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Self-focusing of circularly polarized beams

Gadi Fibich and Boaz Ilan
Department of Applied Mathematics, Tel Aviv University, Tel Aviv, 69978, Israel

~Received 7 July 2002; revised manuscript received 14 October 2002; published 28 March 2003!

We present a systematic study of propagation of circularly polarized beams in a Kerr medium. In contrast to
previous studies, vectorial effects~i.e., coupling to the axial component of the electric field and the grad-div
term! and nonparaxiality are not neglected in the derivation. This leads to a system of equations that takes into
account nonparaxiality, vectorial effects, and coupling to the opposite circular component~i.e., the one rotating
in the opposite direction!. Using this system we show that the standard model in the literature for self-focusing
of circularly polarized beams can lead to completely wrong results, that circular polarization is stable during
self-focusing, and that nonparaxiality and vectorial effects arrest collapse, leading instead to focusing-
defocusing oscillations. We also show that circularly polarized beams are much less likely to undergo multiple
filamentation than linearly polarized beams.
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I. INTRODUCTION

The nonlinear Schro¨dinger ~NLS! equation is the mode
equation for self-focusing oflinearly polarized beams in
Kerr media. In 1965, Kelley used the NLS to predict t
existence of a threshold powerNc , such that when the inpu
power is above this threshold the beam would collapse~blow
up! at a finite propagation distance@1#. The existence of a
threshold power was confirmed experimentally~see Ref.@2#,
and references therein!, providing support to the validity of
the NLS model.

In 1966, Close, Giuliano, Hellwarth, Hess, McClung, a
Wagner @3# conducted experiments with intensecircularly
polarized input beams propagating in Kerr media, whic
suggested that circular polarization is unstable. Closeet al.
also proposed a mathematical model for self-focusing of
cularly polarized beams, which they used to explain the
served instability of circular polarization. Subsequent th
retical studies have used the same system of equation
Closeet al., but obtained contradictory results with regard
circular-polarization~in!stability. As a result, to date, there
some confusion in the literature with regard to circula
polarization stability. Remarkably, the only thing that w
always agreed upon was the Closeet al. model itself. As we
show in this study, however, this model is based on proble
atic assumptions, and it can lead to wrong results.

The paper is organized as follows. In Sec. II, we revi
the vector Helmholtz model and the scalar NLS model
beam propagation in Kerr media. In Sec. III, we describe
contradictory results of previous studies on circul
polarization stability, all of which were based on the Clo
et al. system~9!. In Sec. IV, we systematically reduce th
vector Helmholtz equation to the system~19! that models
self-focusing of circularly polarized beams. Similarly to th
Closeet al. system, system~19! takes into account the cou
pling to the opposite-circular component~i.e., the one rotat-
ing in the opposite direction!. Unlike system~9!, however,
system~19! also takes into account beam nonparaxiality a
vectorial effects~i.e., the contribution of the grad-div term
and the coupling to the axial component!. Using system~19!,
we show that circular-polarization is stable. We also sh
1063-651X/2003/67~3!/036622~16!/$20.00 67 0366
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that the assumptions on which the derivation of the Clo
et al. system~9! is based can be physically incorrect. In Se
V, we prove that when nonparaxiality and vectorial effec
are negligible, the systems~9! and ~19!, as well as the sim-
pler semidecoupled system~28!, are asymptotically equiva
lent, and that solutions of these systems can undergo
lapse. In Sec. VI, we usemodulation theoryto describe the
dynamics of a single filament with the reduced system
ordinary differential equations~ODEs! ~32!, which shows
that nonparaxiality and vectorial effects arrest beam colla
and lead to focusing-defocusing oscillations. In Sec. VII,
use numerical simulations of system~19! to confirm the sta-
bility of circular-polarization and the predictions of modul
tion theory. These simulations also demonstrate that
Closeet al. system~9! can lead to wrong predictions.

Since the NLS equation is isotropic, according to the N
model beams with cylindrically symmetric input profil
should remain cylindrically symmetric during the propag
tion. However, experiments have shown that when the in
power is much higher thanNc self-focusing dynamics can
lead to multiple filamentation, i.e., beam breakup into seve
long and narrow filaments@4–6#. For over 35 years, the
standard~and only! explanation for multiple filamentation
due to Bespalov and Talanov@7#, has been that it is initiated
by random noise in the input-beam profile. In Ref.@8#, we
showed that the symmetry breaking due to the preferred
rection in the transverse plane which is induced by lin
polarization can lead to adeterministicmultiple filamenta-
tion, i.e., even when the input beams are perfectly cylind
cally symmetric. In this study we show that, in contrast, c
lindrically symmetric, circularly polarized input beams
cannot undergo multiple filamentation, because in that c
the input polarization state does not induce a preferred di
tion in the transverse plane. In Sec. VIII, we show that wh
the input profile is cylindrically symmetric, a small deviatio
from circular-polarization is unlikely to lead to multiple fila
mentation. However, small imperfections in the input profi
such as input noise or astigmatism, can lead to multiple fi
mentation. Finally, in Sec. IX, we compare self-focusing
circularly and linearly polarized beams. Based on our resu
we predict that circularly polarized beams are much l
©2003 The American Physical Society22-1
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G. FIBICH AND B. ILAN PHYSICAL REVIEW E 67, 036622 ~2003!
likely to undergo multiple filamentation than linearly pola
ized beams.

Note on notations.We use calligraphic letters (EW, PW NL ,
etc.! to denote dimensional variables and noncalligraphic
ters (EW , NW , etc.! to denote dimensionless variables.

II. THE VECTORIAL MODEL

The propagation of intense cw laser beams in a Kerr m
dium is governed by the vector nonlinear Helmholtz eq
tions

DEW~x,y,z!2¹W ~¹W •EW!1k0
2EW52

k0
2

e0n0
2
PW NL , ~1a!

¹W •EW52
1

e0n0
2
¹W •PW NL . ~1b!

Here EW5(E1 ,E2 ,E3) is the electric-field vector,PW NL is the
nonlinear polarization vector,k0 is wave number,e0 is
vacuum permittivity, andn0 is the linear index of refraction
When the Kerr medium is isotropic and homogeneous,
nonlinear polarization vector~i.e., the ‘‘vector Kerr effect’’!
is given by@9,10#

PW NL~EW!5
4e0n0n̄2

11g
@~EW•EW* !EW1g~EW•EW!EW* #, ~2!

where EW* is the complex conjugate ofEW, n̄2 is the Kerr
coefficient, andg is a constant whose value depends on
physical origin of the Kerr effect.1 Let us set the coordinat
system such that the Kerr medium is located at the half sp
z>0, the beam enters the Kerr medium atz50 and propa-
gates in the positivez direction.

Under the assumption that the beam is linearly polariz
i.e., EW5„E1(x,y,z),0,0…, using the slowly varying envelop
E15A1(x,y,z)eik0z and the paraxial approximationA1,zz
!k0A1,z , the vector Helmholtz model~1! reduces to the
NLS equation,

2ik0A1,z1D'A11
4k0

2n̄2

n0
uA 1u2A150,

A1~x,y,z50!5A 1
0~x,y!, ~3!

whereD'5]xx1]yy . In dimensionless units, the NLS equ
tion ~3! is given by

icz~x,y,z!1D'c1ucu2c50, c~x,y,z50!5c0~x,y!.
~4!

