is given by (5.33) with κ = −γ1(γ3Z̈c)

−2/3 < 0. Because
Z̈c(t0) > 0, as z → Zc and ζ → +∞, s → −∞ for normal time-dispersion (ε3 > 0),
and both time-dispersion and nonparaxiality (first and second terms on the right-hand
side of (5.33), respectively) contribute to the arrest of the blowup by preventing g from
becoming infinite. When time-dispersion is anomalous (ε3 < 0), it enhances blowup
(s → +∞) while nonparaxiality opposes it. Eventually, as s → +∞ nonparaxiality
prevails and the solution of (5.33) will decay (no blowup).

In the case of normal time-dispersion and ε1 = ε2 = 0, blowup is arrested only in
an exponentially small neighborhood of t0 [27], where pulse splitting occurs. In order
to assess the added effects of nonparaxiality and the mixed term, we note that the
condition for blowup [27] in (5.33) as s→ −∞ is κ > 2L2(0, t)Ai2(s0) or

γ3Żc
2
> γ1 − γŻc + 2L2(0, t)Ai2(s0)(γ3Z̈c)

2/3,
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where Ai(s) is the Airy function. Therefore, if nonparaxiality dominates, arrest of
blowup occurs over a much larger region (possible everywhere). If the ε2 term dom-
inates, blowup will occur when ε3 > −ε2/Żc, i.e., only for t > t0. Note that as the
solution starts to deviate from that of the unperturbed CNLS, the 2D self-similar
structure (5.31) will gradually break down. Therefore, for later z this 2D self-similar
argument becomes invalid and the full 3D nature of (5.30) has to be considered.

From (5.32) we see that the effect of the ε2 term on a self-focusing pulse is a
temporal power transfer toward later times (recall that β is proportional to the excess
power above critical). This will result in an asymmetric temporal development of
the pulse, with a greatly enhanced trailing portion and a suppressed leading part, in
agreement with previous results on the effect of the shock term [10] and of the linear
component of the ε2 term [65].

6. Numerical methods. Numerical integration of self-focusing in CNLS (1.1)
requires a code that can handle the ever-increasing gradients near the singularity. In
the method of dynamic rescaling [50], the independent variables and the function are
dynamically rescaled in a way which is based on the asymptotic form of the solution
(3.1). In the rescaled variables the function is smooth and the problem can be solved
on a fixed grid using standard techniques. Then, the solution of CNLS is recovered
from that of the rescaled problem. Subsequent improvements to this method include
the use of approximate boundary conditions [35] and extension to the nonisotropic
case [40]. The CNLS simulations in this paper were performed using dynamic rescaling
with approximate boundary conditions (for more details, see [23]). The power of this
method can be seen, for example, in Figure 3.5(C), where focusing factors of 1015

were reached.
Dynamic rescaling was also applied to perturbed CNLS: saturating nonlinearity

[42], the Davey–Stewartson equations [56], and small normal time-dispersion [27].
However, in these cases the method becomes less successful, since it is inherently
based on the special rescaling of CNLS self-focusing. Some of the difficulties which
arise are instabilities due to the use of the approximate boundary conditions during
defocusing stages and the need for (a yet unknown) additional rescaling in the t
direction in the nonstationary cases.

Another approach is to apply a split-step method (e.g., [59]): the linear parts
are solved by a Fourier transform in space and the nonlinear part is solved by an
appropriate nonlinear solver. A different approach was taken in [9], where CNLS was
solved by a Galerkin finite-element method.

6.1. Numerical comparison of CNLS and adiabatic theory. In order to
compare the numerical solution of a perturbed CNLS with its corresponding reduced
system, one must be able to recover the values of L, β, and ζ from ψ. In the case of
dynamic rescaling, one solves for the rescaled function u and for L̄, which are related
to ψ through

ψ =
u(ζ̄, ρ̄)

L̄
, u ∼ exp

(
iλ2(ζ̄)ζ̄ + i

L̄z
L̄

r2

4

)
λR(λρ̄) .

The bars denote the (numerical) values of L, ζ, etc., in dynamic rescaling. In general,
these values are different from the ones used in the asymptotic theory, where λ ≡ 1.
The modulation variables can be recovered using [23]

ζ = arg u(ρ = 0) , L = L̄
R(0)

|u(0)| , a ∼ ā
(
R(0)

|u(0)|
)2

, Lz ∼ − ā
L̄

R(0)

|u(0)|
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and

Hs ∼ 1

L̄2

∫ ρ̄c

0

(
|uρ̄|2 − 1

2
|u|4
)
ρdρ .

