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Self-focusing of circularly polarized beams
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We present a systematic study of propagation of circularly polarized beams in a Kerr medium. In contrast to
previous studies, vectorial effecfise., coupling to the axial component of the electric field and the grad-div
term) and nonparaxiality are not neglected in the derivation. This leads to a system of equations that takes into
account nonparaxiality, vectorial effects, and coupling to the opposite circular comgbegrihe one rotating
in the opposite direction Using this system we show that the standard model in the literature for self-focusing
of circularly polarized beams can lead to completely wrong results, that circular polarization is stable during
self-focusing, and that nonparaxiality and vectorial effects arrest collapse, leading instead to focusing-
defocusing oscillations. We also show that circularly polarized beams are much less likely to undergo multiple
filamentation than linearly polarized beams.
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[. INTRODUCTION that the assumptions on which the derivation of the Close
et al. system(9) is based can be physically incorrect. In Sec.
The nonlinear Schidinger (NLS) equation is the model V, we prove that when nonparaxiality and vectorial effects
equation for self-focusing ofinearly polarized beams in  are negligible, the system{8) and (19), as well as the sim-
Kerr media. In 1965, Kelley used the NLS to predict thepler semidecoupled syste(@8), are asymptotically equiva-
existence of a threshold powBt., such that when the input lent, and that solutions of these systems can undergo col-
power is above this threshold the beam would collagptev  lapse. In Sec. VI, we usmodulation theoryto describe the
up) at a finite propagation distan¢é]. The existence of a dynamics of a single filament with the reduced system of
threshold power was confirmed experimentdfige Ref[2], ordinary differential equation$ODES (32), which shows
and references therginproviding support to the validity of that nonparaxiality and vectorial effects arrest beam collapse
the NLS model. and lead to focusing-defocusing oscillations. In Sec. VII, we
In 1966, Close, Giuliano, Hellwarth, Hess, McClung, anduse numerical simulations of systdit®) to confirm the sta-
Wagner[3] conducted experiments with intens@cularly  bility of circular-polarization and the predictions of modula-
polarized input beams propagating in Kerr media, which tion theory. These simulations also demonstrate that the
suggested that circular polarization is unstable. Cletsal.  Closeet al. system(9) can lead to wrong predictions.
also proposed a mathematical model for self-focusing of cir- Since the NLS equation is isotropic, according to the NLS
cularly polarized beams, which they used to explain the obmodel beams with cylindrically symmetric input profile
served instability of circular polarization. Subsequent theoshould remain cylindrically symmetric during the propaga-
retical studies have used the same system of equations @en. However, experiments have shown that when the input
Closeet al, but obtained contradictory results with regard to power is much higher thah, self-focusing dynamics can
circular-polarization(in)stability. As a result, to date, there is lead to multiple filamentation, i.e., beam breakup into several
some confusion in the literature with regard to circular-long and narrow filament§4—6]. For over 35 years, the
polarization stability. Remarkably, the only thing that wasstandard(and only explanation for multiple filamentation,
always agreed upon was the Clasteal. model itself. As we  due to Bespalov and Talang¥], has been that it is initiated
show in this study, however, this model is based on problemby random noise in the input-beam profile. In ReF], we
atic assumptions, and it can lead to wrong results. showed that the symmetry breaking due to the preferred di-
The paper is organized as follows. In Sec. I, we reviewrection in the transverse plane which is induced by linear
the vector Helmholtz model and the scalar NLS model forpolarization can lead to deterministicmultiple filamenta-
beam propagation in Kerr media. In Sec. Ill, we describe theion, i.e., even when the input beams are perfectly cylindri-
contradictory results of previous studies on circular-cally symmetric. In this study we show that, in contrast, cy-
polarization stability, all of which were based on the Closelindrically symmetric, circularly polarized input beams
et al. system(9). In Sec. IV, we systematically reduce the cannot undergo multiple filamentation, because in that case
vector Helmholtz equation to the systefh9) that models the input polarization state does not induce a preferred direc-
self-focusing of circularly polarized beams. Similarly to the tion in the transverse plane. In Sec. VIII, we show that when
Closeet al. system, systenil9) takes into account the cou- the input profile is cylindrically symmetric, a small deviation
pling to the opposite-circular componeine., the one rotat- from circular-polarization is unlikely to lead to multiple fila-
ing in the opposite direction Unlike system(9), however, mentation. However, small imperfections in the input profile,
system(19) also takes into account beam nonparaxiality andsuch as input noise or astigmatism, can lead to multiple fila-
vectorial effectd(i.e., the contribution of the grad-div term mentation. Finally, in Sec. IX, we compare self-focusing of
and the coupling to the axial compongntising systen{19),  circularly and linearly polarized beams. Based on our results,
we show that circular-polarization is stable. We also showwe predict that circularly polarized beams are much less
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likely to undergo multiple filamentation than linearly polar-
ized beams.

Note on notationsWe use calligraphic lettersé( Py, ,
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N(z)=f |4]2dxdy=N(0),

etc) to denote dimensional variables and noncalligraphic letand the Hamiltonian

ters €, N, etc) to denote dimensionless variables.

Il. THE VECTORIAL MODEL

- 1
H2)= | V.yPaxay-5 [ [ulaxay-Hio),

The propagation of intense cw laser beams in a Kerr mewhereV, = (4, ,dy). When the input poweN(0) is above a
dium is governed by the vector nonlinear Helmholtz equa<certain thresholdN,, solutions of Eq.(4) can collapse at a

tions
. C e, k5 -
A&(X,y,2) =V (V- &) +kgE= SPNL » (1a
€oNg
- 1. .
V.&=—-——V Py (1b)
Gono

Here £=(&;,&,,&3) is the electric-field vectorPy, is the
nonlinear polarization vectork, is wave number,e, is
vacuum permittivity, andhg is the linear index of refraction.

When the Kerr medium is isotropic and homogeneous, the

nonlinear polarization vectdi.e., the “vector Kerr effect)
is given by[9,10]

> 460”0”2 >

Pu@=— AEEEYEHE],

where & is the complex conjugate of, n, is the Kerr

coefficient, andy is a constant whose value depends on the

physical origin of the Kerr effect.Let us set the coordinate

system such that the Kerr medium is located at the half space

z=0, the beam enters the Kerr mediumzatO and propa-
gates in the positive direction.

finite propagation distanceThe value ofN, is equal to the
power of the so-calledTownes soliton R i.e., N
=2m[5R?rdr~2mx1.8623[13], whereR is the positive
solution of

1
R'(r)+ +R'—=R+R%=0, R’(0)=0, IlmR(r)=0,

(6)

and r=\x2+y?. For additional information on NLS col-
lapse, we refer the reader to Reff$4,15.