Two important invariants of the NLS equation~4! are the
power

1For example,g50 for electrostriction,g51/2 for nonresonant
electrons, andg53 for molecular orientation.
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N~z!5E ucu2dxdy5N~0!,

and the Hamiltonian

H~z!5E u¹W'cu2dxdy2
1

2E ucu4dxdy5H~0!, ~5!

where¹W'5(]x ,]y). When the input powerN(0) is above a
certain thresholdNc , solutions of Eq.~4! can collapse at a
finite propagation distance.2 The value ofNc is equal to the
power of the so-calledTownes soliton R, i.e., Nc

52p*0
`R2 rdr'2p31.8623 @13#, whereR is the positive

solution of

R9~r !1
1
r R82R1R350, R8~0!50, lim

r→`

R~r !50,

~6!

and r 5Ax21y2. For additional information on NLS col-
lapse, we refer the reader to Refs.@14,15#.

III. POLARIZATION „IN …STABILITY—HISTORICAL
BACKGROUND

Strictly speaking, an intense circularly polarized inp
beam that propagates in a Kerr medium does not rem
circularly polarized. Indeed, the vector Kerr effect~2! can be
rewritten in terms of the circular components as

PW NL~EW!5
4e0n0n̄2

11g
@~ uE1u21uE2u21uE 3u2!EW

1g~2E1E21E 3
2!EW* #,

where the left-circular (1) and right-circular (2) compo-
nents are denoted by

E6~x,y,z!5
1

A2
~E11 iE2!, ~7!

and the corresponding input components areE 6
0 (x,y)

5E6(x,y,z50). Thus, E1 , E2 , and E3 are nonlinearly
coupled through the vector Kerr effect~2! and linearly
coupled through the grad-div term in Eq.~1a!. Therefore,
even if initially E2

0 [0, thenE2 does not remain zero forz
.0. In addition, in practice, the input beam is never p
fectly circularly polarized. Therefore, a more realistic rep
sentation of circularly polarized input beams isE1

0 @E2
0 .

The above discussion motivates the following definitio
which is later used in the analysis of the stability of circula
polarization.

2The conditionN(0)>Nc is necessary but not sufficient for co
lapse. The actual threshold power for collapse is generically a
percent aboveNc for cylindrically symmetric input profiles@11#,
but can be considerably higher for anisotropic input profiles@12#.
2-2
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SELF-FOCUSING OF CIRCULARLY POLARIZED BEAMS PHYSICAL REVIEW E67, 036622 ~2003!
Definition (almost circularly polarized beam).A laser
beam is said to be almost circularly polarized ifE2!E1 and
E3!E1 .

All previous studies of circular-polarization stability in
cluded the coupling ofE1 to E2 , but neglected the coupling
of E1 to the axial componentE3 and the grad-div term in Eq
~1a!, i.e., they assumed that

E3!E1 , E3!E2 , ¹W ~¹W •EW!!k0
2E1 . ~8!

Under the assumptions~8!, Eqs.~1! and~2! reduce to the two
coupled equations forE1 and forE2 :

DE61k0
2E61

4k0
2n2

n0~11g!
@ uE 6u21~112g!uE 7u2#E650.

These studies also used the slowly varying envelopesE6

5A6(x,y,z)eik0z and the paraxial approximationE6,zz
!k0E6,z , which lead to the two coupled equations forA1

and forA2 :

2ik0A6,z1D'A61
4k0

2n2

n0~11g!
@ uA 6u2

1~112g!uA 7u2#A650. ~9!

System ~9! has been used to determine whether circu
polarization is stable. As we now show, the results have b
controversial.

A. The analysis of Closeet al.

In 1966, Closeet al. @3# conducted experiments with in
tense circularly polarized input beams propagating in K
media. They observed that ‘‘in every case studied, th
trapped light from a beam, circularly polarized to better tha
1 part in 200, was markedly, if not completely, depolariz
as soon as self-trapping could be detected.’’ Moreover, ‘‘ the
filament pattern [...] suggested that each filament might c
sist mainly of light linearly polarized in some random dire
tion.’’ In other words, they observed that circula
polarization is unstable and that during self-focusi
circularly polarized beams formed filament~s! that are lin-
early polarized in randomly oriented directions. Closeet al.
suggested the following theoretical explanation for insta
ity of circular polarization observed in their experimen
From system~9!, it follows that the effective change of th
nonlinear refractive index ofA6 is given by

dn65
4k0

2n2

n0~11g!
@ uA 6u21~112g!uA 7u2#. ~10!

Wheng.0, the coefficient of the second term in the brac
ets of Eq.~10! is larger than the coefficient of the first term3

Therefore, Closeet al. concluded that wheng.0, self-
focusing of the weaker-circular component is faster than
of the stronger-circular component. As a result, eventual

3Note thatg is positive for most liquids~Ref. @16#, Chap. 17!.
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balance would be reached whereuA1u'uA2u, which corre-
sponds to linear polarization. Therefore, they concluded
linear polarization is stable, whereas circular-polarization
unstable.

B. Subsequent studies of system„9…

Wagner, Haus, and Marburger used the aberrationless
proximation to approximate system~9! with a system of
ODEs @17#. Based on these ODEs, they concluded that
self-focusing distance~i.e., the distance for beam collapse! is
‘‘sensitive’’ to small departures from circular polarization
This result suggests that circular-polarization is unstab
However, it was noted in Ref.@17# that the aberrationles
approximation is a rough approximation of self-focusi
dynamics.4 Prakash and Chandra@18# as well as Vlasov, Ko-
robkin, and Serov@19# studied system~9! and, using argu-
ments similar to those in Ref.@3#, reached the conclusion
that both linear and circular polarizations are stable. Th
conclusions are consistent with the experimental obse
tions of Meyer@20#, as well as of Skinner and Kleiber@21#,
and of Golub, Shuker, and Erez@22#.

In 1970, Berkhoer and Zakharov@23# showed that the
power of each circular amplitude in system~9! is conserved
during the propagation, i.e.,

N6~z!5E uA 6u2dxdy5N6~0!. ~11!

This provesthat according to system~9!, circular polariza-
tion is stable5 for both g.0 and g50, because
N1(z)/N2(z)5N1(0)/N2(0)@1. In spite of this, the ex-
planation of Close et al. for instability of circular-
polarization has persisted in the nonlinear optics literat
long after 1970~e.g., in the classic book of Shen@16#, Chap.
17!, and even up to these days. Remarkably, the only th
that was always agreed upon is the system~9! itself. The
derivation of system~9! is based, however, on the assum
tions ~8!, which can be physically incorrect~see Sec. IV!.
Indeed, our simulations in Sec. VII show that system~9! can
lead to completely wrong predictions.

IV. MODEL FOR SELF-FOCUSING
OF CIRCULAR BEAMS

In this section, we present a systematic derivation of s
tem ~19! for propagation of circularly polarized input beam
which we derive from the vector Helmholtz model~1!. Sys-

4It is now known that applying the aberrationless approximat
to the two-dimensional~2D! NLS equation can lead to completel
incorrect predictions@12#. Indeed, our numerical simulations in Se
VII show that the self-focusing distance is relatively insensitive
the deviation from circular polarization~see footnote in Sec. VII!.