Although β can be recovered by using (3.5), a better way, which does not involve
numerical z derivatives, is to use

β ∼ 1

M

(∫ ρ̄c

0

|u|2 ρdρ−Nc
)
.(6.1)

Note, however, that this approximation has only O(β) accuracy. Therefore, near the
singularity a more accurate approximation is

β ∼ a2 ,(6.2)

which has a theoretical exponential accuracy in β. However, since the last approxi-
mation is not valid at the early stages of self-focusing, in the numerical comparison of
the adiabatic laws with NLS simulations (Figures 3.5–3.6), we recover β using (6.1)
at the early stages of self-focusing and switch to (6.1) for the advanced stages of the
blowup.

When we apply modulation theory for nonstationary perturbations of CNLS, the
question arises as to how to represent t cross sections whose power is much smaller
than Nc, since modulation theory was derived for |β| � 1. The simplest approach is
to use (3.15) for all t cross sections. If we do that, then

lim
t→±∞β(t) =

−Nc
M
∼= −3.38.

Fortunately, this approximation is quite reasonable, since as t→ ±∞ the propagation
is determined only by linear diffraction, in which case

Lzz =
4

L3

(see, for example, (39) of [7]), corresponding to

lim
t→±∞β(t) = −4.

A related question is which value to use for L0(t) for |t| large. We cannot use (3.39),
since then

lim
t→±∞L0(t) =∞.

One possibility is to set L0(t) ≡ 1.

Appendix A. Perturbation analysis for P ∼ R+εh. In Lemma A.1 we use
regular perturbations to evaluate several integrals which arise when we average over
the transverse variables. In the case of perturbed CNLS, the results of this lemma
are applied with

P = V0(ξ, η;β = 0, ε).

In Appendix B we apply this lemma for the case of unperturbed CNLS with P =
V0(ρ;β), but in that case we have to be more careful with the domains of integration.
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Lemma A.1.
1. Let R(ρ) be the solution of (2.11). Then the following identities hold:∫ ∞

0

R2 ρdρ =

∫ ∞
0

(∇⊥R)2 ρdρ =
1

2

∫ ∞
0

R4 ρdρ.(A.1)

2. Let P (ξ, η) ∈ H1 satisfy the equation

∆P − P + P 3 + εw(P ) = 0(A.2)

with w(P ) real. Then

H(P ) =
ε

2π

∫
w(P )[P + (ξ, η) · ∇⊥P ] dξdη.(A.3)

In addition, if we expand

P (ξ, η) = R(ρ) + εh(ξ, η) +O(ε2), |ε| � 1,

then the equation for h is (4.22) and

(A.4)∫
Rhρdξdη =

∫
(R3h−∇⊥R∇⊥h) dξdη = −1

2

∫
w(R)[R+ ρ∇⊥R] dξdη.

Therefore,

H(P ) =
ε

2π

∫
w(R)[R+ (ξ, η) · ∇⊥R] dξdη +O(ε2).

Proof. If we multiply (A.2) by P and integrate by parts, we get

−
∫

(∇⊥P )2 −
∫
P 2 +

∫
P 4 + ε

∫
w(P )P = 0.(A.5)

Similarly, if we multiply (A.2) by (ξ, η) · ∇⊥P and integrate by parts, we get∫
P 2 − 1

2

∫
P 4 + ε

∫
w(P )(ξ, η) · ∇⊥P = 0.(A.6)

Adding (A.5) and (A.6) gives (A.3).
If we multiply (2.11) by P and integrate by parts, we get

−
∫
∇⊥R∇⊥P −

∫
PR+

∫
PR3 = 0.(A.7)

The O(1) and O(ε) equations in (A.5) are, respectively,

−
∫

(∇⊥R)2 −
∫
R2 +

∫
R4 = 0,(A.8)

−2

∫
∇⊥R∇⊥h− 2

∫
Rh+ 4

∫
R3h = −

∫
w(R)R.(A.9)

The O(1) and O(ε) equations in (A.6) are, respectively,∫
R2 − 1

2

∫
R4 = 0,(A.10)

2

∫
Rh− 2

∫
R3h = −

∫
w(R)(ξ, η) · ∇⊥R .(A.11)
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The O(1) and O(ε) equations in (A.7) are, respectively,

−
∫

(∇⊥R)2 −
∫
R2 +

∫
R4 = 0,(A.12)

−
∫
∇⊥R∇⊥h−

∫
Rh+

∫
R3h = 0.(A.13)

From (A.8)–(A.13), we get (A.1) and (A.4).