Ill. POLARIZATION (IN)STABILITY—HISTORICAL
BACKGROUND

Strictly speaking, an intense circularly polarized input
beam that propagates in a Kerr medium does not remain
circularly polarized. Indeed, the vector Kerr effé2} can be
rewritten in terms of the circular components as

> > 460”0?2 >
PNL(g):lTy[(|g+|2+|5—|2+|€3|2)6

+y(28, 6 +E3ET,

Under the assumption that the beam is linearly polarizedVhere the left-circular £) and right-circular ) compo-

ie., &= (&1(x,y,2),0,0), using the slowly varying envelope
& =Ai(x,y,2)€*0? and the paraxial approximation!; ,,
<KkoA;,, the vector Helmholtz mode(l) reduces to the
NLS equation,

o—

4ksn
° 2|«41|2v41:0:
No

2iko A1+ A A+

As(x,y,2=0)=A%(x,y), (3)

whereA | = d,,+d,, . In dimensionless units, the NLS equa-
tion (3) is given by

P(x,y,z=0)=y(x,y).
(4)

Two important invariants of the NLS equatig#) are the
power

[,(X,Y,2)+ A g+ ] 2y=0,

IFor example,y=0 for electrostriction,y=1/2 for nonresonant
electrons, andy=3 for molecular orientation.

nents are denoted by

1
\2

and the corresponding input components &t (x,y)
=£.(x,y,z=0). Thus, &, £, and & are nonlinearly
coupled through the vector Kerr effe€®) and linearly
coupled through the grad-div term in E¢la). Therefore,
even if initially &2 =0, then&_ does not remain zero far
>0. In addition, in practice, the input beam is never per-
fectly circularly polarized. Therefore, a more realistic repre-
sentation of circularly polarized input beamsé%%f‘i .

The above discussion motivates the following definition,
which is later used in the analysis of the stability of circular-
polarization.

gi(xiyiz): (gl—'_igZ)! (7)

2The conditionN(0)=N, is necessary but not sufficient for col-
lapse. The actual threshold power for collapse is generically a few
percent aboveN, for cylindrically symmetric input profileg11],
but can be considerably higher for anisotropic input profiles.
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Definition (almost circularly polarized beamp laser
beam is said to be almost circularly polarizedif<€&, and

All previous studies of circular-polarization stability in-
cluded the coupling of, to £_, but neglected the coupling
of £, to the axial componer#f; and the grad-div term in Eq.
(1a), i.e., they assumed that

Ea<E,, &<E_, V(V-&)<ki&, . (8

Under the assumption8), Egs.(1) and(2) reduce to the two
coupled equations faf ; and foré&_ :
4k3n,

AEAKE, +———
=0 Tng(1+y)

[1€+[2+(1+2y)[E<[?1€L=0.

These studies also used the slowly varying envelopes
=A.(x,y,2)e*0? and the paraxial approximatios. ,,
<ko€. ,, which lead to the two coupled equations fdr,
and for A_:

4k3n,
No(1+7)

+(1+2y)|A-|?)A.=0.

2ikoAi,z+ALAi+ [lAi|2

©)

System(9) has been used to determine whether circular-
polarization is stable. As we now show, the results have been

controversial.

A. The analysis of Closeet al.
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balance would be reached whéré, |~|.A_|, which corre-
sponds to linear polarization. Therefore, they concluded that
linear polarization is stable, whereas circular-polarization is
unstable.

B. Subsequent studies of syster(d)

Wagner, Haus, and Marburger used the aberrationless ap-
proximation to approximate syster®) with a system of
ODEs[17]. Based on these ODEs, they concluded that the
self-focusing distancé.e., the distance for beam collapse
“sensitive” to small departures from circular polarization.
This result suggests that circular-polarization is unstable.
However, it was noted in Refl7] that the aberrationless
approximation is a rough approximation of self-focusing
dynamics® Prakash and Chandfa8] as well as Vlasov, Ko-
robkin, and Seroy19] studied systen{9) and, using argu-
ments similar to those in Ref3], reached the conclusion
that both linear and circular polarizations are stable. These
conclusions are consistent with the experimental observa-
tions of Meyer[20], as well as of Skinner and Kleibg21],
and of Golub, Shuker, and Er¢22].

In 1970, Berkhoer and Zakhard23] showed that the
power of each circular amplitude in systé8) is conserved
during the propagation, i.e.,

N:(Z):f | A+ [?dxdy=N_.(0). (11)

This provesthat according to syster(®), circular polariza-
tion is stablé for both >0 and y=0, because
N, (2)/N_(z2)=N,(0)/N_(0)>1. In spite of this, the ex-

In 1966, Closeet al. [3] conducted experiments with in- planation of Close etal. for instability of circular-

tense circularly polarized input beams propagating in Keripojarization has persisted in the nonlinear optics literature
media. They observed thatir' every case studied, the long after 1970(e.g., in the classic book of Shéh6], Chap.
trapped light from a beam, circularly polarized to better than 17) " and even up to these days. Remarkably, the only thing
1 part in 200, was markedly, if not completely, depolarizedinat was always agreed upon is the syst@nitself. The
as soon as self-trapping could be detectédoreover, “the  gerjvation of systen{9) is based, however, on the assump-
filament pattern [...] suggested that each filament might contjons (8), which can be physically incorre¢see Sec. V.

sist mainly of light linearly polarized in some random direc- |ndeed, our simulations in Sec. VIl show that syst@ncan
tion.” In other words, they observed that circular- |ead to completely wrong predictions.

polarization is unstable and that during self-focusing
circularly polarized beams formed filaméstthat are lin-
early polarized in randomly oriented directions. Clatel.
suggested the following theoretical explanation for instabil-
ity of circular polarization observed in their experiments. In this section, we present a systematic derivation of sys-
From system9), it follows that the effective change of the tem(19) for propagation of circularly polarized input beams,
nonlinear refractive index afl. is given by which we derive from the vector Helmholtz mod@d). Sys-

IV. MODEL FOR SELF-FOCUSING
OF CIRCULAR BEAMS

4K2n
on . 02

02 2 12
4 no(1+y)[|“41| +(14+2y)| A=

10

(19 “It is now known that applying the aberrationless approximation
o ) to the two-dimensional2D) NLS equation can lead to completely
When y>0, the coefficient of the second term in the brack-incorrect prediction§12]. Indeed, our numerical simulations in Sec.
ets of Eq.(10) is larger than the coefficient of the first tefm. v show that the self-focusing distance is relatively insensitive to
Therefore, Closeet al. concluded that wheny>0, self- the deviation from circular polarizatiofsee footnote in Sec. Vil

focusing of the weaker-circular component is faster than that 5Strictly speaking, power conservation does not imply that the
of the stronger-circular component. As a result, eventually gntensityof A_ does not become comparable to the intensiti of
However, the numerical simulations in Sec. VII show tAat does
remain much smaller thafy, during the propagation, in contrast to
3Note thaty is positive for most liquidgRef. [16], Chap. 17. the qualitative argument of Clos al.
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tem (19) consists of two coupled equations for the two
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Using a careful perturbation analysis of Eq46), we

circular-polarization amplitudes, which, unlike the standardprove in Sec. 1 of the Appendix the following result.

Closeet al. model(9), also takes into account nonparaxiality,

Lemma 1.Let an almost circularly polarized input beam

the contribution of the grad-div term, and the coupling to thefj.e., that satisfies Eq(13)] propagate in a Kerr medium.

axial component.
A key dimensionless parameter of the model is

P
_kor0_27ﬂ’0'

12

where\ is wavelength and, is input-beam width. Since the

wavelength is much smaller than the input-beam width, the
parametef is small, i.e.,f<1. We are interested in the case

where input beam is almost left-circularly polarized, i.e.,

18 =0(¢), £3<&, (13

wheree measures the deviation from perfect input circular

Assume that the rescaling E@.5) is valid and thaf ande
are small. Then the dimensionless amplitudes satisfy

A_IA,=0(f?¢) (183

and

f
AglA,=—=(A, +A, ) +O(f3ef).