5Strictly speaking, power conservation does not imply that
intensityof A2 does not become comparable to the intensity ofA1 .
However, the numerical simulations in Sec. VII show thatA2 does
remain much smaller thanA1 during the propagation, in contrast t
the qualitative argument of Closeet al.
2-3
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G. FIBICH AND B. ILAN PHYSICAL REVIEW E 67, 036622 ~2003!
tem ~19! consists of two coupled equations for the tw
circular-polarization amplitudes, which, unlike the standa
Closeet al.model~9!, also takes into account nonparaxialit
the contribution of the grad-div term, and the coupling to t
axial component.

A key dimensionless parameter of the model is

f 5
1

k0r 0
5

l

2pr 0
, ~12!

wherel is wavelength andr 0 is input-beam width. Since the
wavelength is much smaller than the input-beam width,
parameterf is small, i.e.,f !1. We are interested in the cas
where input beam is almost left-circularly polarized, i.e.,

E2
0 /E1

0 5O~«!, E 3
0!E1

0 , ~13!

where« measures the deviation from perfect input circu
polarization. Therefore, there are two small parameters in
problem, i.e.,

f !1 and «!1. ~14!

Sincef and« are small, we can use perturbation analysis
simplify the vector Helmholtz equation~1!. To do this, we
rescale the variables according to

x̃5
x

r 0
, ỹ5

y

r 0
, z̃5

z

2LDF
,

EW5
1

2r 0k0
An0

n̄2

AW ~x,y,z!eik0z, ~15!

where AW 5(A1 ,A2 ,A3) is the dimensionless electric-fiel
vector andLDF5k0r 0

2 is the diffraction~‘‘Rayleigh’’ ! length.
For convenience, we drop the tilde signs from now on. Us
Eqs. ~15!, we rewrite the vector Helmholtz systems~1! and
~2! in the dimensionless form~see Ref.@8#!

iAW ,z1D'AW 1 1
4 f 2AW ,zz1NW 52@ f ¹W'1ê3~ i 1 1

2 f 2]z!#@ f ¹W'•NW

1 iN31 1
2 f 2N3,z#, ~16a!

f ¹W'•AW 1 iA31 1
2 f 2A3,z52 f 2~ f ¹'•NW 1 iN31 1

2 f 2N3,z!,
~16b!

NW ~AW !5
1

11g
@~AW •AW * !AW 1g~AW •AW !AW * #, ~16c!

where ê35(0,0,1) and¹W'5(]x ,]y,0). In analogy with Eq.
~7!, we denote the nondimensional circular amplitudes b

A6~x,y,z!5
1

A2
~A16 iA2! ~17!

and the corresponding input amplitudes byA6
0 (x,y)

5A6(x,y,z50).
03662
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Using a careful perturbation analysis of Eqs.~16!, we
prove in Sec. 1 of the Appendix the following result.

Lemma 1.Let an almost circularly polarized input bea
@i.e., that satisfies Eq.~13!# propagate in a Kerr medium
Assume that the rescaling Eq.~15! is valid and thatf and«
are small. Then the dimensionless amplitudes satisfy

A2 /A15O~ f 2,«! ~18a!

and

A3 /A15
f

A2
~ iA1,x1A1,y!1O~ f 3,« f !. ~18b!

Since from Lemma 1 it follows thatA2!A1 and
A3!A1 for z.0, we have the following result.

Proposition 1 (stability of circular-polarization—part I)
Under the assumption that the rescaling Eq.~15! is valid, an
almost circularly polarized input beam remains almost cir
larly polarized during its propagation.

Proposition 1 shows that circular-polarization is stable,
agreement with Berkhoer and Zakharov@23# and in contrast
to Closeet al. @3#. Moreover, whereas the standard explan
tion of Closeet al. for instability of circular-polarization as-
sumes thatg.0, Proposition 1 is independent of the valu
of g. An obvious weakness of Proposition 1 is that it is bas
on the assumption that the scaling~15! remains valid during
the propagation.A priori, the validity of this assumption is
questionable because of the high intensities that can
reached during self-focusing. However, in Sec. VI, we su
stantiate Proposition 1 by proving that Eq.~15! remains valid
during self-focusing. Our numerical simulations in Sec. V
also corroborate this result.

We recall that all the previous studies used system~9!,
whose derivation is based on the assumption thatE3 /E2

!1. However, from estimates~18!, it follows that E2 /E3
5A2 /A35O( f ,«/ f ). Thus,

Corollary 1. When «! f , the assumption thatE3!E2 is
wrong.

Indeed, in Secs. VI and VII, we show that system~9!
leads to completely wrong predictions when«! f . More-
over, we show that even whenf !«, this system can lead to
wrong predictions.6

Using the estimates~18!, we prove in Sec. 2 of the Ap
pendix, the following result.

Proposition 2.Let an almost circularly polarized inpu
beam@i.e., that satisfies Eq.~13!# propagate in a Kerr me
dium. Then to the leading order,A6(x,y,z) satisfy the
coupled system,

6See, e.g., Fig. 3.
2-4
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where

u¹W'A1u25uA1,xu21uA1,yu2, ~¹W'A1!25A1,x
2 1A1,y

2 .

The terms that are neglected in Eqs.~19a! and ~19b! are
O( f 4,« f 2) andO( f 2,«3), respectively.

Let us explain the origin of the terms in system~19!.
Equation~19b! is a linear Schro¨dinger~LS! equation forA2

with a nonlinear coupling toA1 that results from the nonlin
ear coupling ofE1 to E2 in Eqs. ~1! and ~2!. When «5 f
50, system~19! reduces to the following NLS forA1 :

iA1,z1D'A11
1

11g
uA1u2A150. ~20!

The A1,zz term on the right-hand side of Eq.~19a! is the
nonparaxial term that comes from the scalar Helmholtz eq
tion. The second term results from linear and nonlinear c
plings ofE1 to E2 in Eqs.~1! and~2!. The remaining terms
in Eq. ~19a! result from vectorial effects, i.e., the contribu
tion of the grad-div term and the coupling ofE1 to E3. In
Sec. VI, we show that the effect of theO( f 2) terms, which
are neglected in the Closeet al. System~9!, dominate the
effect of the coupling toE2 .

A. Contribution of the grad-div term

It is interesting to note that theO( f 2) terms on the right-
hand side of Eq.~19a! do not vanish even if one setsE2

[E3[0. Indeed, a close inspection of the derivation of t
equation shows that in that case, the resulting equation
A1 , instead of Eq.~19a!, is
03662
a-
-

or

~21!

The second term on the right-hand side of Eq.~21! corre-
sponds to the contribution of the grad-div term in the vec
Helmholtz equation~1a! when E2[E3[0. This term can
also be written as

The remainingO( f 2) terms in the square brackets on th
right-hand side of Eq.~19a! correspond to the coupling toE3,
both from the grad-div term and the nonlinear polarizati
field. To recapitulate, theO( f 2) terms in the square bracke
on the right hand side of Eq.~19a! correspond to the contri
bution of the grad-div-E1 term and and the coupling toE3,
i.e.,
~22!
2-5
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B. Power conservation

As mentioned in Sec. III B, Berkhoer and Zakharov@23#
showed that the power of each circular amplitude is c
served in the system~9!. The same holds, to leading order,
system~19!, i.e.,

N6~z!5E uA6u2dxdy5N6~0!1O~ f 2!. ~23!