Appendix B. Perturbation analysis for V0 ∼ R+ βg. In this appendix we
derive the modulation approximations to various integrals which arise when we derive
the reduced equations for CNLS from balance of power. Modulation theory for CNLS
is based on the ansatz for the focusing part of the solution

ψs(r, z) ∼ 1

L
V0(ρ;β) exp

(
iζ + i

Lz
L

r2

4

)
, ρ =

r

L
,

where V0 is quasi-steady. As we have seen, if V0 is defined by (3.7), then to the right
of the turning point at ρb = 2β−1/2 (see section C), V0 is oscillatory:

V0 ∼ 1

ρ
cos

(
βρ2

4

)
.

Therefore, with this definition it is not possible to match ψs with ψback. Moreover,
V0 is not even in L2, as

∫∞
0
|V0|2 ρdρ diverges.

In order to take care of this problem we need to redefine V0. One possibility is to
have V0 defined for all ρ, in which case one has to add a small term to (3.7) which will
correct its behavior for large ρ. In this case, the equation for V0 is (3.8). Alternatively,
we can consider V0 to be the solution of (3.7), restricted to the domain 0 ≤ ρ ≤ ρc,
where 1 � ρc < ρb (e.g., ρc = β−1/2). If we adopt this approach, then ψs is also
defined only for 0 ≤ ρ ≤ ρc, as in (3.3).

Lemma B.1. Let V0(ρ) be the solution of (3.7). Then

H(V0) :=

∫ ρc

0

|∇V0|2 ρdρ− 1

2

∫ ρc

0

|V0|4 ρdρ

= −β
4

∫ ρc

0

ρ2V 2
0 ρdρ+ {terms exponentially small in β} .

In addition, if we expand

V0 ∼ R(ρ) + βg(ρ) +O(β2), |β| � 1,(B.1)

the equations for R and g are (2.11) and (3.10) and∫ ∞
0

Rg ρdρ =
M

2
, N(V0) :=

∫ ρc

0

|V0|2 ρdρ = Nc + βM +O(β2).

Proof. Use ∫ ρc

0

V 2
0 =

∫ ∞
0

R2 + 2β

∫ ∞
0

Rg +O(β2)

and Lemma A.1 with P = V0, ε = β, w = (1/4)ρ2V0, and h = g. Note that
in the domain [0 ρc] the expansion (3.9) is uniform in ρ and V0, R, and g are all



SELF-FOCUSING IN NONLINEAR SCHRÖDINGER EQUATION 231

exponentially decreasing. Therefore, the error of replacing ρc with infinity in integrals
is exponentially small in β.

Lemma B.2. Let

ψs(r, z) =
1

L
V0(ρ;β) exp

(
iζ + i

Lz
L

r2

4

)
, ρ =

r

L
.

Then

N(ψs) :=

∫ Lρc

0

|ψs|2 rdr = Nc + βM +O(β2) .(B.2)

Proof. This follows from Lemma B.1.

Appendix C. WKB calculation of the rate of power and Hamiltonian
radiation. In this appendix we derive (3.16) and (3.17). Let us rewrite (3.4) as

iVζ + ∆⊥V − UV = 0 , U = 1− |V |2 − 1

4
βρ2 .(C.1)

The radiation rates for the power and Hamiltonian of ψs are given by

d

dz
N(ψs) =

d

dz

∫ Lρc

0

|ψ|2 rdr,(C.2)

d

dz
H(ψs) =

d

dz

∫ Lρc

0

[
|ψr|2 − 1

2
|ψ|4

]
rdr .

When 0 < β � 1,

V ∼ R(ρ) , 0 ≤ ρ� β−1/2 ,(C.3)

and the potential U has two turning points: ρa = O(1) and ρb ∼ 2/
√
β. Since in

the classically inaccessible region [ρa, ρb] the solution V has an exponential decay,
if we set ρc in (C.2) to be just past the second turning point to the right, i.e., 0 <
ρc − ρb � 1 (rather than 1 � ρc < ρb, as in Appendix B), this would result only in
an exponentially small change in the values of Ns and Hs.

