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Critical power for self-focusing in bulk media
and in hollow waveguides
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We determine the threshold power for self-focusing collapse both in a bulk medium and in a hollow-core
waveguide for various spatial profiles. We find that the threshold power for collapse in the waveguide is
always equal to the lower-bound prediction for a bulk medium.  2000 Optical Society of America
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The nonlinear optical process of self-focusing sets an
upper limit on the amount of laser power that can
be propagated through a medium with an intensity-
dependent refractive index (i.e., n � n0 1 n2I , where
n0 is the linear refractive index, n2 is the nonlinear
refractive index, and I is the intensity). For powers
above this threshold the beam can undergo collapse,
with the peak intensity becoming sufficiently high
that damage to the material can occur. Although self-
focusing was one of the first phenomena studied in
nonlinear optics, it continues to be of importance in
recent studies, for example, of filamentation in air1 and
of parametric generation2 and pulse compression3 with
hollow-core waveguides.

Many studies have investigated the power for cata-
strophic self-focusing or self-trapping4 in bulk media,
and numerous expressions and values have been de-
rived by use of various arguments or through numeri-
cal calculations. Generally, the analytic form of the
expression has been shown to be of the form5

Pcr � a�l2�4pn0n2� , (1)

where l is the wavelength in free space and a is a con-
stant that is independent of the material parameters.
For example, Boyd6 gives the value of a � �1.22p2��8 �
1.8362. Within a different context, Weinstein7 inves-
tigated the conditions of catastrophic collapse of the
nonlinear Schrödinger equation (NLSE) and calculated
analytically the conditions under which singularity for-
mation occurs.

More recently, the self-focusing process in hollow-
core waveguides filled with a gas was interpreted as
the transfer of energy from the fundamental mode to
the next-higher-order mode.8 It was estimated from
this analysis that the critical power for self-focusing in
the waveguide could be as much as five times higher
than that of free space.

In this Letter we show that the lower bound for
the critical power for either bulk media or a hollow
waveguide is the same and is given by the power of
the Townes soliton in a bulk medium. We perform
numerical simulations for various input profiles in a
bulk medium, including Gaussian and super-Gaussian.
In all these cases we find that the critical power for
0146-9592/00/050335-03$15.00/0
self-focusing in bulk media is no more than 10% higher
than the power of the Townes soliton. Our simulations
for various input profiles in a hollow waveguide show
that the critical power in a hollow waveguide is equal
to that of the Townes soliton. We also point out
that the distinction between critical powers for self-
trapping and for catastrophic self-focusing is outdated,
as there is only one threshold power, which is that for
catastrophic self-focusing.

For a scalar monochromatic field E�r, z, t� �
A�r, z�exp�ik0z 2 v0t� the propagation of a laser beam
in a Kerr medium under the assumptions of cylindrical
symmetry and the slowly varying envelope approxima-
tion is governed by the following paraxial equation for
the amplitude:

2ik0Az 1 D�A 1 4e0ck0
2n2jAj2A � 0,

A�r, 0� � A0�r� , (2)

where k0 � v0n0�c is the wave-vector amplitude and
D� � ≠rr 1 �1�r�≠r. The input power of the beam is
given by

P � 4pe0n0c
Z

jA0j
2rdr . (3)

We change to the nondimensional variables

r̃ � r�r0 , z̃ � z�2Ldf , c � 2k0r0
p
ce0n2A ,

where r0 is the initial beam width and Ldf � k0r02 is
the diffraction length. When we drop the tildes, the
equation for the nondimensional amplitude c is the
NLSE:

icz 1 D�c 1 jcj2c � 0 , c�r, 0� � c0�r� . (4)

We now brief ly review the rigorous theory on blowup
(singularity formation) in the NLSE. For more de-
tails, see Ref. 9. The NLSE has a waveguide solution
of the form

c � exp�iz�R�r� , (5)
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where R�r�, the Townes soliton, is the positive, mono-
tonically decreasing solution of

D�R 2 R 1 R3 � 0 , R 0�0� � 0 , R�`� � 0 .

A plot of the Townes profile is shown in Fig. 1.
Weinstein7 proved that solutions of NLSE (4) do not
blow up if their initial power �

R
jc0j

2rdr� is below the
critical power Ncr , which is given by

Ncr �
Z

jRj2rdr � 1.86225 .

Weinstein’s result, which is independent of the initial
width and convergence angle of the beam, provides a
lower bound for the critical power for blowup. This
result is sharp in the case of the Townsian initial
conditions c0 � �1 1 e�R�r�; i.e., there is no blowup
for e # 0 and there is blowup for e . 0. Thus the
lower bound for the critical power, in physical units, is
given by

Pcr
lb � Ncr

l2

4pn0n2

. (6)

One can calculate a rigorous upper bound for the
critical power from the analytic condition that solutions
of NLSE (4) blow up if their initial Hamiltonian is
negative:

H0 �
Z

j�c0j
2rdr 2 1�2

Z
jc0j

4rdr , 0 .

Therefore, for a given initial profile c0 � cf �r�, there is
blowup if c2 . 2

R
j�f j2rdr�

R
jf j4rdr or

Z
jc0j

2rdr . G�f � ,

where

G�f � �
2

R
jf j2rdr

R
j�f j2rdrR

jf j4rdr
.