In other words, the power of each circular component
conserved withO( f 2) accuracy. Since Eq.~13! implies that
N2(0)/N1(0)5O(«2), we conclude from Eq.~23! that
N2(z)/N1(z)5O( f 2,«2), i.e., that almost all of the beam’
power remains in the left-circular component during t
propagation. As we have noted, strictly speaking, power c
servation does not imply that theintensityof A2 does not
become comparable to the intensity ofA1 . However, the
numerical simulations of system~19! in Sec. VII show that
A2 does remainO(«) smaller thanA1 during the propaga-
tion.

V. EARLY STAGE OF PROPAGATION

During the early stage of the propagation~i.e., at moder-
ate levels of self-focusing!, the O( f 2) terms in system~19!
are small, and the model can be simplified by settingf 50.
The resulting system of equations is

iA1,z1D'A11
1

11g
@ uA1u21~112g!uA2u2#A150,

~24a!

iA2,z1D'A21
112g

11g
uA1u2A250. ~24b!

Below we prove that solutions of Eq.~24! can undergo cata
strophic collapse. Therefore, the simplified model~24! can
be used for the early stage of the propagation, but fails
describe the propagation near and after the blow-up poin

We note the system~9! and~24! are almost identical,7 the
only difference being that the equation forA2 in system~9!
includes theuA2u2A2 term. This term is negligible, howeve
because it isO(«2) smaller than theuA1u2A2 term in Eq.
~19b!. Indeed, the numerical simulations in Sec. VII sho
that solutions of system~9! and ~24! are almost indistin-
guishable.

A. Collapse of circularly polarized beams

We now prove that solutions of Eq.~24! can collapse at a
finite propagation distance. To do that, we first observe
the system~24! conserves the two powersN1(z) andN2(z)
as well as the Hamiltonian

7Indeed, roughly speaking,f 50 corresponds to assumptions~8!
and the paraxial approximation.
03662
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H~z!5E ~ u¹W A1u21u¹W A2u2!dxdy

2
1

2~11g!
E uA1u4dxdy

2
112g

2~11g!
E uA1u2uA2u2dxdy. ~25!

In addition, we have the following result.
Lemma 2@variance identity for Eq.~24!#. Let A6(x,y,z)

be the solution of Eq.~24! and let

V~z!5E ~ uA1u21uA2u2!~x21y2!dxdy ~26!

be its variance. Then

Vzz58H~z!, ~27!

whereH(z) is defined by Eq.~25!.
Equation~27! can be proved by differentiatingV(z) twice

with respect toz, using Eq.~24! to replacez derivatives with
transverse derivatives, and integrating by parts. As in
case of the NLS equation~4!, from Hamiltonian conservation
~25! and the variance identity~27! it follows that when
H(0),0, the variance would become negative at a fin
propagation distance. Since by definition the variance ha
be positive, this implies that the solution blows up at a fin
propagation distance:

Proposition 3. Let H(z) be given by Eq.~25!. Then
H(0),0 is a sufficient condition for collapse of solutions
Eq. ~24!.

A similar result, of course, holds for system~9!.
Proposition 4.Let A6(x,y,z) be the solution of system

Eq. ~9! and letH(z) be given by

H~z!5E ~ u¹W A1u21u¹W A2u2!dxdy2
1

2~11g!
E ~ uA1u4

1uA2u4!dxdy2
112g

2~11g!
E uA1u2uA2u2dxdy.

ThenH(z)5H(0) andVzz58H(z), whereV(z) is given by
Eq. ~26!. Therefore,H(0),0 is a sufficient condition for
collapse of solutions of system Eq.~9!.

Remark.Propositions 3 and 4 show that the coupling
E2 does not arrest the collapse. In fact, because the coup
term toA2 in the square brackets in Eq.~24a! appears with
a positive coefficient, itacceleratesthe collapse.

B. Threshold power

Since theuA2u2A1 term in Eq.~24a! is O(«2) small as
compared with theuA1u2A1 term, to leading order, this term
is negligible and system~24! can be further approximate
with the semidecoupled system

iA1,z1D'A11
1

11g
uA1u2A150, ~28a!
2-6
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iA2,z1D'A21
112g

11g
uA1u2A250. ~28b!

Here the equation forA1 is decoupled fromA2 . If we res-
caleA1 in Eq. ~28! as

c~x,y,z!5~11g!21/2A1~x,y,z!, ~29!

then Eq.~28a! becomes the NLS equation~4!, showing that
the threshold power for collapse of circularly polariz
beams is

Nc
circ5~11g!Nc . ~30!

VI. ASYMPTOTIC ANALYSIS

When the power of a laser beam is not much higher t
Nc

circ , its propagation can be analyzed usingmodulation
theory @24,14#, which is an asymptotic theory for analyzin
the effects of small perturbations on self-focusing in the
NLS equation~4!.8 Modulation theory is based on the obse
vation that, after some propagation has taken place, a
focusing beam rearranges itself as a modulated Townes9

i.e.,

uA1~x,y,z!u;A11g
1

L~z!
RS r

L~z! D , ~31!

where R(r ) is defined in Eq.~6!. Therefore, self-focusing
dynamics is described by the modulation variableL(z) that
is proportional to beam width and to 1/~on-axis amplitude! as
well. In particular, L→0 and L→` correspond to cata
strophic collapse and to complete defocusing, respective

By applying modulation theory to system~19!, we get that
Proposition 5.When f ,«!1 and when the power of a

circularly polarized laser beam is not much higher thanNc
circ,

self-focusing dynamics is given, to leading order, by the
duced system of ODEs

Lzz~z!52
b

L3
,

bz~z!52
f 2~Cnonparax.1Cvec!Nc

2M S 1

L2D
z

1CE2
~z!,

~32!

where ubu!1, M5 1
4 *0

`r2R2rdr'0.55, Cnonparax.51, Cvec

'16/3, and CE2
(z)5O( f 2,«).

The proof of Proposition 5 is similar to that of Propositio
5.1 in Ref.@8#. For details, see Ref.@25#.

8If the beam power is highly aboveNc
circ , the beam can underg

multiple filamentation~see Sec. VIII!. In that case, the power o
each filament is slightly aboveNc

circ , and the results of the
asymptotic analysis can be applied to each filament.

9See, e.g., Fig. 2.
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Inspection of the derivation of Eq.~32! shows that the
terms withCnonparax, Cvec, andCE2

(z) correspond to non-

paraxiality, vectorial effects, and the coupling toE2 in Eq.
~19a!, respectively. Based on Eq.~32!, we make the follow-
ing observations.

~1! To leading order, nonparaxiality and vectorial effec
have the same qualitative effect on self-focusing. This ob
vation is surprising, because at the partial differential eq
tion PDE level @i.e., system~19!# the expressions corre
sponding to nonparaxiality and vectorial effects a
completely different.

~2! Cvec'5.3Cnonparax. Thus, system~32! shows that vec-
torial effects are more than five times stronger than n
paraxiality.

~3! When«!1, the term corresponding toCE2
is much

smaller than the other terms in Eq.~32!. Therefore, system
~32! shows that the coupling toE2 is negligible as compared
with nonparaxiality and vectorial effects. We thus see thatthe
Close et al. model~9! can be wrong even when«@ f .