If we differentiate (C.2), use (1.1), and integrate by parts, we get

d

dz
N(ψs) = |ψ|2LLzρ2

c + (iψ∗ψrLρc + c.c.) ,

d

dz
H(ψs) = |ψr|2LLzρ2

c −
1

2
|ψ|4LLzρ2

c + [iLρc(ψ
∗
rψrr − |ψ|2ψ∗ψr) + c.c.] .

Using (3.1), these equations can be rewritten in terms of V :

d

dz
N(ψs) =

1

L2
(iρcV

∗Vρ + c.c.)(C.4)

and

(C.5)

d

dz
H(ψs) = −Lzρ

2
c

L3
|Vρ|2 − L2

zρ
3
c

4L2
(iV V ∗ρ + c.c.) +

Lzρ
2
c

2L3
|V |4 +

ρc
L4

(iV ∗ρ Vρρ + c.c.)

−Lzρc
2L3

(|V |2)ρ +
Lzρ

2
c

2L3
(V ∗Vρρ + c.c.)− ρc

L4
(i|V |2V ∗Vρ + c.c.).
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In order to find the asymptotic behavior of V for ρ > b, we rewrite (C.1) as

iVζ + δ2∆sV − UV = 0 , U = 1− |V |2 − s2 , s = δρ , δ =
β1/2

2
� 1.(C.6)

Since for CNLS Vζ = o(β), we can use the stationary version of (C.6):

δ2∆sV − UV = 0 .(C.7)

In terms of the new independent variable s, the turning points are at sa = O(δ) and
sb ∼ 1. Using (C.3) and

R(ρ) ∼ AR exp(−ρ)ρ−1/2, ρ� 1,

we get that

V ∼ AR exp(−s/δ)(s/δ)−1/2, δ � s� 1.(C.8)

When s� δ, the nonlinearity becomes negligible. Application of WKB to (C.7) shows
that

(C.9)

V ∼ Cw
s1/2p1/2

exp

(
+
i

δ

∫ s

1

p(r) dr

)
, p = (−2U)1/2 ∼

√
s2 − 1, δ2/3 � s− 1,

from which it follows that

V ∼ Cw
s

exp

(
+i
s2

2δ

)
, s� 1.(C.10)

Only the term with the plus sign in the exponent was used in (C.9) and (C.10) in
order to ensure that ψs ∼ V/L exp(ir2Lz/4L) has no rapid oscillations as it connects
to ψback. The connection formula for (C.9) beyond the turning point at sb (e.g., [11,
Chapter 10], [38, Chapter 7]) gives

V ∼ Cw exp(−iπ/4)

s1/2|p|1/2 exp

(
−1

δ

∫ s

1

|p(s′)| ds′
)
, |p| ∼

√
1− s2,

δ � s < 1 , s− 1� δ2/3.

In particular, when δ � s� 1, |p| ∼ 1 and

V ∼ Cw exp(−iπ/4)

s1/2
exp

(
−1

δ

(∫ 0

1

√
1− s2 ds+ s

))
, δ � s� 1.(C.11)

The value of Cw is determined by matching (C.11) with (C.8) and using
∫ 1

0

√
1− s2 ds =

π/4:

Cw = ARδ
1/2 exp

(
− π

4δ

)
exp

(
+i
π

4

)
.(C.12)

Combining (C.6), (C.10), and (C.12) gives

V ∼ 21/2ARβ
−1/4ρ−1 exp

(
− π

2
√
β

+ i
π

4
+ i

β1/2

4
ρ2

)
, ρ� β−1/2 .(C.13)
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If we substitute (C.13) into (C.4), we get that in the domain of validity of (C.13)
the rate of power radiation is independent of ρ:

d

dz
Ns ∼ −2A2

R

L2
exp(−π/

√
β),

which is (3.16). However, if we substitute (C.13) into (C.5), the result will depend on
ρ. Therefore, in order to estimate (C.5) we need the asymptotic behavior of V just
to the right of the second turning point sb = 1 (C.9):

V ∼ Cw
21/4(s− 1)1/4

exp

(
+i

21/2

δ

∫ s

1

(s′ − 1)1/2 ds′
)
, δ2/3 � s− 1� 1.(C.14)

If we substitute (C.14) into (C.5) and use δ ∼ −LLz/2 and δ2/3 � s− 1, we get that
for leading order

d

dz
Hs ∼ −2A2

R

L4
exp(−π/

√
β),

which is (3.17).