V2

(18b)

polarization. Therefore, there are two small parameters in the

problem, i.e.,

f<1l and e<1. (14

Sincef ande are small, we can use perturbation analysis tg

simplify the vector Helmholtz equatiofl). To do this, we
rescale the variables according to

~ X y
X:_l

. 1

&= \@,&(x y,z)e'ko?
2roko n2 7 b b

where A=(A;,A,,A;) is the dimensionless electric-field
vector andLpg= korS is the diffraction(“Rayleigh”) length.

(15

Since from Lemma 1 it follows thatA_<A, and
Az<<A. for z>0, we have the following result.

Proposition 1 (stability of circular-polarization—part 1).
Under the assumption that the rescaling Bd) is valid, an
almost circularly polarized input beam remains almost circu-
larly polarized during its propagation.

Proposition 1 shows that circular-polarization is stable, in
agreement with Berkhoer and Zakhaf@B8] and in contrast
to Closeet al.[3]. Moreover, whereas the standard explana-
tion of Closeet al. for instability of circular-polarization as-
sumes thaty>0, Proposition 1 is independent of the value
of y. An obvious weakness of Proposition 1 is that it is based
on the assumption that the scalifid) remains valid during
the propagationA priori, the validity of this assumption is
questionable because of the high intensities that can be

For convenience, we drop the tilde signs from now on. Usingeached during self-focusing. However, in Sec. VI, we sub-

Egs.(15), we rewrite the vector Helmholtz systertly and
(2) in the dimensionless forrtsee Ref[8])

iA,+A A+3f2A ,+N=—[fV, +ey(i+3f23,)][fV,.-N
(163

+iNg+3f2N3,],

fV,-A+iAg+3f2A5,=—f2(fV,-N+iNg+ 3f2N3,),
(16b)

. 1 Lo Lo
N(A)=m[(A-A*)AJW(AA)A*], (160

wheree;=(0,0,1) andV, =(dy,4,,0). In analogy with Eq.
(7), we denote the nondimensional circular amplitudes by

1
\2

and the corresponding input amplitudes B2 (x,y)
=A.(X,y,z=0).

Ai(xiyvz): (AliIAZ) (17)

stantiate Proposition 1 by proving that Eg5) remains valid
during self-focusing. Our numerical simulations in Sec. VII
also corroborate this result.

We recall that all the previous studies used systém
whose derivation is based on the assumption thai€_
<1. However, from estimate€l8), it follows that £_ /&3
=A_/A;=0(f,e/f). Thus,

Corollary 1. When e<<f, the assumption thaf;<&_ is
wrong.

Indeed, in Secs. VI and VII, we show that systém
leads to completely wrong predictions wher<f. More-
over, we show that even whdr<e, this system can lead to
wrong prediction$.

Using the estimate&l8), we prove in Sec. 2 of the Ap-
pendix, the following result.

Proposition 2.Let an almost circularly polarized input
beam[i.e., that satisfies Eq.13)] propagate in a Kerr me-
dium. Then to the leading ordeA.(x,y,z) satisfy the
coupled system,

bSee, e.g., Fig. 3.
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+2y

. 1 2 1 2 1 2
1A+,:+ALA++m|A+| A+=_Zf Al 1+ |A_|*A,
NLS for A, norparax. coupling to £_
f2
_m[4|VJ_A+|2A++(VJ_A+)2At+|A+|2ALA++A3—ALA>’-¢<—]’ (193
vectorial effects
) 1+2y 5
IA_ . +AA_+ T AL |?A_=0, (19b)
LSforA_ —_—
coupling to £
|
where 1
A Z+ALA++ _|A+|2A+
2 2 2 2 2 2_ a2 2 ’ I+y
IVLAL2=]A4 4 +|A+,y| v (VLA T=AL FAL . 5 5
f f

The terms that are neglected in Eq$9a and (19b) are =—IA+,H—mAL(|A+|2A+)-
O(f4,ef?) andO(f?,&%), respectively.

Let us explain the origin of the terms in systeiio). V(V-(E,00))
Equation(19b) is a linear Schrdinger(LS) equation forA_ (21

with a nonlinear coupling té\, that results from the nonlin-
ear coupling ofé,. to £_ in Egs. (1) and (2). Wheneg=f

The second term on the right-hand side of E2fl) corre-

sponds to the contribution of the grad-div term in the vector
Helmholtz equation(la) when £_=&;=0. This term can
also be written as

=0, system(19) reduces to the following NLS foA, :

1

A, A A+ 1TY|A+|2A+:0. (20)
The A, ,, term on the right-hand side of E@19a is the r? 2
nonparaxial term that comes from the scalar Helmholtz equa- N 2(1—+7)AL(|A+| As)
tion. The second term results from linear and nonlinear cou-
plings of £, to £_ in Egs.(1) and(2). The remaining terms V(T-(E+000
in Eq. (199 result from vectorial effects, i.e., the contribu- 12
tion of the grad-div term and the coupling 6f to &. In =— m[4|VLA+|2A++2(VLA+)2A1‘

Sec. VI, we show that the effect of tf@(f?) terms, which
are neglected in the Closet al. System(9), dominate the +2|ALPA AL +AZA A*].

effect of the coupling t&€_ .

The remainingO(f?) terms in the square brackets on the
right-hand side of Eq.199 correspond to the coupling &,

It is interesting to note that th@(f2) terms on the right- both from the grad-div term and the nonlinear polarization
hand side of Eq(199 do not vanish even if one se& field. To recapitulate, th®(f?) terms in the square brackets
=&,=0. Indeed, a close inspection of the derivation of thison the right hand side of E4199 correspond to the contri-
equation shows that in that case, the resulting equation fdoution of the grad-dive, term and and the coupling &;,
A, , instead of Eq(19a, is ie.,

A. Contribution of the grad-div term

f2
2(1+7) [4|V A PA +(V,A)AT+|APA A, +AZ A A¥]
vectorial effects
I 12
————A (|A:PA)— 75— [(VLAL)PA* +]A L PA AL
2(1+7) +(la- *? 2(1+7)[(L $PATHALPA AL 22

V(V-(E,,0,0)) coupling to Eg
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B. Power conservation

As mentioned in Sec. Il B, Berkhoer and Zakhaf@3]
showed that the power of each circular amplitude is con-
served in the systerf®). The same holds, to leading order, in — ;f |A, |*dxdy
system(19), i.e., 2(1+y) i

H@)= [ (TA, 2+ (94 [Pdxdy

1+2
Ni(z)=f|Ai|2dxdy=Ni(0)+O(f2). (23) —2(1—+Z)f |ALI?|A_|?dxdy. (25)

In addition, we have the following result.