~4! Except for the small term that corresponds to the c
pling to E2 , system~32! is independent ofg. Indeed, if one
neglects the coupling toE2 in Eq. ~19a! and rescalesA1 as
in Eq. ~29!, theng is ‘‘eliminated’’ from the rescaled equa
tion. Thus, we see again thatthe value ofg (i.e., whether it is
zero or positive) has no effect on circular-polarization st
bility, in agreement with Berkhoer and Zakharov@23# and in
contrast to Closeet al. @3# ~see Sec. III!.

We now show that nonparaxiality and vectorial effects c
arrest collapse. If we neglect the weak coupling toE2 ~i.e.,
setCE2

50), we can follow@26,24# and integrate Eq.~32! to
get that

~yz!
252

4H0

My
~yM2y!~y2ym!, y~z!5L2~z!, ~33!

where

ym'
Mb~0!

22H0
~12A124d!

;
f 2Nc~Cnonparax.1Cvec!

4Mb~0!
@11O~d!#,

yM'
Mb~0!

22H0
~11A124d!;

Mb~0!

2H0
@11O~d!#,

~34!

d52 f 2Nc(Cnonparax.1Cvec)H0/4M2b2(0), and H0'H(0),
whereH(0) is the input Hamiltonian.

We recall that a necessary condition for collapse in
unperturbed NLS equation~28a!, is that the input power is
above threshold. In modulation theory variables@24#, this
condition amounts tob(0)'@N(0)2Nc

circ#/M>0. How-
ever, whenb(0).0 it follows from Eqs.~33! and ~34! that
y(z)>ym.0. Therefore, collapse is arrested by nonpara
ality and vectorial effects, and the minimal beam width
Lm;L(0) fANc

circ(Cnonparax.1Cvec)/4Mb(0), which corre-
sponds to several wavelengths. Sinceb(0)!1, even at this
2-7
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FIG. 1. Solutions of system~9! ~dashed!, system~24! ~dotted!, and system~28! ~solid!: ~a! on-axis amplitude;~b! deviation from circular
polarization. Here,g50.5 and the input beam is Eq.~35! with «50.1 andN(0)51.5Nc

circ .
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stage the magnitude of theO( f 2) terms in Eq. ~19! is
O„b(0)… smaller than that of the NLS termsD'A1 and
uA1u2A1 , providing ana posteriori justification for treating
the right-hand-side terms in Eq.~19! as small perturbations

Corollary 2. The scaling of the variables~15! remains
valid during the propagation.

This enables us to remove the assumption in Pr
osition 1.

Proposition 6~stability of circular-polarization—part II!.
When an almost circularly polarized beam@i.e., that satisfies
Eq. ~13!# with power moderately aboveNc

circ propagate in a
Kerr medium, the beam remains almost circularly polariz
for all z.0.

In addition, a sufficient condition for collapse in the u
perturbed NLS equation~4! is H(0),0. However, from Eqs.
~33! and ~34!, we see that ifb(0).0 and H(0),0, then
ym<y(z)<yM , i.e., arrest of collapse is followed b
focusing-defocusing oscillations. When nonadiabatic rad
tion is added to Eq.~32!, the oscillations decay during propa
gation@26#. A closer inspection of the derivation of Eq.~32!
reveals thatCvec5C¹W (¹W •(E1,0,0)…1CE3

, where

FIG. 2. uA1u ~solid! converges to the modulated Townes profi
~31! ~dots! during beam collapse. The dashed line isuA2u/«. Data
shown are the solution of system~24! in Fig. 1. ~a! z50, L'0.5;
~b! z50.2, L'0.2; ~c! z50.24, L'0.04.
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C¹W „¹W •(E1,0,0)…'8 and CE3
'2 8

3

correspond to contribution ofE1 in the grad-div term~i.e.,
whenE25E350) and the coupling toE3, respectively. This
result is surprising because it shows that the defocusing
fect of E1 through the grad-div term iseight times stronger
than nonparaxiality. Also surprising is that the coupling toE3
is focusing, since CE3

,0. Indeed, since previous studie
showed that vectorial effects arrest collapse~see, e.g., Refs
@27,8#!, the general notion has been that the coupling toE3 is
a defocusing mechanism. In contrast, our study shows
the coupling toE3 is, in fact, focusing, but the dominan
vectorial effect, which is defocusing, results from the con
bution of E1 to the grad-div term.

VII. STABILITY OF CIRCULAR-POLARIZATION
SIMULATIONS

In this section, we confirm Proposition 6 and the pred
tions of modulation theory, by solving Eq.~19! for almost
circularly polarized, Gaussian input beams

A6
0 ~x,y!5AN~0!e2x22y2

~16ei«!, ~35!

where the input powerN(0)5*(uA1u21uA2u2)dxdy is
moderately aboveNc

circ , see Eq.~30!, and « is the input
‘‘ellipticity angle’’ ~i.e., «50 corresponds to a perfectly left
circularly polarized beam!. Below we study different
asymptotic regimes of the parametersf and«.

Figure 1~a! confirms that when nonparaxiality and th
coupling to the axial component are neglected~i.e., f 50),
solutions of system~9!, ~28!, and ~24! can undergo cata
strophic collapse, and that the solutions of these three
tems are almost indistinguishable~see Sec. V!. Figures 1~b!
and 2 show thatA2 /A15O(«), i.e., the solutions remain
circularly polarized to leading order. Indeed, as the intens
of A1 grows during the self-focusing process, the intens
of A2 also grows because of the coupling toA1 . However,
A2 always remains smaller thanA1 ~intuitively, becauseA2

has insufficient power for an independent collapse, see
IV B !. Figure 2 also confirms thatA1 approaches a modu
lated Townes profile during the collapse, thus justifying t
application of modulation theory in Sec. VI.
2-8
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FIG. 3. Solutions of system~19!: ~a! on-axis amplitude ofA1 ~solid! and ofA2 ~dashed!; ~b! deviation from circular-polarization. Sam
g and input beam as in Fig. 1 withf 50.01 and«50.1.

FIG. 4. Same as Fig. 3 withf 5«50.01.

FIG. 5. Same as Fig. 3 withf 50.1 and«50.01.

FIG. 6. Same as Fig. 3 withN(0)55Nc
circ and f 5«50.05.
036622-9
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G. FIBICH AND B. ILAN PHYSICAL REVIEW E 67, 036622 ~2003!
When 0, f !«, one might expect that the coupling toA2

in Eq. ~19! would dominate vectorial effects and nonpara
ality. In fact, quite the opposite is true. Whenf .0, the pic-
ture of self-focusing completely changes, because theO( f 2)
terms in Eq.~19!, which correspond to nonparaxiality an
vectorial effects, arrest beam collapse and lead to focus
defocusing oscillations, as predicted by modulation theory
Sec. VI@see Fig. 3~a!#. In addition, the beam remains almo
circularly polarized during propagation@see Fig. 3~b!#. Thus,
even in this regime, system~9! leads to wrong predictions.

When f 5O(«) and when f @«, the picture is qualita-
tively similar to the case 0, f !« ~see Figs. 4 and 5!. More-
over, the value of« seems to have negligible quantitativ
effect on the dynamics ofA1 , as can be seen by comparin
Figures 3~a! and 4~a!.10 Finally, focusing-defocusing oscilla
tions and circular-polarization stability are also observ
when the input power is much higher thanNc

circ ~see Fig. 6!,
a regime that is formally beyond the validity of modulatio
theory.