Appendix D. Asymptotic growth of Hs. In order to estimate the rate at
which Hs grows in the adiabatic regime, we use (3.17) and the adiabaticity of β to
write

Hs ∼ −Mν(β)

∫ z 1

L4(z′)
dz′.

If we use (3.35) and integrate, we get

Hs ∼ −Mν(β)

4β

1

Zc − z
or

Hs ∼ −Mν(β)

2
√
β

1

L2
.

Appendix E. Derivation of (3.35). We first note that by (3.13), (3.28), (J.1),
and using β ∼ a2, we have that

C(z) =
a2 − β
L2

=
−aζ
L2
∼ ν(β)

2
√
βL2

.

Using this and (3.35), we have that

C(z)(Zc − z)2

2
√
β(Zc − z)

∼ ν(β)(Zc − z)
4βL2

∼ ν(β)

8β3/2
� 1,

showing the consistency of the adiabatic law (3.35) being the limit of the adiabatic
law (3.34) near the singularity.

Appendix F. Solvability conditions for V1. In the derivation of the reduced
equations from a solvability condition for V1 we use the following result.



234 GADI FIBICH AND GEORGE PAPANICOLAOU

Lemma F.1. Let V1 = S + iT be the solution of

∆⊥V1 − V1 + 2R2V1 +R2V ∗1 = p(x, y) + iq(x, y),(F.1)

where S, T, p, q are real and R(r) is the positive solution of ∆⊥R+R3−R = 0. Then
the solvability condition for S is that

∫
p∇⊥R = 0 and the solvability condition for T

is that
∫
qR = 0.

From Lemma F.1, Corollary F.2 immediately follows.
Corollary F.2. If p is an even function, the equation for the real part of V1 in

(F.1) is always solvable.
The proof of Lemma F.1 follows from the following result, which is given in [77]

but not proved there for L+ for the 2D case. Here we give a proof which can be
generalized to all dimensions and powers of nonlinearity.

Lemma F.3. Let

L+ = (∆⊥ + 3R2 − 1), L− = (∆⊥ +R2 − 1),

where

∆⊥ =
d2

dr2
+

1

r

d

dr
,

be operators on

B =
{
f ∈ C2[0 ∞) | fr(0) = 0, f(∞) = 0

}
.

Then
1. L+ is a self-adjoint operator with null space N(L+) = span{Rr};
2. L− is a self-adjoint operator with null space N(L−) = span{R}.

Proof. We can easily see that Rr is in the null space of L+ by differentiating the
equation for R. Hence, we can use Rr to find the second independent solution u by
considering

u = vRr.

From L+u = 0, the equation for v is

2vr(Rr)r + vrrRr +
d− 1

r
vrRr = 0.

This equation can be solved easily, and we get that

u = Rr

∫ r 1

(r′)d−1[Rr]2
dr′.

For large r, R ∼ r−1/2e−r and u diverges. Hence, u is not in N(L+).
The proof for L− is similar.

Appendix G. Proof of Proposition 4.2. When f2 6≡ 0, dimensional argument
shows that

[(f1)z]

[f2]
=

[L2]

[Z]
∼ β1/2 � 1.
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Therefore, the leading order behavior of (4.3) is given by (4.8). Since in this case
the accuracy of the approximation is O(β1/2), there is no point in keeping the ν(β)
radiation term.

When f2 ≡ 0 (4.3) becomes (4.16). For leading order we can neglect the ν(β)
term and integrate (4.16) to get (4.7).

Appendix H. Proof of Proposition 4.3. If (4.9) holds, we can multiply (4.7)
by −2Lz/L

3 and integrate to get

L2
z =

β0

L2
− εC1

4M

1

L4
+D, D = constant,(H.1)

or

y2
z = 4β0 − εC1

M

1

y
+ 4Dy.(H.2)

Although the value of D can be obtained directly from (H.1), it is more instructive
to obtain it by deriving (H.2) from Hamiltonian balance. To do so, we multiply (4.1)
by ψ∗z , add the conjugate equation, and integrate to get an equation for balance of
Hamiltonian in (4.1):

∂

∂z
H(ψ) =

ε

2π

∫
[ψ∗zF (ψ) + c.c.] dxdy.(H.3)

The right-hand side of (H.3) can be approximated using (3.12), (3.17), and (4.23):

1

2π

∫
[ψ∗zF (ψ) + c.c.] dxdy ∼

(
1

2L2

)
z

f1 +
2

L2
f2 .

