
Critical power of collapsing vortices

Gadi Fibich* and Nir Gavish†

School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
�Received 27 December 2007; published 11 April 2008�

We calculate the critical power for collapse of linearly polarized phase vortices, and show that this expres-
sion is more accurate than previous results. Unlike the nonvortex case, deviations from radial symmetry do not
increase the critical power for collapse, but rather lead to disintegration into collapsing non vortex filaments.
The cases of circular, radial, and azimuthal polarizations are also considered.
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The nonlinear optical process of self-focusing sets an up-
per limit on the amount of laser power that can be propa-
gated through a medium with an intensity dependent refrac-
tive index �i.e., n=n0+n2I, where n0 is the linear refractive
index, n2 is the nonlinear refractive index, and I is the inten-
sity�. For powers above this threshold the beam will undergo
collapse, with the peak intensity becoming sufficiently high
that damage to the material can occur. Ultimately, collapse
will be arrested by some physical mechanism, such as
plasma formation, normal dispersion, or damping.

Let us briefly review the situation in the nonvortex case.
The value of the critical power is given by �1�

Pcr =
�2

4�n0n2
pcr,

where pcr is the nondimensional critical power for collapse
in the dimensionless nonlinear Schrödinger �NLS�

i�z�z,x,y� + �� + ���2� = 0, ��0,x,y� = �0�x,y� . �1�

In the NLS model, there is no mechanism for arrest of col-
lapse, hence collapse is defined as the maximal amplitude
becoming infinite. Weinstein �2� proved that the lower bound
for the critical power is equal to pcr=��R�2rdr�1.86, i.e., the
power of the Townes profile, which is the ground state solu-
tion of

R� +
1

r
R� − R + R3 = 0, R��0� = 0, R��� = 0.

While the Townesian input beams �0=�R��r�, where ��0,
can collapse with exactly the input power pcr, all other input
profiles require power strictly above pcr for collapse �3,4�. In
practice, however, the critical power of peak-type �i.e., non-
ring-type� radially symmetric input beams is only a few per-
cent above pcr �1,5�. For example, the critical power of
Gaussian and super-Gaussian ��0=ce−r4

� input beams is
�2% and �8% above pcr, respectively.

We now consider the critical power of vortex input
beams. In �6�, Kruglov et al. derived an expression for the
critical power of vortex beams, and showed that it increases
with the winding number �or topological charge� m. In this

study, we show that this expression is inaccurate, and derive
the correct expression for the critical power. Unlike the
vortex-free case, deviations from radial symmetry do not in-
crease the critical power, but rather lead to disintegration into
collapsing nonvortex filaments.

We first consider radially symmetric vortex input beams
of the form �0=A0�r�eim�. In this case, the solution remains a
vortex with winding number m, i.e., it is of the form
��z ,r ,��=A�z ,r�eim� �7�. Following a similar derivation to
�2�, it can be rigorously shown that the lower bound for the
critical power of radially symmetric vortex input beams �0
=A0�r�eim� is

pcr�m� =� �Rm�2rdr ,

where Rm is the ground state solution of

Rm� �r� +
1

r
Rm� − 	1 +

m2

r2 
Rm + Rm
3 = 0, Rm� �0� = 0,

Rm��� = 0.

The values of pcr�m� for m=1, . . . ,6 are listed in Table I.
Using the approximation �8�

Rm�r� � �3 sech	 r − �2m
�2/3


 , �2�

we can derive the analytic approximation pcr�m��4�3m.
Figure 1 shows that pcr�m� is well approximated by 4�3m,
and that the approximation improves as m increases.

We now consider the critical power of various vortex in-
put profiles, and ask under what condition the critical power
is close to the lower bound pcr�m�. As in the vortex-free case,
the only input profiles that can collapse with input power
exactly equal to pcr�m� are �0=�Rm��r�eim�. We first calcu-
late the critical power of the Laguerre-Gaussians profiles
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TABLE I. The values of pcr�m� for m=1, . . . ,6.

m 1 2 3 4 5 6

pcr�m� / pcr 4.12 7.65 11.3 15.0 18.7 22.4
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�0
LG = crme−r2

eim�,

which are the vortex modes of the linear Schrödinger equa-
tion. To do that, we solve the NLS with the initial condition
�0

LG and gradually increase c until, at cth, the solution col-
lapses. In this case, the critical power is close to pcr�m� for
m=1 but as m increases, the excess power above pcr�m�
needed for collapse increases �see Table II�. Similarly, for the
sech input profile

�0
sech = cr2 sech�r − 5�eim�,

the critical power is close to pcr�m� only for m=2,3 ,4 �see
Table II�.