VIII. MULTIPLE FILAMENTATION

As noted in the Introduction, experiments with beam
whose input power is highly above the self-focusing thre
old can result in multiple filamentation, i.e., beam break
into several long and narrow filaments. We note that in
NLS models ‘‘multiple filamentation’’ can occurwithout
breakup of the spatial symmetry.11 In contrast, in 2D NLS
models for beam propagation in a bulk Kerr medium, m
tiple filamentationcannotoccur without breakup of cylindri-
cal symmetry~see Fig. 7!.

10This comparison also shows that the deviation from circu
polarization has a small effect on the location of the~first! focal
point ~see footnote in Sec. III B!.

11For instance, when two identical 1D solitons move toward e
other and overlap atz50, then atz50 the input intensity is spa
tially symmetric, yet, according to the 1D NLS, there would be tw
distinct solitons at a sufficiently large propagation distance.

FIG. 7. Spatial symmetry can be maintained in 1D multip
filamentation~top! but not in 2D multiple filamentation~bottom!.
03662
g-
n

d

s
-

p

-

When an input profile is cylindrically symmetric, i.e
A65A6

0 (r ), then according to either the Closeet al. model
system~9! or our model~19!, the beam remains cylindrically
symmetric during the propagation, because these equa
are isotropic. A natural question is therefore what is t
symmetry-breaking mechanism that is responsible for m
tiple filamentation of circularly polarized input beams.

Let us first consider the ‘‘ideal’’ case of a circularly po
larized input beam with a cylindrically symmetric profile
Since in this case neither the medium nor the input be
induce a preferred direction in the (x,y) plane, we can make
the following observation.

Corollary 3. Let a circularly polarized, cylindrically sym-
metric input beam@i.e., A1

0 5A1
0 (r ) andA2

0 50] propagate
in a Kerr medium. Then the beam remains cylindrically sy
metric during the propagation. In particular, the beam d
not undergo multiple filamentation.

In the case of a cylindrically symmetric input profile@i.e.,
A65A6

0 (r )# with a small deviation from the circular
polarization state~i.e., A2

0 !A1
0 ), the beam will not remain

cylindrically symmetric during its propagation because t
initial condition (E1

0 ,E2
0 ) of the vector Helmholtz model~1!

is not rotation invariant as a vector entity. In contrast, b
cause Eqs.~19! are isotropic, when the input profile is cylin
drically symmetric, then according to Eq.~19! the beam
would remain cylindrically symmetric, i.e.,A65A6(r ,z)
for all z.0. This ‘‘inconsistency’’ is due to the anisotropi
O(« f 2) terms that are neglected in Eq.~19a!, which account
for the symmetry breaking in the Helmholtz model~1!.12

Corollary 4. Let an almost circularly polarized, cylindri
cally symmetric input beam@i.e., A2

0 !A1
0 and A6

0

5A6
0 (r )] propagate in a Kerr medium. Then to leading o

der, the beam remains cylindrically symmetric during t
propagation, i.e.,A15A(r ,z)1O(« f 2) for all z.0.

Corollary 4 suggests that cylindrically symmetric, almo
circularly polarized beams would not undergo multiple fil
mentation. This result is not conclusive, of course, as
~19! neglects theO(« f 2) symmetry-breaking terms in th
vector Helmholtz model~1!. Indeed, in the ‘‘extreme’’ case
of linear polarization~i.e., «51), theseO( f 2) symmetry-
breaking terms can lead to multiple filamentation~see Sec.
IX !.

A. Scalar equation for circularly polarized beams

In Corollaries 3 and 4, we assumed that the input beam
cylindrically symmetric. Such idealization, however, is unr
alistic, as there is always some degree of imperfection w
generating an input beam. Since the coupling toA2 in Eq.
~19a! is O(«2) small ~see Sec. V B!, system~19! can be
approximated with the scalar equation-

h 12A close inspection of the derivation of Eq.~19! shows that the
O( f 4) terms that are neglected in Eq.~19a! are isotropic, because
they correspond to higher-order effects of nonparaxiality and
coupling ofE1 to E3.
2-10
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SELF-FOCUSING OF CIRCULARLY POLARIZED BEAMS PHYSICAL REVIEW E67, 036622 ~2003!
iA1,z1D'A11
1

11g
uA1u2A1

52
1

4
f 2A1,zz2

f 2

2~11g!
@4u¹W'A1u2A11~¹W'A1!2A1*

1uA1u2D'A11A1
2 D'A1* #. ~36!

In Secs. VIII B and VIII C, we use Eq.~36! to study whether
small imperfections in the input profile can lead to multip
filamentation of circularly polarized beams.

B. Noise-induced multiple filamentation

The standard theoretical explanation of multiple filame
tation ~of linearly polarized beams! was suggested by Be
spalov and Talanov in 1966@7#. According to that model,
multiple filamentation is initiated by the noise in the inpu
beam profile that breaks up the cylindrical symmetry. In
der to test whether noise can lead to multiple filamentation
circularly polarized beams, we first solve the Closeet al.
system~9! with very high-power input beams, to which w
add noise both in amplitude and in phase, i.e.,

A6
0 ~x,y!5AN~0!e2(x21y2)~16ei«!@11cP~x,y!#,

~37!

FIG. 8. Peak amplitude of the solution of system~9! with the
noisy input beam~37! with «50.1, c50.1 ~i.e., 10% noise!, and
N(0)510Nc

circ ~solid!. Also shown is the solution with the sam
input beam but without the noise~i.e., c50, dashed!.

FIG. 9. Contour plots of the noisy solution of Fig. 8.~a!
uA1(x,y,z50)u; ~b! uA1(x,y,z50.036)u.
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-

-
f

whereN(0) is the noiseless input power,P(x,y) is a random
complex-valued function, and the constantc determines the
noise level. In our simulations, we see neither evidence
multiple filamentation nor even for mild instabilities. Rathe
the beam collapses while converging to a cylindrically sy
metric profile~see Figs. 8 and 9!. We do see, however, mul
tiple filamentation when we solve Eq.~36! with noisy high-
power input beams, i.e.,

A1
0 ~x,y!52AN~0!e2(x21y2)@11cP~x,y!#, ~38!

where N(0) is several timesNc
circ . For example, in Figs.

10–12, we show a noisy beam with ten times the thresh
power that breaks up into three filaments.13 Note that the
difference between the scalar equation~36! and the Close
et al. system~9! is the O( f 2) nonparaxial and vectorial ef
fects terms, both of which are isotropic. Thus, these ter
cannot lead to multiple filamentation by themselves. Nev
theless, as the above simulations show, they are necessa
noise-induced multiple filamentation,~see Sec. IX B for fur-
ther discussion!.

C. Astigmatism induced multiple filamentation

Optical devices, such as those used for producing cir
larly polarized beams, are known to produce astigma
beams~see, e.g., Ref.@28#!. To study whether astigmatism
can also lead to multiple filamentation, we consider the in
beam

A1
0 ~x,y!52ACNc

circexp@2~ex!22y2#, ~39!

where C is constant ande is input astigmatism paramete
(e51 corresponds to a cylindrically symmetric input beam!.
Our simulations of Eq.~36! show that input astigmatism ca
lead to multiple filamentation when the input power is se
eral timesNc

circ .14 For example, Fig. 13 shows astigmat
input beams that break up into two and three filaments.
with noise-initiated multiple filamentation, during furthe
propagation, each of the filaments undergoes focus
defocusing oscillations and is roughly cylindrically symme
ric.

