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Abstract

The relative magnitude of time-dispersion in
laser-tissue interactions is proportional to the
ratio of the radial width of the pulse to its tem-
poral width and to the group velocity disper-
sion. The dependence of time dispersion e�ects
on its sign and magnitude is discussed.

1 Introduction

The use of ultrashort laser pulses in medical
applications o�ers the possibility for reaching
extremely high intensities with relatively low
energies and enhanced localizability. This is ex-
tremely important in eye surgery when high in-
tensity pulses are used to disrupt tissue, since
nearby sensitive structures can be damaged by
the shock and acoustic waves resulting from
the optical breakdown (ionization of the target
medium). While the physical phenomena asso-
ciated with optical breakdown has lead to in-
tense experimental research, less attention has
been devoted to the pulse propagation before
optical breakdown occurs.

Although it is well known that the propa-
gation of a laser pulse through aqueous media
is described by a nonlinear Schr�odinger equa-
tion for the pulse envelope, the exact equa-
tion that applies to ultrashort pulses is still
part of the research problem (e.g. Powell et
al., 1993). In this study we focus on the role
of time dispersion during the propagation. Al-
though time dispersion has often been assumed
to be negligible, this assumption needs to be
rechecked for today's ultrashort pulses since
time-dispersion is inversely proportional to the
pulse duration. Indeed, experimental evidence
suggests that femto-second pulses behave dif-
ferently from longer pulses: They have a lower
retinal injury energy threshold (Birngruber et
al., 1987) and they seem to resist self-focusing
(Strickland and Corkum, 1991). Di�erences
have also been observed between pico-second
and nano-second laser tissue interactions (e.g.
Vogel et al., 1994, Zysset et al., 1989).

In the following we will analyze the e�ects of
time dispersion on the propagation. Since the
model for the pulse propagation is nonlinear,
time dispersion e�ects cannot be analyzed sep-
arately and the interaction between the Kerr
nonlinearity, radial dispersion and time disper-
sion has to be considered.



2 Time Dispersion Sign and

Magnitude

The propagation of a laser pulse through an
aqueous media is described by the nonlinear
Schr�odinger equation:
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where A(�; r; z) is the envelope of the electric
�eld of the pulse, � = t � z=cg is the retarded
time in a frame moving with the pulse group
velocity cg, z is the axial coordinate in the di-
rection of propagation and r =

p
x2 + y2 is

the radial coordinate in the transverse plane.
The nondimensional variables � , r and z are
measured in units of the pulse initial tempo-
ral width T0, the pulse initial radial width a0
and the di�raction length Ldiff = �0a
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0, respec-
tively, where �0 is the pulse wavenumber. The
relative magnitude of the nonlinearity is �jAj2,
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n0 is the linear index of refraction of water and
n2 is the Kerr coe�cient. The time dispersion
parameter is
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c is the speed of light in vacuum and !0 is the
pulse frequency. The expression for  can be
also written as the product of two nondimen-
sional parameters:
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Figure 1: A cigar-like pulse (top) and a disc-like
pulse (bottom)

Since cT0 is the initial temporal pulse width,
R is small for pulses that are `cigar-like' (long
and narrow) but is large for `disc-like' (short
and wide) pulses. The value of G depends on
the material GVD at the pulse frequency and
it determines whether time dispersion is normal
( > 0) or anomalous ( < 0).
In the visible regime the value of n0 for wa-

ter is almost constant. Therefore, jGj � 1 and
time dispersion magnitude can become com-
parable to radial dispersion only for disc-like
pulses.

3 Analysis

We will begin with a short review of the mathe-
matical theory for the interaction of dispersion
(radial and/or temporal) with Kerr nonlinear-
ity, as described by the canonical equation

i
@A

@z
+ �4? A + �jAj2A = 0 ;

where � is a constant and
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is the d dimensional transverse Laplacian. The
most important parameter is the relative signs
of dispersion and the nonlinearity. While dis-
persion leads to broadening, the nonlinearity
will be defocusing when they are of the opposite
sign and focusing when they are of the same



sign. In the focusing case the interaction de-
pends also on the transverse dimension d. In
one dimension the focusing nonlinearity is al-
ways balanced by dispersion (they may even
balance each other exactly, resulting in soliton
propagation). However, in higher dimensions
the focusing nonlinearity can become unbal-
anced by dispersion, resulting in catastrophic
self-focusing. In dimension d = 2 a necessary
condition for collapse is that the pulse power is
above a critical value.