In other words, the power of each circular component is . : :
o : L Lemma 2 variance identity for Eq(24)]. Let AL (X,Y,2)
2 +
conserved withO(f<) accuracy. Since Eq13) implies that be the solution of Eq(24) and let

N_(0)/N.(0)=0(e?), we conclude from Eq(23) that
N_(2)/N,(2)=0(f2,¢&?), i.e., that almost all of the beam’s
power remains in the left-circular component during the V(Z)=f (|AL|12+]|A_12) (x2+y?)dxdy (26)
propagation. As we have noted, strictly speaking, power con-

servation does not imply that thatensityof A_ does not e its variance. Then

become comparable to the intensity Af . However, the

numerical simulations of systed9) in Sec. VII show that V,,=8H(2), (27
A_ does remairD(e) smaller thanA, during the propaga-
tion. whereH(z) is defined by Eq(25).

Equation(27) can be proved by differentiating(z) twice
with respect ta, using Eq.(24) to replacez derivatives with
transverse derivatives, and integrating by parts. As in the

During the ear'y Stage of the propagatio're', at moder- case of the NLS e.quatid#), from Hamiltonian conservation
ate levels of self-focusingthe O(f2) terms in systen{19) (25 and the variance identity27) it follows that when

The resulting system of equations is propagation distance. Since by definition the variance has to

be positive, this implies that the solution blows up at a finite
1 propagation distance:

AL, +A A +——[|A 2+ (1+29)|A_|3A. =0, Proposition 3.Let H(z) be given by Eq.(25). Then

’ 1+y H(0)<0 is a sufficient condition for collapse of solutions of

(243 Eq.(24).
A similar result, of course, holds for syste®).

2y Proposition 4.Let A.(X,y,z) be the solution of system
|AL|?PA_=0. (24 Eq.(9) and letH(2) be given by

V. EARLY STAGE OF PROPAGATION

. A 1+
IA_,+A A_+ 14y

- - 1
Below we prove that solutions of E24) can undergo cata- H(Z)Zf (IVAL[?+|VA_|?)dxdy— mf (JAL]*
strophic collapse. Therefore, the simplified mo@#) can Y
be used for the early stage of the propagation, but fails to 4 1+2y 5 5
describe the propagation near and after the blow-up point. +|A_|")dxdy—- mf |AL[%|A-|*dxdy.
We note the syster®) and(24) are almost identicdlthe

only difference being that the equation far in system(9)  ThenH(z)=H(0) andV,,=8H(z), whereV(z) is given by
includes thgA_[?A_ term. This term is negligible, however, Eq. (26). Therefore,H(0)<0 is a sufficient condition for
because it |@(82) smaller than théA+|2A, term in Eq C0||apse of solutions of system E@)
(19b) Indeed, the numerical simulations in Sec. VII show Remark'PropositionS 3 and 4 show that the Coup”ng to
that solutions of systent9) and (24) are almost indistin- ¢ does not arrest the collapse. In fact, because the coupling
guishable. term toA_ in the square brackets in E(24a appears with

a positive coefficient, iaccelerateghe collapse.

A. Collapse of circularly polarized beams

We now prove that solutions of E¢R4) can collapse at a B. Threshold power

finite propagation distance. To do that, we first observe that Since the|A_|?A. term in Eq.(249 is O(&?) small as

the systenm(24) conserves the two powebs, (z) andN_(z) compared with théA , |?A term, to leading order, this term

as well as the Hamiltonian is negligible and systeni24) can be further approximated
with the semidecoupled system

Indeed, roughly speakind,=0 corresponds to assumptiof® ; 1 2
’ ’ IAL ,+A AL +— AL AL =0, 28
and the paraxial approximation. i y| +|%As (283
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_ 1+2y Inspection of the derivation of Eq32) shows that the

IA_ .+ AJ_A7+1T,}/|A+|2A7:O- (28D terms with Cponparax Cuec: @andCe (2) correspond to non-
paraxiality, vectorial effects, and the coupling £o in Eq.

Here the equation foA . is decoupled fromA_ . If we res- (193, respectively. Based on E(B2), we make the follow-

caleA, in Eg. (28) as ing observations.
(1) To leading order, nonparaxiality and vectorial effects
Pp(xy,2)=(1+ y) " Y2AL(x,y,2), (29 have the same qualitative effect on self-focusing. This obser-

vation is surprising, because at the partial differential equa-
then Eq.(289 becomes the NLS equatidd), showing that tion PDE level[i.e., system(19)] the expressions corre-
the threshold power for collapse of circularly polarized sponding to nonparaxiality and vectorial effects are
beams is completely different.
. (2) Cyec=5.Lnonparax Thus, systent32) shows that vec-
NE™=(1+ y)N,. (30 torial effects are more than five times stronger than non-
paraxiality.
(3) Whene<1, the term corresponding ©g is much
smaller than the other terms in E@2). Therefore, system
When the power of a laser beam is not much higher thanz2) shows that the coupling t6._ is negligible as compared
N¢'™, its propagation can be analyzed usingpdulation  with nonparaxiality and vectorial effects. We thus see that
theory[24,14], which is an asymptotic theory for analyzing Close et al. mode{9) can be wrong even whess>f.
the effects of small perturbations on self-focusing in the 2D (4) Except for the small term that corresponds to the cou-
NLS equation(4).8 Modulation theory is based on the obser- pling to £_ , system(32) is independent of. Indeed, if one

vation that, after some propagation has taken place, a selfeglects the coupling t6_ in Eq. (198 and rescaled, as
focusing beam rearranges itself as a modulated Town@sian Eq. (29), theny is “eliminated” from the rescaled equa-

VI. ASYMPTOTIC ANALYSIS

i.e., tion. Thus, we see again thiie value ofy (i.e., whether it is
1 zero or positive) has no effect on circular-polarization sta-
N oy r bility, in agreement with Berkhoer and Zakhaf{@3] and in
ALy 2)[~Vi+y L(2) R( L(z))‘ (31) contrast to Closet al. [3] (see Sec. Il

We now show that nonparaxiality and vectorial effects can
where R(r) is defined in Eq.(6). Therefore, self-focusing arrest collapse. If we neglect the weak couplingcto(i.e.,
dynamics is described by the modulation variablg) that  setCg =0), we can follow[26,24] and integrate E(:32) to
is proportional to beam width and to(@h-axis amplitudeas  get that
well. In particular,L—0 and L—o correspond to cata-
strophic collapse and to complete defocusing, respectively. 4H,
By applying modulation theory to systefh9), we get that (¥)2=— M—y(YM ~Y)(y=Ym), Y(2)=L%2), (33
Proposition 5.When f,e<1 and when the power of a

circularly polarized laser beam is not much higher th&ff,  \yhere

self-focusing dynamics is given, to leading order, by the re-

duced system of ODEs M B(0)