IX. COMPARISON OF CIRCULAR
AND LINEAR POLARIZATION

It is instructive to compare the results of circularly pola
ized input beams with those of linearly polarized ones.
Ref. @8#, we showed that when the input beam is linea
polarized in thex direction andf !1, Eqs.~1! and~2! can be
approximated with the scalar equation

13A closer inspection of the results reveals that after the brea
has occurred, each of the filaments undergoes focusing-defocu
oscillations, as predicted by modulation theory~see Sec. VI! and is
roughly cylindrically symmetric~see Fig. 12!.

14We note that the effective threshold power for collapse of as
matic beams is higher than for cylindrically symmetric beams b
factor of '@0.2(e11/e)10.6#, see Ref.@12#.
2-11
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~40!

FIG. 10. Intensity of the solution of Eq.~36! with f 50.05 and the noisy input beam~38! with c50.1 andN(0)510Nc
circ .
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where the variables are rescaled according to Eq.~15! andA1
is the nondimensional amplitude in thex direction. Whenf
50, Eq. ~40! reduces to the NLS equation~4!. The A1,zz
term is the nonparaxial term~in the scalar nonlinear Helm
holtz equation forA1) and the remaining terms on the righ
hand side correspond to the combined effects of the lin
and nonlinear couplings ofE1 to E3 and the contribution of
E1 in the grad-div term in Eqs.~1! and ~2!.15

Setting f 50 in Eq. ~40! and f 5«50 in Eq. ~19! shows
that for positive values ofg, the threshold power for self
focusing of circularly polarized beams is higher by (11g)
than for linearly polarized ones, see Eq.~30!. In addition, we
recall thatg does not appear in Eq.~24a!. Therefore, when
E2

0 is negligible then, to leading order, the constantg does
not affect the beam dynamics, other than to increase
threshold power. In contrast,g cannot be ‘‘factored out’’ of
Eq. ~40! for linearly polarized input beams.

A. Asymptotic analysis

Applying modulation theory to Eq.~40! for linearly po-
larized beams leads to the same reduced system~32! as for
circularly polarized beams, the only difference being th
Cvec'16/3 for circular-polarization, whereasCvec(g)
'(16/3)@11g/(11g)# for linearly polarized beams@8#.
Thus, for both circularly polarized and linearly polarize
beams, vectorial effects are considerably stronger than n
paraxiality, and both arrest collapse and lead to focusi
defocusing oscillations. In both cases, the effect of coup
to the second transverse field~i.e., E2 or E2) is negligible.

In the case of linear polarization, theO( f 2) terms in the
reduced PDE~40! correspond, in part, to the contribution o
E1 to the grad-div term, which does not vanish even wh
E2[E3[0. Similarly, in the case of circular-polarization th
O( f 2) terms in Eq.~19a! correspond, in part, to the contr
bution of E1 to the grad-div term, which does not vanis
even whenE2[E3[0. A closer inspection of the derivatio

15The coupling toE2 is O( f 4).
03662
ar

e

t

n-
-

g

n

of the corresponding reduced systems reveals that the
stants corresponding to the contributionE1 and E1 to the
grad-div term areC¹W „¹W •(E1,0,0)…5C¹W „¹W •(E1,0,0)…'8. There-
fore, for both linear and circular-polarizations, the contrib
tion of E1 or E1 in the grad-div term is a defocusing mech
nism that iseight times strongerthan nonparaxiality. Perhap
surprisingly, the coupling toE3 is considerably weaker tha
the contribution ofE1 or E1 in the grad-div term, and this
coupling isfocusing: for linear polarization it is focusing for
g,1, becauseCE3

(g)'2(8/3)(12g)/(11g) @25#, and

for circular-polarization it is focusing independent ofg, be-
causeCE3

'28/3. As we remarked at the end of Sec. V
these results are surprising to the extent that the interpr
tion of the results of previous studies suggested that the c
pling to E3 is a defocusing mechanism. In contrast, our stu
shows that the dominant vectorial effect is the contribut
of E1 or E1 to the grad-div term, whereas the coupling toE3
is, in fact, weakly focusing. In retrospect, the observat
that the coupling toE3 is weakly focusing is not so surpris
ing, as the coupling toE2 in the case of circular-polarization
is also weakly focusing.

B. Multiple filamentation

In Ref. @25#, we pointed out that the preferred directio
induced by linear polarization of an input beam breaks up
cylindrical symmetry in the vector Helmholtz model~1!. Nu-
merical simulations show that this symmetry breakin

FIG. 11. Isosurface ofuA1u2 of the solution in Fig. 10.
2-12
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SELF-FOCUSING OF CIRCULARLY POLARIZED BEAMS PHYSICAL REVIEW E67, 036622 ~2003!
which is manifested by the anisotropicO( f 2) terms in Eq.
~40!, can lead to multiple filamentation, even when the inp
profile is perfectly cylindrically symmetric, i.e.,E 1

05E 1
0(r )

andE 2
050. In contrast, circular-polarization does not indu

a preferred direction. Therefore, a cylindrically symmet
circularly polarized beam would not undergo multiple fil
mentation~Corollary 3!. Moreover, Corollary 4 suggests th
even almost circularly polarized, cylindrically symmetr
beams are unlikely to undergo multiple filamentation b
cause the anisotropic terms are much weaker@O(« f 2)#.

In Ref. @25#, we tested numerically the original Bespalo
Talanov model for multiple filamentation, by solving theun-
perturbedNLS equation~4! with high-power cylindrically
symmetric Gaussian input beams, to which we added ran
noise~38!. We saw neither evidence for multiple filament
tion nor even for mild instabilities. Rather, the beams co
verged to a cylindrically symmetric profile and collapse
However, when additional physical mechanisms, such
saturation of the Kerr nonlinearity, are added to the N
model, then input noise can lead to multiple filamentation
very high-power input beams~see Ref.@25#, and references
therein!. For circularly polarized beams, we reach simi
conclusions: When we solve the Closeet al. model ~9! with
high-power noisy input beams, the beams collapse w
converging to a cylindrically symmetric profile~see Sec.
VIII B !. However, when nonparaxiality and the coupling
the axial component are included, input noise can lead
multiple filamentation of circularly polarized input beam
Thus, an essential requirement for noise to lead to mult
filamentation is the presence of an additional regulariz
mechanism~such as nonlinear saturation, nonparaxial

FIG. 12. Contour plot ofuA1(x,y,z50.35)u of the solution of
Fig. 10.
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vectorial effects, or plasma formation! that arrests the col-
lapse and lead to an~unstable! ring structure.

X. FINAL REMARK

For over 35 years, studies of self-focusing of circula
polarized beams followed Closeet al. @2# and used system
~9!. These studies have led to controversial results regard
circular-polarization stability. In this study, we show that t
assumptions on which the Closeet al.model is based are no
valid physically. While some insight can be gained from sy
tem Eq. ~9!, this system can lead to wrong predictions.
this study, we derive a mathematical model for circula
polarized input beams, which takes into account nonpar
ality and vectorial effects. Based on this model, we conclu
that circular polarization is stable.