Thus the upper bound for the critical power, in physical
units, is given by

Pcr
ub � G�f �

l2

4pn0n2

. (7)

Upper bound (7) implies that blowup will occur for any
initial profile f �r� with sufficiently high power. We
recall that minf �r�G�f � � Ncr is attained when f �
R�r�, whereas for other profiles G�f � is higher.7 For
example, for a Gaussian profile G�exp�2r2�2�� � 2.

The theoretical lower and upper bounds for the
critical power can be written in terms of a as

Ncr � alb # a # aub � G�f � . (8)

Inasmuch as, at present, there is no known analytic
technique with which to calculate the critical power for
these profiles, in Table 1 we give numerical values of
a as defined in Eq. (1) for various profiles in a bulk
medium as determined from numerically integrating
the NLSE. Although collapse is defined as the point
at which the beam intensity becomes infinite in a finite
distance, in the nonlinear optics context a more realistic
definition is the point at which the beam power exceeds
the material breakdown threshold. In our simulations
we took initially collimated beams and defined collapse
when the beam intensity reached 104 times the input
peak intensity. As can be seen, all the values for the
critical power are greater but are within �10% of the
value predicted by the Townes soliton. The increase
in threshold power for non-Townesian initial profiles
is due to the initial stage of self-focusing, during
which the beam profile changes to a modulated Townes
soliton. During this reorganization stage, some of the
energy is shed away from the inner part of the beam.
Therefore the greater the overlap of the initial profile
with the Townes profile, the smaller the increase in
threshold power is. For example, because a Gaussian
profile is relatively similar to a Townesian profile (see
Fig. 1), the threshold power for a Gaussian beam is less
than 2% higher than that of a Townes profile.

The NLSE in the unbounded domain 0 # r , `
has no self-trapping solutions, except for waveguide
solution (5), which is unstable. Other solutions
of the NLSE either blow up in a finite distance
or go through a single focusing–defocusing cycle.

Fig. 1. Townes profile R�r�. Also shown is a Gaussian
with the same power and on-axis intensity.

Table 1. Comparison of Threshold Parameter a
with Theoretical Lower Bound Ncr � 1.86225

and Upper Bound G���f ��� [Eq. (8)]
for Various Initial Profiles CA0���r�r0���a

a

Initial Profile Lower Numerical Upper
A0�r�r0� Bound Value Bound

Bulk medium
CR�r�r0� Ncr Ncr Ncr
C exp�2�r�r0�2�2� Ncr 1.8962 2
C exp�2�r�r0�4�2� Ncr 2.0267 2

p
2

Hollow waveguide
CJ0�2.405r�r0� Ncr Ncr 2.76
C cos�pr�2r0� Ncr Ncr 2.99
C�1 2 r2�r02� Ncr Ncr 3.33
C sin�pr�r0� Ncr Ncr 6.58
aC is a constant that provides a suitable normalization for the

power in each profile.
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Fig. 2. Plots of the peak intensity and the beam width
inside the hollow waveguide as a function of propagation
distance for P�Pcr

lb � 0.5.

Therefore, although self-trapping of cw optical beams
has been observed,10 it cannot be explained by use of
the NLSE model alone. However, various additional
physical mechanisms, such as saturation11 and non-
paraxiality,12 that are neglected in the NLSE model
have the same generic effect, which leads to oscillations
of the beam amplitude with propagation,9,13 which can
be interpreted as self-trapping. In all these cases,
however, the critical power for self-trapping is the
same as that for catastrophic self-focusing.

For the case of a hollow waveguide, the equation
that governs propagation of the field is still Eq. (2)
in the bounded domain 0 # r # r0, and we assume,
as in previous studies,8 that A�r $ r0, z� � 0, where
now r0 is taken to be the radius of the waveguide.
The former assumption is valid as long as r0 is much
greater than the wavelength.8,14 Because the critical
power for NLSE (4) in a bounded domain is the
same as in unbounded domains,15 the theoretical lower
bound for the critical power for blowup is still given
by Eq. (6). As shown in Table 1, from our numerical
calculations using the criteria discussed above we
find that the parameter a for the critical power for
catastrophic collapse for various initial profiles is
equal to the Townesian value. The reason for this
behavior is that, unlike in bulk media, the walls
prevent the shedding of energy and keep the energy
localized in the transverse domain. For powers below
this value, the peak intensity and the width of the
beam oscillate periodically as energy is exchanged
between the fundamental mode and the higher-order
modes.8 This behavior, which is unlike that in a bulk
medium, is a result of the confinement provided by the
waveguide. For powers significantly below the critical
power for catastrophic collapse such that nonlinear
phase modulation effects can be neglected, the period
of oscillation can be estimated from the difference
Db � b1 2 b2 in the propagation constants b1 and b2
for the fundamental and the next-higher-order modes,
respectively,14 and is found to be approximately equal
to 0.5Ldf .8 As the power approaches Pcr

lb (see Fig. 2),
the period becomes longer as a result of the cross-phase
modulation of the field in the second-order mode by the
field in the fundamental mode.

In conclusion, we have established the threshold con-
dition for catastrophic collapse owing to self-focusing
in a bulk medium and in a hollow-core waveguide for
various initial beam profiles. We find in all cases
studied that in bulk media the critical power for self-
focusing is within 10% of the analytic prediction based
on the Townes profile and that for a hollow waveguide
the critical power is exactly equal to that of Townes
profile. In contrast, the upper bound value, which
is based on the condition of a negative Hamiltonian,
can lead to highly inaccurate predictions. This study
should resolve various long-standing discrepancies in
this problem and should be relevant for nonlinear opti-
cal applications that utilize hollow-core waveguides.
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