) Y 3 (1~ V1~45)
L.A2)=— T3 szc(CnonparaXﬂ” Cued
L ~ M B(0) [1+0(d)],
fz(Cnon arax™ CvedNe [ 1
z 0 0
(32 (34)

where|B|<1, M=1[5p?R%pdp~0.55, Cromparac=1s Cvec 0= — F*Ne(Cronparact Cved Ho/4AM?B2(0), and Ho~H(0),
~16/3,and Gz (2)=0(f?¢). whereH(0) is the input Hamiltonian.
The proof of Proposition 5 is similar to that of Proposition We recall that a necessary gondmon fo_r collapse n the
5.1 in Ref.[8]. For details, see Ref25]. unperturbed NLS equatio(28a), is that the input power is
’ above threshold. In modulation theory variabl@dl], this
condition amounts toB(0)~[N(0)—N{"“]/M=0. How-
8 the beam power is highly abovS™, the beam can undergo ever, whenB(0)>0 it follows from Egs.(33) and(34) that

multiple filamentation(see Sec. VIII. In that case, the power of y(_Z)Bym>0. Therefore, collapse is a_rrgsted by n0npara>_(i-
each filament is slightly aboveN®™, and the results of the ality and vectorial effects, and the minimal beam width is

c ! .
asymptotic analysis can be applied to each filament. L~ L(0)F YNE"(Cronparaxt Cved/4M B(0), which corre-
9See, e.g., Fig. 2. sponds to several wavelengths. Sirgl@®)<1, even at this
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€
max|A
10° ___l___l
max |A | max|A |
10’
0.04
0 0.25 10" 10°
z max|A+|

FIG. 1. Solutions of syster(®) (dasheg system(24) (dotted, and systen(28) (solid). (a) on-axis amplitudefb) deviation from circular
polarization. Herey=0.5 and the input beam is E(B5) with e=0.1 andN(0)=1.5NZ".

stage the magnitude of th®(f?) terms in Eq.(19) is Cv(.(, 00)~8 and Cg ~-—8

O(B(0)) smaller than that of the NLS term& A, and o °

|A.?A., providing ana posteriorijustification for treating  correspond to contribution &, in the grad-div ternti.e.,

the right-hand-side terms in EqLY) as small perturbatipns: whenE_ =E;=0) and the coupling t&, respectively. This
Corollary 2. The scaling of the variable€l5) remains  resylt is surprising because it shows that the defocusing ef-

valid during the propagation. o fect of £, through the grad-div term isight times stronger
This enables us to remove the assumption in Propgan nonparaxiality. Also surprising is that the couplingjo

osition 1. is focusing since Cg,<0. Indeed, since previous studies

Proposition 6(stability of circular-polarization—part J showed that vectorial effects arrest collagsee, e.g., Refs.

\é\/higs?]n Va[[r;osgvsgfﬂir&F;E”Z:gc)sggge "r(t)hzt ‘Z‘gsige; [27,8]), the general notion has been that the couplingstes
9. P y c Propag defocusing mechanism. In contrast, our study shows that

Kerr medium, the beam remains almost circularly polarize he coupling to&; is, in fact, focusing, but the dominant

forlaII 33? fficient dition I in th vectorial effect, which is defocusing, results from the contri-
n addition, a sufficient condition for collapse in the un- ) .0 of £, to the grad-div term.

perturbed NLS equatio@) is H(0)<0. However, from Egs.
(33) and (34), we see that if3(0)>0 andH(0)<O0, then
Vo<y(2)<yu. ie., amest of collapse is followed by VII. STABILITY OF CIRCULAR-POLARIZATION
focusing-defocusing oscillations. When nonadiabatic radia- SIMULATIONS

tion is added to E¢(32), the oscillations decay during propa-  |n this section, we confirm Proposition 6 and the predic-
gation[26]. A closer inspection of the derivation of E@®2)  tions of modulation theory, by solving EGL9) for almost
reveals thaCyec=Cv(v (g, 0,0)+ CE,, Where circularly polarized, Gaussian input beams

-
n

L0119 A% (x,y)=YN(0)e ¥ Y(1+e"®), (35)

where the input powemN(0)=[(|A;|?+|A_|?)dxdy is
R moderately aboveN{'™, see Eq.(30), and ¢ is the input
0 2.5 “ellipticity angle” (i.e., =0 corresponds to a perfectly left-
circularly polarized beam Below we study different
LN asymptotic regimes of the parameté@nde.

N Figure Xa) confirms that when nonparaxiality and the
. coupling to the axial component are neglected., f=0),
R TN ' solutions of system9), (28), and (24) can undergo cata-
strophic collapse, and that the solutions of these three sys-
L(z=0.24)~23 tems are almost indistinguishalfeee Sec. Y. Figures 1b)
and 2 show thatA_/A,=0(¢), i.e., the solutions remain
circularly polarized to leading order. Indeed, as the intensity
e of A, grows during the self-focusing process, the intensity
0 25 of A_ also grows because of the couplingAq . However,

r A_ always remains smaller thak, (intuitively, becauseé\ _

FIG. 2.]A. | (solid) converges to the modulated Townes profile has insufficient power for an independent collapse, see Sec.
(31) (dots during beam collapse. The dashed linéAs |/s. Data |V B). Figure 2 also confirms thak, approaches a modu-
shown are the solution of syste(®4) in Fig. 1.(a) z=0, L~0.5;  lated Townes profile during the collapse, thus justifying the
(b) z=0.2,L=~0.2; (c) z=0.24,L~0.04. application of modulation theory in Sec. VI.

1AL 1A /e

(o]

e
n

s A

1A, 1A /e

(o]
1
t

[44]
N
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» e=0.1
10
maxlA I "’\/—J\/WVVW
moa | /| " -
10" , max|A+|
I\ \ ~
PN
/
0 -7
10 - - A B
— 0
0.15 0.245 0.3 0.15 0.3
z z

FIG. 3. Solutions of systerf19): (a) on-axis amplitude oA, (solid) and of A_ (dashedt (b) deviation from circular-polarization. Same
v and input beam as in Fig. 1 with=0.01 ande =0.1.

102 €=0.01
max|A | [T T A M

o || e

10° max|A |

—

» A B
107 0
0.15 0.245 0.3 0.15 0.3
z z
FIG. 4. Same as Fig. 3 with=¢=0.01.
10° €
max|A |
A0 | NN NN -
10° max|A+|
/\\ //\\,’r\_—’/\v
% - A B
107 0
0 2 0 2
z z
FIG. 5. Same as Fig. 3 with=0.1 ande =0.01.
10° 1.5¢
|A,(0,2)] -/\/\/ max|A |
10’ { —=
max|A |
0 -\ N
10 // \ // \‘//J
// ~
N A B
10° 0
0 0.14 0 0.14
z z

FIG. 6. Same as Fig. 3 witN(0)=5N%" and f=¢=0.05.
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When an input profile is cylindrically symmetric, i.e.,
[y(z=0)| [w(z>0)| AizAg(r), then according to either the Closéal. model
_ system(9) or our model(19), the beam remains cylindrically
symmetric during the propagation, because these equations
are isotropic. A natural question is therefore what is the
~ - symmetry-breaking mechanism that is responsible for mul-
tiple filamentation of circularly polarized input beams.

Let us first consider the “ideal” case of a circularly po-
larized input beam with a cylindrically symmetric profile.
O Since in this case neither the medium nor the input beam

O induce a preferred direction in the,f/) plane, we can make
the following observation.
O Corollary 3. Let a circularly polarized, cylindrically sym-
metric input beanji.e., A° =A% (r) and A° =0] propagate
X X in a Kerr medium. Then the beam remains cylindrically sym-

FIG. 7. Spatial symmetry can be maintained in 1D multiple Metric during the propagation. In particular, the beam does
filamentation(top) but not in 2D multiple filamentatiofbottom). not undergo multiple filamentation.

