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ABSTRACT

Time dispersion plays an important role in the propagation of femtosecond pulses through water. The com-
bined e�ects of time dispersion, radial di�raction and the Kerr nonlinearity on the pulse propagation are analyzed
and it is shown that normal time dispersion leads to signi�cant temporal broadening of ultrashort pulses and that
it increases the threshold power for catastrophic self-focusing.

Keywords: time dispersion, ultrashort pulse, self focusing, optical breakdown

1 INTRODUCTION

The interpretation of high intensity laser experiments such as optical breakdown or retinal damage requires
information on the electric �eld at the target area. In many cases a direct measurement is not possible and
the electric �eld value is calculated using linear di�ractive optics formulas for the pulse propagation through the
media and the pulse characteristics before entering the media. The use of a linear model may be incorrect if
the pulse power is comparable to the critical power for nonlinear self-focusing. In this work we suggest that in
propagation of ultrashort pulses time dispersion also plays an important role. Therefore, there is a need for a
simple model that predicts how the combination of radial di�raction, time dispersion and the Kerr nonlinearity
e�ect the propagation of ultrashort laser pulses through an aqueous media.

Time dispersion can be normal or anomalous and its e�ect is di�erent in each case. The qualitative picture
is clearer in the case of anomalous time dispersion: Both time dispersion and radial di�raction are of the same
sign and the propagation dynamics are determined by the balance between the 3D focusing Kerr nonlinearity
and the 3D defocusing Laplacian. While the model that we use in this work cover this case, from now on we will
concentrate on the more complicated case when normal time dispersion and radial di�raction have opposite signs.
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Figure 1: A cigar-like pulse (top) and a disc-like pulse (bottom)

In the absence of radial di�raction the equation governing the pulse propagation is the same as the equation for
pulse propagation through optical �bers3 and both normal time dispersion and the Kerr nonlinearity contribute
to the temporal broadening of the pulse as it propagates. A di�erent dynamics is observed in the absence of time
dispersion: The pulse radius is determined by the competition between the self-focusing Kerr nonlinearity and
radial di�raction. The magnitude of nonlinear self-focusing is proportional to the pulse power and is stronger
than radial di�raction when the pulse power is above the critical power for self-focusing.

The main question that we address in this work is how the pulse propagates when all three mechanisms act
together. Note that because of the nonlinearity one cannot simply superimpose the e�ect of each mechanism.
Most theoretical studies have concentrated on the case of small time dispersion.4,5 These studies showed that if
the pulse is self-focusing even small normal time dispersion can have an important e�ect by delaying the onset
of self-focusing and leading to the temporal splitting of the pulse into two pulses. The case of non-small normal
time dispersion was studied in2,6 and it was shown that normal time dispersion increases the threshold power
for catastrophic self-focusing. Recently, Berg�e and Rasmussen derived a mathematical model for propagation
of Gaussian pulses under time dispersion, radial dispersion and Kerr nonlinearity.1 In this work we use their
model to analyze the interaction between these three mechanisms and to calculate the changes in the radial and
temporal width of the pulse as it propagates.

2 THE MODEL

In this section we present a simpli�ed model for ultrashort laser pulse propagation. For a derivation of the
model see appendix 6.1.

The propagation of a femtosecond laser pulse through an aqueous media is described by the nonlinear
Schr�odinger equation with time dispersion (6). In this equation the relative magnitude of time dispersion can be
written as3
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The value of R is proportional to the ratio of the pulse initial radius r0 to its initial temporal pulse width cT0.
Therefore, R is small for pulses that are `cigar-like' (long and narrow) but is large for `disc-like' (short and
wide) pulses. Note that femtosecond pulses are usually `disc-like': R = 100 for a 100 femtosecond pulse with
0:3 mm radius. G is the nondimensional group velocity dispersion of the media at the pulse frequency and its
sign determines whether time dispersion is normal (
 > 0) or anomalous (
 < 0). In the visible regime jGj � 1
(since the value of n0 for water is almost constant) and time dispersion magnitude can become comparable to
radial dispersion only for disc-like pulses.