Therefore, in the generic conservative case (4.9), (H.3) reduces to

Hz ∼ −εC1

4

(
1

L4

)
z

.

Simple integration gives

H = H0 − εC1

4

1

L4
, H0 ∼ H(0) +

εC1

4

1

L4
0

.(H.4)

We note that

H(ψ) = H(ψs) +H(ψback), H(ψs) ∼ML2
z +

H(V0)

L2
.

In addition, from Lemmas A.1 and B.1 we have

H(V0) ∼ −βM +
1

2
εf1.

Therefore,12

Hs ∼ M

2
(L2)zz +

εf1

2L2
,(H.5)

12This is true except when (f1)z = f2 ≡ 0, in which case (L2)zz is as small as the terms neglected
in Lemma B.1.
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which in the case of (4.9) becomes

H(ψs) ∼ M

2
(L2)zz − εC1

2L4
.(H.6)

Substituting (H.6) in (H.4), multiplying by 4yz/M , and integrating again gives

y2
z = −εC1

M

1

y
+

4H0

M
y + constant.

Comparison of this equation with (H.2) gives (4.10), which can be rewritten as (4.11).
1. From (4.10) we see that if εC1 > 0, then y (or L) cannot go to zero.

(a) If β0 > 0 and H0 < 0, then 0 < ym < yM . To evaluate ∆Z we note that

∆Z =

√
M

−H0

∫ yM

ym

√
y

(yM − y)(y − ym)
dy.

Substituting (y − ym)/(yM − ym) = cos2 u gives (4.15).
(b) When β0 > 0 and H0 > 0, (4.10) can be written as

y2
z =

4|H0|
M

1

y
(y + |yM |)(y − ym).

2. In this case ym < 0.
3. The location of (first) arrest is

z0 = −
∫ ym

y(0)

1

2

√
M

−H0

√
y

(yM − y)(y − ym)
dy ∼ 1

2

∫ y(0)

0

(
β0 +

H0

M
y

)−1/2

dy = Zc.

When ψ0 is real, then Lz(0) = 0, and y(0) = yM .

Appendix I. Proof of Proposition 4.4. In this appendix we estimate the
value of

∆Ns ∼ −M
∫ z+∆Z

z

ν(β)

L2
dz,

following [25]. (Actually, the expression derived here is somewhat more accurate than
the one in [25].) We first note that from (J.1) and (4.11) we have

β =
1

4
(yz)

2 − 1

2
yyzz = βM

(
1− 2

yM/y − 1

yM/ym − 1

)
,(I.1)

where

βM := β(zM ) = −H0

M
(yM − ym)

and zM is the location such that

y(zM ) = yM and z ≤ zM ≤ z + ∆Z.

Let us rewrite ∆Ns as

∆Ns ∼ −Mν(βM )

∫ z+∆Z

z

1

y(z)
exp[λMh(z)] dz,
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where

λM :=
π√
βM

, h(z) = 1−
√
βM/β.

Since λM � 1, we can approximate the integral using Laplace’s method for integrals
(e.g., [11, 54]):

∫ z+∆Z

z

1

y(z)
exp[λMh(z)] dz ∼ 1

yM
λ
−1/2
M

√ −π
2hzz(zM )

.

Since βz(zM ) = 0,

hzz(zM ) =
1

2βM
βzz(zM ).

Similarly, since yz(zM ) = 0, from (I.1) we have

βzz(zM ) =
2βMym
y2
M

yzz(zM ).

Differentiating (4.11) gives

yzz(zM ) =
2H0

M

(
yM − ym
yM

)
= −2βM

yM
.

Therefore,

hzz(zM ) = −2βMym
y3
M

and ∆Ns is given by (4.17).

Appendix J. Useful relations. The following relations are useful in analysis
of the reduced modulation equations:

β = −L3Lzz =
1

4
(yz)

2 − 1

2
yyzz =

Aζζ
A

= a2 + aζ ,(J.1)

βz = −1

2
yyzzz,(J.2)
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where

y = L2, A =
1

L
, a = −LLz =

−Lζ
L

.
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