In the case of a cylindrically symmetric input proffliee.,

When 0<f<e, one might expect that the couplingda. ~ A==A%(r)] with a small deviation from the circular-
in Eq. (19) would dominate vectorial effects and nonparaxi- polarization statdi.e., A°><A%), the beam will not remain
ality. In fact, quite the opposite is true. Whém0, the pic-  cylindrically symmetric during its propagation because the
ture of self-focusing completely changes, becauseXf®) initial condition (€2 ,°) of the vector Helmholtz modélL)
terms in Eq.(19), which correspond to nonparaxiality and is not rotation invariant as a vector entity. In contrast, be-
vectorial effects, arrest beam collapse and lead to focusing=gse Eqs(19) are isotropic, when the input profile is cylin-
defocusing oscillations, as predicted by modulation theory irl‘irically symmetric, then according to EGL9) the beam
Sec. Vl[see Fig. &)]. In addition, the beam remains almost \,ou1d” remain cylindrically symmetric, i.eA.=A.(r,2)
circularly polarized during propagatigeee Fig. 8)]. Thus, o a1 ~0. This “inconsistency” is due to the anisotropic

even in this regime, syste(®) leads to wrong predictions. O(&f2) terms that are neglected in E4.93, which account

When f=0(g) and whenf>g, the picture is qualita- S 12
tively similar to the case € f<e (see Figs. 4 and)5More- for the symmetry breaking in the Helmholtz moojé}. L
Corollary 4. Let an almost circularly polarized, cylindri-

over, the value oft seems to have negligible quantitative o . 0 A0 0
effect on the dynamics &, , as can be seen by comparing calI;(; symmetric mput beam[l.e.., A-<A, and Ai
Figures 3a) and 4a).2° Finally, focusing-defocusing oscilla- =#A=(r)] propagate in a Kerr medium. Then to leading or-
tions and circular-polarization stability are also observedder, the beam remains cyhndncaliy symmetric during the
when the input power is much higher thaii™ (see Fig. 6,  Propagation, i.e.A, =A(r,z) +O(ef?) for all z>0.

a regime that is formally beyond the validity of modulation  Corollary 4 suggests that cylindrically symmetric, almost
theory. circularly polarized beams would not undergo multiple fila-

mentation. This result is not conclusive, of course, as Eq.

(19) neglects theO(ef?) symmetry-breaking terms in the
VIII. MULTIPLE FILAMENTATION vector Helmholtz mode{1). Indeed, in the “extreme” case
of linear polarization(i.e., e=1), theseO(f?) symmetry-

As noted in the Introduction, experiments with beamsbreakin terms can lead to multiple filamentatiGee Sec
whose input power is highly above the self-focusing thresh- 9 P '

old can result in multiple filamentation, i.e., beam break upIX)'
into several long and narrow filaments. We note that in 1D
NLS models “multiple filamentation” can occuwithout
breakup of the spatial symmetty.In contrast, in 2D NLS
models for beam propagation in a bulk Kerr medium, mul- In Corollaries 3 and 4, we assumed that the input beam is
tiple filamentationcannotoccur without breakup of cylindri-  cylindrically symmetric. Such idealization, however, is unre-
cal symmetry(see Fig. 7. alistic, as there is always some degree of imperfection when
generating an input beam. Since the couplingAtoin Eq.
(193 is O(e?) small (see Sec. VB system(19) can be
10This comparison also shows that the deviation from circular-aPproximated with the scalar equation
polarization has a small effect on the location of tifiest) focal
point (see footnote in Sec. llI B
"ror instance, when two identical 1D solitons move toward each %A close inspection of the derivation of E(L9) shows that the
other and overlap at=0, then atz=0 the input intensity is spa- O(f%) terms that are neglected in EL99 are isotropic, because
tially symmetric, yet, according to the 1D NLS, there would be two they correspond to higher-order effects of nonparaxiality and the
distinct solitons at a sufficiently large propagation distance. coupling of &, to &;.

|y(z=0)| contour . |y(z>0)| contour P

A. Scalar equation for circularly polarized beams
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10° whereN(0) is the noiseless input powd?(Xx,y) is a random
complex-valued function, and the constantdetermines the
noise level. In our simulations, we see neither evidence for
multiple filamentation nor even for mild instabilities. Rather,
the beam collapses while converging to a cylindrically sym-
metric profile(see Figs. 8 and)9We do see, however, mul-
tiple filamentation when we solve E¢36) with noisy high-
power input beams, i.e.,

max_ |A |

A% (x,y)=2YN(0)e *YI[1+cP(x,y)], (39

where N(0) is several timesNS"™. For example, in Figs.
0 0.04 10-12, we show a noi;y beam Wit_h ten times the threshold
' power that breaks up into three filamehtsNote that the
z difference between the scalar equati@®b) and the Close
FIG. 8. Peak amplitude of the solution of systé@ with the €t al- system(9) is the O(f?) nonparaxial and vectorial ef-
noisy input beam37) with £=0.1, c=0.1 (i.e., 10% noisg and  fects terms, both of which are isotropic. Thus, these terms
N(0)=10NS"™ (solid). Also shown is the solution with the same cannot lead to multiple filamentation by themselves. Never-
input beam but without the noigee., c=0, dashel theless, as the above simulations show, they are necessary for
noise-induced multiple filamentatiofsee Sec. IX B for fur-
ther discussion

C. Astigmatism induced multiple filamentation

1 2 . . . . . .
e - 41V AL IPA. +(V. AL )2A* Optical _dewces, such as those used for producmg circu-
4 TTzop(1+ y)[ VLAPAL+(VLAL)AL larly polarized beams, are known to produce astigmatic
beams(see, e.g., Ref[28]). To study whether astigmatism
2 2 *
HAFALALFALAL AL (36 can also lead to multiple filamentation, we consider the input

beam
In Secs. VIII B and VIII C, we use Ed36) to study whether
small imperfections in the input profile can lead to multiple A% (x,y)=2CNZ"exg — (ex)?—y?], (39

filamentation of circularly polarized beams.
where C is constant ance is input astigmatism parameter

(e=1 corresponds to a cylindrically symmetric input bgam
Our simulations of Eq(36) show that input astigmatism can
The standard theoretical explanation of multiple filamen-lead to multiple filamentation when the input power is sev-
tation (of linearly polarized beamswas suggested by Be- eral timesNS™.** For example, Fig. 13 shows astigmatic
spalov and Talanov in 1967]. According to that model, input beams that break up into two and three filaments. As
multiple filamentation is initiated by the noise in the input- with noise-initiated multiple filamentation, during further
beam profile that breaks up the cylindrical symmetry. In or-propagation, each of the filaments undergoes focusing-
der to test whether noise can lead to multiple filamentation otiefocusing oscillations and is roughly cylindrically symmet-
circularly polarized beams, we first solve the Closteal. ric.
system(9) with very high-power input beams, to which we
add noise both in amplitude and in phase, i.e., IX. COMPARISON OF CIRCULAR

Ag(x,y)= N(O)e_(xz+y2)(lieig)[l-l—CP(X,y)], AND LINEAR POLARIZATION

B. Noise-induced multiple filamentation

(37 It is instructive to compare the results of circularly polar-
ized input beams with those of linearly polarized ones. In
Ref. [8], we showed that when the input beam is linearly
polarized in thex direction andf <1, Eqgs.(1) and(2) can be
approximated with the scalar equation

1A closer inspection of the results reveals that after the breakup
has occurred, each of the filaments undergoes focusing-defocusing
oscillations, as predicted by modulation the¢sge Sec. Vjland is
roughly cylindrically symmetriqsee Fig. 12
4We note that the effective threshold power for collapse of astig-
FIG. 9. Contour plots of the noisy solution of Fig. &) matic beams is higher than for cylindrically symmetric beams by a
|AL(X,y,z=0)|; (b) |A;(X,y,z=0.036). factor of ~[0.2(e+ 1/e) +0.6], see Ref[12].
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FIG. 10. Intensity of the solution of Eq36) with f=0.05 and the noisy input bea(88) with c=0.1 andN(0)=10NS".