Direct analysis and simulations of the nonlinear Schr�odinger equation with normal time dispersion are di�cult.
However, the mathematical model can be considerably simpli�ed if we consider pulses with an initial Gaussian
pro�le and assume that they maintain a Gaussian pro�le during their propagation. In this case the propagation
dynamics can be approximated by1:
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Here L(z) and l(z) are the temporal and radial broadening factors, respectively, z is given in units of the di�raction
length ldiff = k0r

2
0, P0 is the initial peak power and Pc = 1:222��20=(32n0n2) is the critical power for self-focusing

in the absence of time dispersion. The initial conditions are given at the media interface at z = 0:

l(0) = 1 ; L(0) = 1 ; lz(0) =
ldiff
Rlens

; Lz(0) = 
C : (4)

and they include the possibility of an initial frequency chirp C and a lens with focal length Rlens located at z = 0.

3 THE PROPAGATION DYNAMICS

We begin by considering the case of an unchirped collimated beam i.e. lz(0) = Lz(0) = 0. Equation (2) shows
that the pulse focuses radially when its peak power P0=L(z) is larger than the critical power for self-focusing Pc
and defocuses otherwise. Equation (3) shows that both normal time dispersion and the nonlinearity contribute
to temporal broadening of the pulse. By solving

Lzz >

2

L3
; L(0) = 1 ; Lz(0) = 0

we can get a lower bound estimate for temporal broadening:

L2(z) > 
2z2 + 1 :

Therefore, the pulse duration will more than double after it travels a distance of 2ldiff=
.

If the pulse power is below critical the propagation dynamics is determined by time dispersion and the
nonlinearity. However, when P0 > Pc the picture is more complex. Let us denote by zTD the point where in the
absence of radial di�raction the peak pulse power becomes equal to Pc (i.e. L(zTD) = P0=Pc) and let zSF be the
blowup point in the absence of time dispersion where l(zSF ) = 0. There are two possible cases in (2){(3) when
P0 > Pc:

� zTD < zSF

In this case the power goes below critical before l reaches zero. Therefore, the pulse is undergoing a
continuous temporal broadening while it focuses radially for z < zTD and defocuses radially afterwards.

� zSF < zTD

In this case temporal broadening is not fast enough to arrest catastrophic self-focusing which will occur at
zSF .
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Figure 2: Temporal broadening factor L (dashed line) and radial broadening factor l (solid line) as a function
of the distance of propagation z (in di�raction length units) for 
 = 1 and a pulse power of A: P0 = 2Pc, B:
P0 = 6Pc and C: P0 = 8Pc.

Figure 2 shows the evolution of l(z) and L(z) for an unchirped collimated pulse when 
 = 1. Time dispersion
clearly dominates in �gure 2A and although the initial pulse power is twice the critical one for self-focusing Pc very
little radial focusing takes place. Even when the input power is raised to 6Pc (�gure 2B) time dispersion arrests
self-focusing after focusing by a factor of ten. However, when the pulse power is 8Pc (�gure 2C) nonlinearity
dominates and catastrophic self-focusing occurs. In this case most radial focusing occurs very close to the blowup
point.

The separation line between the two cases is

zTD = zSF :

This equation can be solved for the threshold power for self-focusing PTH as a function of 
 and the initial
conditions (appendix 6.2). Catastrophic self-focusing will occur if P0 > PTH while temporal broadening will
arrest radial focusing when P0 < PTH .



We are now in a position to analyze the e�ects of various parameters on the propagation:

� E�ect of pulse duration:

If the pulse is shorter, 
 increases, temporal broadening is faster, zTD is smaller and PTH increases.

� E�ect of initial pulse radius:

A wider pulse corresponds to a larger value of 
 and has the same e�ect in the model equations as that
of a shorter pulse duration. However, the dynamics will occur over a larger physical distance since the
di�raction length is longer.

� E�ect of a focusing lens:

A focusing lens is represented in the model by lz(0) < 0. Therefore, radial focusing is faster, zSF is smaller
and PTH decreases.

� E�ect of a frequency chirp:

A positive frequency chirp C > 0 corresponds to Lz(0) > 0. Therefore temporal broadening is faster, zTD
is smaller and PTH increases. The opposite is true for C < 0.

� E�ect of wavelength:

The choice of wavelength e�ects the pulse propagation in many ways. Most importantly, it determines
whether time dispersion is normal or anomalous. It also e�ects the size of 
 and the length scale (ldiff ) for
changes in z.