To better understand these results, let us consider the vor-
tex profile of the form �0=cf�r�eim�, where

f�r� = Q���, � =
r − rmax

L
,

and Q��� attains its maximum at �=0. This ring profile is
characterized by the ring width L and radius rmax. As in the
vortex-free case, the closer f is to a member of the one-

parameter family �Rm��r�, the smaller the excess power
above pcr�m� needed for collapse. By Eq. �2�, the family
�Rm��r� is characterized by

radius/width = �3m . �3�

Therefore, f�r� has to satisfy Eq. �3� to “leading order” to be
close to �Rm��r�.

The Laguerre-Gaussian modes �0
LG are characterized by

radius /width=�m /2. This ratio is close to Eq. �3� only for
m�1, explaining why the critical power of Laguerre-
Gaussian modes is close to pcr�m� only for m=1. Similarly,
the sech profile �0

sech is characterized by radius /width=5.
Since the radius/width of �Rm��r� is equal to �3m, this ratio
is close to 5 for m= 5

�3
�2.88 �see Eq. �3��. This explains why

the threshold power of the sech profile �0
sech is closest to

pcr�m� for m=3. As a final confirmation of this observation,
we “fix” the sech profile �0

sech so that “it behaves like a
�Rm��r� profile,” i.e., that it satisfies Eq. �3� to leading order,
as follows:

�0
m−sech = �2	 r

�3m

2

sech�r − �3m�eim�. �4�

Indeed, the threshold power of the “modified” sech profile
�4� is less than 1% above the critical power for m=1, . . . ,6
�see Table II�.

In �6�, Kruglov et al. estimated the critical power for vor-
tex collapse to be equal to

Ic
�m� =

22m+1m ! �m + 1�!
�2m�!

. �5�

In �6�, they also estimated the critical power numerically for
m=1, 2 , 3, and 4. These numerical results agree with our
analytic calculation of pcr�m�, but not with their own esti-
mate Ic

�m� �see Fig. 1�. To understand why this is the case, we
note that the derivation of Ic

�m� was based on the assumption
that the collapsing vortex has a self-similar Laguerre-
Gaussian profile. As noted before, the Laguerre-Gaussian
modes are not a good approximation of the one-parameter
family �Rm��r�, and as m increases this approximation be-
comes less and less accurate. In addition, the assumption that
the solution undergoes an aberrationless �adiabatic� self-
similar collapse is known to lead to overestimates of the
critical power �5�. Indeed, even for Laguerre-Gaussian input
beams, the critical power is closer to pcr�m� than to Icm�m�
�see Fig. 1�.

Most studies on optical vortices considered stationary vor-
tices. Recently, there has been a growing interest in the dy-
namics of collapsing vortices. Berge et al. showed that for
vortices with input power P� Ic

�m�, symmetry breaking noise
causes the vortex ring to break into 2m+1 filaments �9�.
Vuong et al. generalized this result for vortices with power
larger above Ic

�m� �10�. We now show that these azimuthal
instabilities can occur even for vortices with dimensionless
power less than Ic

�m� and even less than the lower bound
pcr�m�. To do that, we solve the NLS with the slightly elliptic
Laguerre-Gaussian input profile
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FIG. 1. �Color online� Critical power pcr�m�=�0
�Rm

2 rdr �	�, the
approximation 4�3m �dashed line�, numerical estimate of the criti-
cal power as a function of m ��, data taken from �6��, the critical
power for collapse of Laguerre-Gaussians �dash-dotted line�, and
the analytic estimate Icr

�m� � �6�, solid line�.

TABLE II. Excess power above pcr�m� needed for collapse.

m Input beams

�0
LG �0

sech �0
m−sech

1 0.65% 20% 0.13%

2 0.80% 4.5% 0.91%

3 7% 1.9% 0.71%

4 11% 1.9% 0.32%

5 14% 9% 0.17%

6 19% 14% 0.34%
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�0 = �0
LG��x2 + �1.05y�2� , �6�

with m=2 and with input power equal to 3
4 pcr�m=2�. Al-

though the power of this vortex beam is below pcr�m�, it
breaks into two filaments which subsequently undergo col-
lapse �see Fig. 2�. This effect of symmetry breaking is very
different from the case of peak-type nonvortex solutions,
where deviations from radial symmetry increase the critical
power for collapse �5�. This is because peak-type solutions
collapse with the modulated Townes profile, �i.e., �
� 1

L�z�R� r
L�z� �, where L→0 at the singularity� which is stable

under azimuthal perturbations, as was demonstrated experi-
mentally and numerically in �11�, and analytically in �12�. In
contrast, vortices collapse with a ring profile, which breaks
into a ring of filaments under azimuthal perturbations �10�.
Since these filaments do not collapse at the phase singularity
point r=0, each filament can collapse with the Townes pro-
file, hence with the critical power pcr= pcr�m=0�
 pcr�m�
�13�. Note, that these filaments continue to rotate around r
=0, so that total helicity is preserved.