~ 2 o 1 4+6y 2 2 AT2Y 0 2 4%
A+ A A A PA = —f ZAl,zz+1T,y|Al,x| A+ (A )AT+ Ty (1A PA L o+ ATAT D |, (40)
nonparax. vector;aI effects

of the corresponding reduced systems reveals that the con-

where the variables are rescaled according to(Es).andA;  stants corresponding to the contributiép and £, to the
is the nondimensional amplitude in tiedirection. Whenf grad-div term aFer”(v‘.(El,o,o»:Cv’(v”.(E+,o,0))~8- There-
=0, Eq. (40) reduces to the NLS equatiod). The A;,,  fore, for both linear and circular-polarizations, the contribu-
term is the nonparaxial terrtin the scalar nonlinear Helm- tion of £, or £, in the grad-div term is a defocusing mecha-
holtz equation forA;) and the remaining terms on the right- nism that iseight times strongethan nonparaxiality. Perhaps
hand side correspond to the combined effects of the lineagurprisingly, the coupling t&; is considerably weaker than
and nonlinear couplings df; to & and the contribution of  the contribution ofg; or £, in the grad-div term, and this
E, in the grad-div term in Eqg1) and(2).*° coupling isfocusing for linear polarization it is focusing for

Settingf:_Q in Eq.(40) andf=e=0 in Eq.(19) shows y<1, becauseCE3(y)~—(8/3)(1— YI(1+7) [25], and
that for positive values ofy, the threshold power for self- ¢, circylar-polarization it is focusing independent pf be-
focusing of circularly polarized beams is higher by+%) causeCE3~—8/3. As we remarked at the end of Sec. VI,

than for linearly polarized ones, see Eg0). In addition, we . .
y P £80) these results are surprising to the extent that the interpreta-

rec"?‘” that7 _does not appear in Eq243. Therefore, when tion of the results of previous studies suggested that the cou-
& is negligible then, to leading order, the constantioes ; . ) .
ling to & is a defocusing mechanism. In contrast, our study

tnhorte;tf;gt nge\/etr)eﬁ]mcodrﬁ?:gxli‘?;nr?g;ebreﬂ‘?% r::t(t)(:eg]f)rjtesoef thEhows that the dominant vectorial effect is the contribution
Eq. (40) for Iinee{rly polarized’ input beams _of 51 or &, tothe grad—diy term, whereas the couplingégo.
: ' is, in fact, weakly focusing. In retrospect, the observation
that the coupling tcf; is weakly focusing is not so surpris-
A. Asymptotic analysis ing, as the coupling t&_ in the case of circular-polarization

Applying modulation theory to Eq40) for linearly po- IS also weakly focusing.
larized beams leads to the same reduced sy$83nas for
circularly polarized beams, the only difference being that B. Multiple filamentation

Cyec=16/3  for circular-polarization, whereasCyed y) In Ref. [25], we pointed out that the preferred direction
~(16/3) 1+ y/(1+y)] for linearly polarized beams$8].  jnduced by linear polarization of an input beam breaks up the
Thus, for both circularly polarized and linearly polarized cylindrical symmetry in the vector Helmholtz mod@). Nu-

beams, vectorial effects are considerably stronger than nofnerical simulations show that this symmetry breaking,
paraxiality, and both arrest collapse and lead to focusing-

defocusing oscillations. In both cases, the effect of coupling
to the second transverse figlice., E, or E_) is negligible. 3 <»
In the case of linear polarization, th@(f?) terms in the 7

reduced PDE40) correspond, in part, to the contribution of

&, to the grad-div term, which does not vanish even when & !
&E,=&,=0. Similarly, in the case of circular-polarization the
O(f?) terms in Eq.(19a correspond, in part, to the contri-
bution of £, to the grad-div term, which does not vanish _g ‘
even wherf_=&;=0. A closer inspection of the derivation 3
z 03s -3 y
5The coupling ta&, is O(f%). FIG. 11. Isosurface ofA.|? of the solution in Fig. 10.
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3 vectorial effects, or plasma formatipthat arrests the col-
lapse and lead to afunstable ring structure.

X. FINAL REMARK

For over 35 years, studies of self-focusing of circularly
y o polarized beams followed Clost al. [2] and used system
(9). These studies have led to controversial results regarding
circular-polarization stability. In this study, we show that the
assumptions on which the Clostal. model is based are not
valid physically. While some insight can be gained from sys-
tem Eq.(9), this system can lead to wrong predictions. In
-3 this study, we derive a mathematical model for circularly
-3 3 polarized input beams, which takes into account nonparaxi-
X ality and vectorial effects. Based on this model, we conclude
FIG. 12. Contour plot of A, (x,y,z=0.35) of the solution of  that circular polarization is stable.
Fig. 10. Our study also shows that cylindrically symmetric circu-
larly polarized input beams will not undergo multiple fila-
which is manifested by the anisotrop@(f?) terms in Eq. mentation: that a small deviation from a circular-polarization
(40), can lead to multiple filamentation, even when the inputstate is unlikely to lead to multiple filamentation, but that
profile is perfectly cylindrically symmetric, i.e$2=62(r) input-beam noise or astigmatism can lead to multiple fila-
and£9=0. In contrast, circular-polarization does not inducementation of circularly polarized beams. Therefore, suppres-
a preferred direction. Therefore, a cylindrically symmetricsion of multiple filamentation o€ircularly polarizedbeams
circularly polarized beam would not undergo multiple fila- should focus on producing a cylindrically symmetric input
mentation(Corollary 3. Moreover, Corollary 4 suggests that profile, rather than on producing a perfect circular-
even almost circularly polarized, cylindrically symmetric polarization state. In contrast, one cannot suppress multiple
beams are unlikely to undergo multiple filamentation be-filamentation oflinearly polarizedbeams by producing a cy-
cause the anisotropic terms are much wedk¥ef2)]. lindrically symmetric input profile because multiple filamen-
In Ref.[25], we tested numerically the original Bespalov- tation can result from the preferred polarization direction in-
Talanov model for multiple filamentation, by solving the- ~ duced by linear polarization.
perturbedNLS equation(4) with high-power cylindrically
symmetric Gaussian input beams, to which we added random
noise(38). We saw neither evidence for multiple filamenta-  Tjs research was supported by Grant No. 2000311 from
tion nor even for mild instabilities. Rather, the beams conhe ynited States—Israel Binational Science Foundation
verged to a cylindrically symmetric profile and collapsed. Bsp), Jerusalem, Israel.
However, when additional physical mechanisms, such as
saturation of the Kerr nonlinearity, are added to the NLS APPENDIX: DERIVATION OF EQ. (19
model, then input noise can lead to multiple filamentation of ) ) o )
very high-power input beamsee Ref[25], and references  The starting point for the derivation of E¢L9) is Egs.
therein. For circularly polarized beams, we reach similar (16), which were also used in the derivation of E¢0) in
conclusions: When we solve the Closeal. model (9) with Ref. [8]. Bglow we omit the technlcal 'detalls that were al-
high-power noisy input beams, the beams collapse whiléeady obtained in Ref8] or_that are similar to the derivation
converging to a cylindrically symmetric profilsee Sec. there(see Ref[8], Appendixes
VIII B ). However, when nonparaxiality and the coupling to
the axial component are included, input noise can lead to
multiple filamentation of circularly polarized input beams. We assume that the input beam is almost left-circularly
Thus, an essential requirement for noise to lead to multiplgolarized(13), i.e., thatA’ <A% andAJ<AY . Therefore, it
filamentation is the presence of an additional regularizingollows from Egs.(16) that over propagation distances of
mechanism(such as nonlinear saturation, nonparaxiality,several diffraction lengths
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FIG. 13. Isosurface ofA,|?
of the solutions of Eq(36) with
f=0.05 and astigmatic input
beams(39) with (a) C=7.5 and
e=0.9 [i.e., N(0)=8.3N"7; (b)
C=3.75 ande=0.6 [i.e.,, N(0)
=6.25NC".
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A+(X,y,Z):O(1), A—(X!yiz)zo(l)i AS(XinZ):O(l)'
(A1)