Our study also shows that cylindrically symmetric circ
larly polarized input beams will not undergo multiple fila
mentation; that a small deviation from a circular-polarizati
state is unlikely to lead to multiple filamentation, but th
input-beam noise or astigmatism can lead to multiple fi
mentation of circularly polarized beams. Therefore, suppr
sion of multiple filamentation ofcircularly polarizedbeams
should focus on producing a cylindrically symmetric inp
profile, rather than on producing a perfect circula
polarization state. In contrast, one cannot suppress mul
filamentation oflinearly polarizedbeams by producing a cy
lindrically symmetric input profile because multiple filame
tation can result from the preferred polarization direction
duced by linear polarization.
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APPENDIX: DERIVATION OF EQ. „19…

The starting point for the derivation of Eq.~19! is Eqs.
~16!, which were also used in the derivation of Eq.~40! in
Ref. @8#. Below we omit the technical details that were a
ready obtained in Ref.@8# or that are similar to the derivation
there~see Ref.@8#, Appendixes!.

1. Derivation of estimates„18…

We assume that the input beam is almost left-circula
polarized~13!, i.e., thatA2

0 !A1
0 andA3

0!A1
0 . Therefore, it

follows from Eqs.~16! that over propagation distances
several diffraction lengths
t

FIG. 13. Isosurface ofuA1u2

of the solutions of Eq.~36! with
f 50.05 and astigmatic inpu
beams~39! with ~a! C57.5 and
e50.9 @i.e., N(0)58.3Nc

circ]; ~b!
C53.75 and e50.6 @i.e., N(0)
56.25Nc

circ].
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A1~x,y,z!5O~1!, A2~x,y,z!5o~1!, A3~x,y,z!5o~1!.
~A1!

In analogy with system Eq.~9!, we define the nondimen
sional circular nonlinear polarizations

N65
1

A2
~N16 iN2!, ~A2!

whereNW 5(N1 ,N2 ,N3) is defined in Eq.~16c!.
Similar to the derivation in Ref.@8#, it follows from Eqs.

~16b!, ~16c!, and~A1! that

A35O~ f !. ~A3!

Using Eq.~A3!, we get from Eq.~16c! that

N35O~ f !. ~A4!

Therefore, substituting Eq.~A4! in Eq. ~16a! gives that

iA1,z1D'A11 1
4 f 2A1,zz1N152 f ]x~ f ¹W'•NW 1 iN3!1O~ f 4!

~A5a!

and

iA2,z1D'A21 1
4 f 2A2,zz1N252 f ]y~ f ¹W'•NW 1 iN3!1O~ f 4!.

~A5b!

Subtracting Eq.~A5b! from i times Eq.~A5a!, dividing by
A2, and using Eq.~A2! gives that

iA2,z1D'A21 1
4 f 2A2,zz1N25O~ f 2!. ~A6!

Throughout the derivation in this appendix, we use the f
lowing identities, whose proof is straightforward:

AW •AW * 5uA1u21uA2u21uA3u2

5uA1u21uA2u21uA3u2 @ from Eq.~17!#,

AW •AW 5A1
21A2

21A3
252A1A21A3

2 @ from Eq.~17!#,
~A7!

and

A15
1

A2
~A11A2!,

A252
i

A2
~A12A2! @ from Eq.~17!#. ~A8!

It follows from Eqs.~17!, ~16c!, ~A2!, and~A7! that

N25
1

11g
@~AW •AW * !A21g~AW •AW !A1* #

5
1

11g
@~ uA1u21uA2u21uA3u2!A2

1g~2A1A21A3
2!A1* # @ from Eq.~17!#. ~A9!
03662
l-

Therefore, we get from Eqs.~A3! and ~A9! that

N25
1

11g
@~112g!uA1u21uA2u2#A21O~ f 2!.

~A10!

We can rewrite Eq.~A6! using estimate~A10! as

S i ]z1D'1
112g

11g
uA1u21

1

11g
uA2u2DA25O~ f 2!.

~A11!

We note that Eq.~A11! is a homogeneous equation inA2

with an O(1) operator on the left- hand side. SinceA2
0 /A1

0

5O(«) @Eqs.~A1!# and the driving terms on the right-han
side of Eq.~A11! areO( f 2), estimate~18a! follows.

Using Eq.~16b!, we get from Eqs.~A3! and ~A4! that

A35 i f ~A1,x1A2,y!1O~ f 3!. ~A12!

Using Eq.~18a!, we obtain from identities~A8! that

A15
1

A2
A11O~ f 2,«!, A252

i

A2
A11O~ f 2,«!.

~A13!

Substituting Eq.~A13! into Eq. ~A12! yields estimate~18b!.

2. Derivation of Eq. „19…

In order to obtain Eq.~19b!, we first use Eq.~18a! to get
that

uA2u2A25O~ f 6,«3!. ~A14!

Equation~19b! follows from substituting estimate~A14! into
Eq. ~A11!.

Below we derive Eq.~19a!. Summing Eq.~A5b! with i
times Eq.~A5a! and dividing byA2 leads to

iA1,z1D'A11
1

4
f 2A1,zz1N1

52
f

A2
~]x1 i ]y!~ f ¹W'•NW 1 iN3!1O~ f 4!.

~A15!

Using identities~A7! and estimates~18!, it follows that

N15
1

11g
@~AW •AW * !A11g~AW •AW !A2* # @ from Eq.~16c!#,

5
1

11g
@~ uA1u21uA2u21uA3u2!A11g~2A1A2

1A3
2!A2* # @ from Eq.~A7!#,
2-14
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5
1

11g
uA1u2A11

112g

11g
uA2u2A11

f 2

2~11g!
u~ i ]x

1]y!A1u2A11O~ f 4,« f 2! @ from Eq.~18!#, ~A16!

and that

AW •AW * 5uA1u21uA2u21uA3u2

5uA1u21O~ f 2,«2! @ from Eqs.~A7! and~18!#,

AW •AW 52A1A21A3
25O~ f 2,«! @ from Eqs.~A7! and~18!#.

~A17!
.J.
n

u,

03662
Similarly, we obtain that

N35
1

11g
@~AW •AW * !A31g~AW •AW !A3* # @ from Eq.~16c!#,

5
1

11g
uA1u2A31O~ f 3,« f !

5
i f

A2~11g!
uA1u2~]x2 i ]y!A1 ,

1O~ f 3,« f ! @ from Eqs.~A17! and~18b!#, ~A18!

and that
¹W'•NW [N1,x1N2,y5
1

11g
]x@~AW •AW * !A11g~AW •AW !A1* #1

1

11g
]y@~AW •AW * !A21g~AW •AW !A2* # @ from Eq.~16c!#,

5
1

11g
]x~ uA1u2A1!1

1

11g
]y~ uA1u2A2!1O~ f 2,«! @ from Eq.~A17!#,

5
1

A2~11g!
]x~ uA1u2A1!2

i

A2~11g!
]y~ uA1u2A1!1O~ f 2,«! @ from Eq.~A13!#,

5
1

A2~11g!
~]x2 i ]y!~ uA1u2A1!1O~ f 2,«!. ~A19!

Substituting Eqs.~A16!, ~A18!, and~A19! into Eq. ~A15! leads to

iA1,z1D'A11
1

11g
uA1u2A11

112g

11g
uA2u2A152

1

4
f 2A1,zz2

f 2

2~11g!
u~ i ]x1]y!A1u2A1

2
f 2

2~11g!
~]x1 i ]y!@~]x2 i ]y!~ uA1u2A1!

2uA1u2~]x2 i ]y!A1#1~ f 4,« f 2!.

Rearranging the right-hand side of this equation gives Eq.~19a!.
,
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