3.1 jj � 1

In the case of large time dispersion equation (1)
can be simpli�ed:
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This equation also describes the propagation
of laser pulses in optical �bers. In equation
(2) anomalous time dispersion slows temporal
broadening while normal time dispersion en-
hances it, with the exact dynamics depend-
ing on the ratio =� and on the initial pulse
form (Agrawal, 1989). If the initial pro�le is
an unchirped Gaussian, then the rms temporal
width broadening factor can be approximated
by (Potasek et al., 1986):
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the approximation being valid for z�m < 1.
Note that in the case of normal time dispersion
the temporal broadening of the pulse is accom-
panied by a reduction of its power. This may
explain why ultrashort pulses in normally dis-
persive media seem to resist self-focusing.

3.2 jj � 1

In the anomalous time dispersion regime when
time and radial dispersion are of comparable
magnitudes, the propagation dynamics is de-
termined by the interplay between the focus-
ing nonlinearity and the 3D (i.e. (x; y; t)) defo-
cusing Laplacian. This case is supercritical for
self-focusing and the temporal compression will
enhance the pulse collapse.

The qualitative picture is less clear in the case
of normal time dispersion. Preliminary results
suggest that in this case, at least initially, the
pulse will broaden temporally while compress-
ing radially. Therefore ,radial collapse will be
arrested for pulses with power below and even
somewhat above the critical one for 2D self-
focusing. However, if the pulse is su�ciently in-
tense, the combined e�ect of temporal broaden-
ing and radial collapse means that the e�ective
value of  decreases. Therefore, the advanced
stages of the propagation will be similar to the
case  � 1.

3.3 jj � 1

When time dispersion is small compared with
radial dispersion and the Kerr nonlinearity, its
e�ect can be expected to be negligible. Nev-
ertheless, if the pulse is undergoing 2D self-
focusing, the focusing nonlinearity and the ra-
dial dispersion almost completely balance each
other and even small time dispersion can have
a large e�ect. In the case of anomalous time
dispersion the qualitative dynamics is 3D self-
focusing, with the small temporal compression
enhancing the collapse. However, when time
dispersion is normal the dynamics is much more
complex and new phenomena occur. The most
pronounced e�ects that have been observed in
numerical simulations of equation (1) with nor-
mal time dispersion are a delay in the onset
of catastrophic self-focusing and the temporal
splitting of the pulse into two peaks (Chernev



and Petrov, 1992; Fibich et al., 1995; Luther
et al., 1994; Rothenberg, 1992; Zharova et al.,
1986). Additional understanding of these phe-
nomena can be gained from a new system of
equations that reduces the self-focusing dynam-
ics to the (�; z) plane using radially-averaged
quantities (Fibich et al., 1995):
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Here a(�; z) corresponds to the radial width of
the pulse (and is also inversely proportional to
its intensity jA(�; 0; z)j), N(�; z) is the pulse
power and �(�; z) is the local `time', all quanti-
ties corresponding to the r plane � = constant.
The constant Nc

�= 11:7 is the critical power for
self-focusing and M �= 3:46.
A detailed derivation, study and numerical

con�rmation of (4{6) is given in Fibich et al.
(1995). In the following we will outline the self-
focusing dynamics based on (4{6). Initially,
time dispersion is negligible and the left side
of equation (4) can be set to zero. Each �
cross section would focus independently accord-
ing to equation (5), following the adiabatic law
(Fibich, 1995; Malkin, 1993):
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where Zc(�) � 0:5Ma20N
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is the location of
blowup in the absence of time dispersion. As a
result, the temporal gradients will increase and
power would radiate away from the fastest fo-
cusing cross section (equation 4). Careful anal-
ysis shows that the focusing is arrested in the
near vicinity of the initial peak but continues
elsewhere. Hence, two new peaks are formed
which continue to focus without splitting again.

4 Conclusions

Femtosecond pulses as well as su�ciently `wide'
picosecond pulses are disc-like. This work sug-
gests that time dispersion may play an impor-
tant role in the propagation of these disc-like
pulses. Physical experiments can determine
if disc-like pulses in normally dispersive me-
dia become elongated and have less power as
they propagate according to equation (2) or (3).
In the case of small normal time dispersion it
needs to be determined experimentally whether
it increases the critical power for nonlinear self-
focusing, delays its onset and leads to temporal
peak splitting. When time dispersion e�ects are
important, this may inuence the choice of the
desired wavelength, the key issue being whether
for the speci�c application it is desirable to op-
erate in the normal or anomalous regime.
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