4 DISCUSSION

The model provides qualitative information on the interaction between time dispersion, radial di�raction and
the Kerr nonlinearity that was not available before. In addition, it allows experimentalists to estimate the pulse
width, duration and power at the retina, near the location of optical breakdown etc. However, the quantitative
predictions of the model are only correct to within an order of magnitude because of the error introduced by the
assumption that the pulse maintains a Gaussian pro�le. For example, the results obtained for PTH (
) using the
model (appendix 6.2) are higher by a factor of two compared with the formula obtained by Luther et al6 for the
case of an unchirped collimated beam:
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The validity of the model breaks down when time dispersion is small and the pulse power is above critical since
the Gaussian approach fails to capture the delicate balance between radial di�raction and the nonlinearity. Even
if 
 is not small, if the pulse power is greater than PTH radial focusing will dominate over temporal broadening
and the relative magnitude of time dispersion 
(l=L)2 will become small near the blowup point. Therefore, while
the model predicts catastrophic self-focusing (l = 0) when P0 > PTH , its validity breaks down once l � L
�1=2.
Note that this only occurs near the blowup point where most of radial focusing takes place (see �gure 2C). In this
region modulation theory for small time dispersion becomes valid4 and the pulse will split temporally into two
pulses. Additional mechanisms can also become important in this region such as optical breakdown and beam
nonparaxiality.
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6 APPENDIX

6.1 Derivation of the model

The propagation of a laser pulse through an aqueous media is described by the nonlinear Schr�odinger equation:
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where  (z; r; t) is the envelope of the electric �eld, r =
p
x2 + y2 is the radial coordinate, z is the axial coordinate

in the direction of propagation, n0 is the linear index of refraction of water, n2 is the Kerr coe�cient and
vg = @!=@k is the group velocity. To bring this equation into a canonical form, we change into a retarded time
frame � = t� z=vg and non-dimensionalize the variables:
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where r0 is the pulse initial radius and ldiff = k0r
2
0 is the di�raction length. The resulting equation is
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The relative magnitude of the nonlinearity is �j j2, where
� = 2r20k
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and that of time dispersion is
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which can be also written in the form (1).

We study the propagation of a pulse which enters the media at z = 0 with an initial Gaussian pro�le and
allow for the possibility that it has an initial frequency chirp C and that it is focused by a lens with focal distance
Rlens:
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We drop the tilde signs and look for solutions of (6) that maintain a Gaussian pro�le:
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Here l(z) and L(z) are the relative radial and temporal broadening, respectively. If we plug (7) into equation (6),
the imaginary part of the equation is satis�ed exactly if

a = �2lz
l
; A = �2Lz

L
:

From the initial condition and the last relation we get the initial condition (4). The O(1) terms in the real part
of the equation determines �(z):
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The O(r2) and O(t2) equations are:
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Equations (8,9) were �rst derived by Berg�e and Rasmussen.1

From the derivation we see that when we use the assumption that the pulse maintains a Gaussian pro�le (7)
we neglect some O(�4; r4) terms. Therefore, this assumption leads to results which are qualitatively correct but
that do not give the correct quantitative answers. However, some improvement can be achieved by adjusting the
constants in (8,9). For example, consider the case when there is no time dispersion (
 = 0). In this case L � 1
and

lzz =
1

l3
[1� 2�N0] (10)

where N0 is the initial nondimensional peak power:
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2
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Since we would like equation (10) to predict catastrophic self-focusing (i.e. l going to zero) when the peak
(dimensional) power P0 is greater than the critical one for self-focusing Pc, we replace it by
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Similarly, in the absence of radial di�raction l � 1 and
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We would like this equation to agree with the formula of Potasek et al7 for temporal broadening in the absence
of radial di�raction:
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From equation (13) (which was was derived for the case Lz(0) = 0):
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we replace equation (12) with

Lzz =
1

L3

�

2 + 
D

P0

Pc
L

�
; D =

p
2�Nc : (14)

Comparison of equations (8){(9) with (11){(14) leads to the model equations (2){(3).

6.2 The threshold power for self-focusing PTH(
)

Let us de�ne zSF to be the blowup point (i.e. l(zSF ) = 0) in the absence of time dispersion. In that case l is
changing according to (11) with the initial condition:

l(0) = 1 ; l0(0) = l00 : (15)

The solution of this equation is
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and if l00 = 0 (collimated beam)

zSF =
1p
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:

Similarly, de�ne zTD as the point where the maximumpower goes below critical in the absence of radial di�raction.
From (2), this will occur when L(zTD) = P0=Pc. To �nd zTD , we solve equation (14) with

L(0) = 0 ; L0(0) = L00 :

Multiplying (14) by 2Lz and integrating, we have
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The equation
zTD = zSF

can now be solved using (16){(18) for PTH as a function of 
 and the initial conditions.
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