Our results are also relevant for beams which are not lin-
early polarized. Let �� be the amplitudes of the circular

components ê�= �x̂� iŷ� /�2. The equation for each circular
component is

i
���

�z
+ ��� +

2

3
�����2 + 2����2��� = 0.

In the case of a pure circular polarization �CP� state ��−
0�, this equation reduces to

i
��+

�z
+ ��+ +

2

3
��+�2�+ = 0. �7�

Since the Kerr effect is smaller by a factor 2/3 compared to
the NLS �1� for a linear polarization state, the critical power
for collapse is larger by a factor of 3/2 �15�. In particular, the
lower bound for the critical power of a CP vortex beam �+
=eim�A0�r� is given by

pcr
CP�m� =

3

2
pcr�m� � 6�3m .

Similarly, consider the cases of radial polarization �RP�

�RP = A�r,t��ei�ê− + e−i�ê+� ,

and azimuthal polarization �AP�

�AP = iA�r,t��ei�ê− − e−i�ê+� .

Since ��+�= ��−�= �A�, the equation for each component is

i
���

�z
+ ��� + 2����2�� = 0.

The Kerr effect is larger by a factor of 2, hence the critical
power for collapse for each component is smaller by a factor
of 1

2 , i.e., pcr��+�= pcr��−�= 1
2 pcr�m=1�. In addition, the

power of �AP and �RP is the sum of the power of �+ and of
�−. Hence,

pcr
RP = pcr

AP = pcr��+� + pcr��−� = pcr�m = 1� � 4.12pcr,

in agreement with recent numerical simulations �16�.
In summary, we showed that the critical power for col-

lapse of radially symmetric vortex beams is typically a few
percent above Pcr�m�= �2

4�n0n2
pcr�m�, where pcr�m�=�0

�Rm
2 rdr

�4�3m. Deviations from radial symmetry do not increase
the critical power, but rather lead to disintegration into col-
lapsing nonvortex filaments.
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FIG. 2. �Color online� Solution of the NLS with input beam �6�.
Top: Levels set at z=0, 0.5, and z=1 �from left to right�. Bottom:
Surface plot at z=1.

BRIEF REPORTS PHYSICAL REVIEW A 77, 045803 �2008�

045803-3



�1� G. Fibich and A. Gaeta, Opt. Lett. 25, 335 �2000�.
�2� M. Weinstein, Commun. Math. Phys. 87, 567 �1983�.
�3� F. Merle, Commun. Pure Appl. Math. 45, 203 �1992�.
�4� F. Merle, Duke Math. J. 69, 427 �1993�.
�5� G. Fibich and B. Ilan, J. Opt. Soc. Am. B 17, 1749 �2000�.
�6� V. Kruglov, Y. Logvin, and V. M. Volkov, J. Mod. Opt. 39,

2277 �1992�.
�7� G. Fibich and N. Gavish, “Theory of singular vortex solutions

of the nonlinear Schrödinger equation” �unpublished�.
�8� T. Mizumachi, Adv. Differ. Equ. 12, 241 �2007�.
�9� A. Vincotte and L. Berge, Phys. Rev. Lett. 95, 193901 �2005�.

�10� L. Vuong et al., Phys. Rev. Lett. 96, 133901 �2006�.

�11� K. D. Moll, A. L. Gaeta, and G. Fibich, Phys. Rev. Lett. 90,
203902 �2003�.

�12� F. Merle and P. Raphael, Geom. Funct. Anal. 13, 591 �2003�.
�13� This dynamics is similar to the case of nonvortex ring-type

beams which, under azimuthal perturbations, break up into
filaments, each of which collapse with the Townes profile �14�.

�14� T. Grow et al., Opt. Express 14, 5468 �2006�.
�15� This follows from the fact that if � is a solution of the NLS �1�

then �+=�2 /3� is a solution of Eq. �7�.
�16� A. A. Ishaaya, L. T. Vuong, T. D. Grow, and A. L. Gaeta, Opt.

Lett. 33, 13 �2008�.

BRIEF REPORTS PHYSICAL REVIEW A 77, 045803 �2008�

045803-4