In analogy with system Eq9), we define the nondimen-
sional circular nonlinear polarizations

N+:i2(N1iiNz), (A2)

2

whereN=(N,N,,N5) is defined in Eq(160).
Similar to the derivation in Ref.8], it follows from Egs.
(16b), (160, and(A1l) that

Az=0(f). (A3)
Using Eq.(A3), we get from Eq(160) that
N;=0O(f). (A4)

Therefore, substituting EqA4) in Eqg. (1639 gives that

iAL+A A+ EF2A,+Ny=—fa(fV, -N+iN3)+O(f*)
(A5a)

and

iAp,+ AL Apt 5T2A0,,+ Ny=—Fa,(fV, -N+iNg)+O(f4).
(A5b)

Subtracting Eq(A5b) from i times Eq.(A5a), dividing by
V2, and using Eq(A2) gives that

iIA_,+A A_+3f2A_ ,,+N_=0(f?). (AB)
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Therefore, we get from Eq$A3) and (A9) that

\I_ 1 2 )4 A+ A_ A_ O .

We can rewrite Eq(A6) using estimatéA10) as

id,+A +—1 2 A 2+—1 A_|2|A_=0(f?
I0"2 1 1 | +| 1 | *| - ( )
(A1)

We note that Eq(A1l) is a homogeneous equation M.
with an O(1) operator on the left- hand side. SinA&/Ai
=0(e) [Egs.(Al)] and the driving terms on the right-hand
side of Eq.(A11) areO(f?), estimate(18a follows.

Using Eq.(16b), we get from Eqs(A3) and (A4) that

Az=if (Apx+Azy)+O(f3). (A12)

Using Eq.(18a, we obtain from identitie$A8) that

i
A,=— —A, +0(f%¢).

+ 1 1
& \/_
(/ \13)

V2

Substituting Eq(A13) into Eq. (A12) yields estimatg18b).

2. Derivation of Eq. (19)
In order to obtain Eq(19b), we first use Eq(1839 to get

Throughout the derivation in this appendix, we use the fol- ot

lowing identities, whose proof is straightforward:

A-A* =| A2+ |Ag]?+|Aql2

=[|A [>+[A_|>+|Agl*> [from Eq.(17)],

A-A=A2+A5+A3=2A A_+A3 [fromEq.(17)],

(A7)
and
1
A1=E(A++A_),
A,=— I—(A+—A,) [from Eq.(17)]. (A8)

2

It follows from Egs.(17), (160, (A2), and (A7) that
N :i[(A*-A*)A +y(A-A)A* ]
- l+ ,y - 7 +

1
_ 2 2 2
1er[(|A+| +|A_|°+]A3|%)A_

+y(2A,A_+A3A*] [fromEq.(17)]. (A9)

|A_|PA_=0(f5¢3). (A14)

Equation(19b) follows from substituting estimatg\14) into
Eq. (Al11).

Below we derive Eq(198. Summing Eq.(A5b) with i
times Eq.(A5a) and dividing by\/2 leads to

1
A, A AL+ Zf2A+,ZZ+ N,

f ..
=— E(ax+iay)(fvi.N+iN3)+0(f“).

(A15)

Using identities(A7) and estimate$l8), it follows that
1 . .
N+=1Ty[(A~A*)A++ v(A-A)A*] [from Eq.(160)],

1
= 1+ ,y[(|A+|2+ |A—|2+ |A3|2)A++ v(2A L A_

+A3)A*]  [from Eq.(AT7)],

036622-14



SELF-FOCUSING OF CIRCULARLY POLARIZED BEAMS PHYSICAL REVIEW B7, 036622 (2003

2
Tl AlPAL+

2A+

1+ v 2(1+7y) 217 ) (19 Similarly, we obtain that

+ay)A+|2A++O(f4,sf2) [from Eq.(18)], (A16)

1 . -
N3=77 7,[(Pw“\*)Ag,Jr y(A-A)A%] [from Eq.(160)],

and that
1 2 3
:1T’)/|A+| Asz+0O(f°ef)

AR =[A L2+ A|2+|Agl?
I .
=|A,|?+0(f2%,e?) [from Egs.(A7) and(18)], = m|A+|2(<9x—l<9y)A+ ,

- +0O(f3,ef) [from Egs.(A17) and(18b)], (A18
A~A=2A+A,+A§=O(f2,s) [from Egs.(A7) and(18)]. (Foeh 1 asd ) (180)] (A18)
(A17) and that

V. -N=Ny,+ Ny, = AL (A-A*)A + y(A- A)A*]+ ! y[(A A*)A,+ y(A-A)A3] [from Eq.(160)],

1—|—

1 2 1 2
=17y X(IA+| AD+ T y(|A+| A;)+0O(f%e) [from EqQ.(A17)],

(1AL 2AL) ay(IAL1?A)+O(f2e)  [from Eq.(A13)],

1 i
:—ax - -
V2(1+ ) V2(1+ )

1
= (d—idy)(|ALIPAL)+O(f?,¢). A19
\/§(1+7)(x WIAL*AL)+0O(F%€) (A19)
Substituting Eqs(A16), (A18), and(A19) into Eq. (A15) leads to
2

2vy __
2(1+7y)

1+y

. 1 .
|A+’Z+ALA++1T7,|A+|2A++ (idy+a,)AL|PA,

2
C2(1+7y)
—|AL2(9x—idy) A T+ (F4,ef2).

(ax+iay)[(&x_iay)(|A+|2A+)

Rearranging the right-hand side of this equation gives(E@a.
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