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Abstract. We analyze the effect of damping (absorption) on critical self-focusing. We identify
a threshold value δth for the damping parameter δ such that when δ > δth damping arrests blowup.
When δ < δth, the solution blows up at the same asymptotic rate as the undamped nonlinear
Schrödinger equation.
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1. Introduction. The critical nonlinear Schrödinger equation (NLS)

iψt +∆ψ + |ψ|2ψ = 0, ψ(0, x, y) = ψ0(x, y)(1)

is the model equation for the propagation of an intense laser beam through a medium
with Kerr nonlinearity. In this model ψ(t, x, y) is electric field amplitude, t is distance
in the direction of propagation, x and y are the transverse spatial coordinates, and
∆ = ∂xx + ∂yy is the two-dimensional Laplacian. It is well known that if the initial
beam power ||ψ0||22 is above a threshold value Nc, solutions of (1) can self-focus and
become singular in a finite time. Since physical quantities do not become infinite, this
implies that the validity of (1) breaks down near the singularity and that additional
physical mechanisms, which are initially small, become important there and prevent
the singularity formation.

In this study we analyze the effect of small damping on NLS self-focusing and
singularity formation. In physical self-focusing, an electromagnetic wave is absorbed
by the medium through which it propagates, an effect which is neglected in (1) which
models propagation under “ideal transparency.” When damping (absorption) is in-
cluded, the model equation becomes

iψt +∆ψ + |ψ|2ψ + iδψ = 0 , ψ(0, x, y) = ψ0(x, y) .(2)

In the nonlinear optics context, the nondimensional expression for δ is (see Ap-
pendix A)

δ = r2
0k

2
0

Im(n2
0)

Re(n2
0)
= LDF k0

Im(n2
0)

Re(n2
0)

,

where r0 is the transverse width of the input beam, k0 is the (real part of the)
wavenumber, LDF := r2

0k0 is the diffraction length, and n0 is the linear index of
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refraction of the media. By definition, transparency means that damping is small.
For example, for water in the visible regime [17],

Im(n2
0)

Re(n2
0)

∼ 10−7 .

Since physical damping is always positive, δ > 0. Equation (2) with δ positive also
arises in the study of the collapse of Langmuir waves with collisional damping [16].
Our analysis, however, applies also to negative values of δ, which is of interest in
the context of the complex Ginzburg–Landau equation where δ plays the role of the
“instability parameter” [10].

A unique feature of singularity formation in the critical NLS, (1), is that it is
extremely sensitive to the addition of small perturbations to the equation [12, 13].
In particular, it has been shown that various small perturbations (e.g., defocusing
quintic nonlinearity, nonparaxiality) arrest self-focusing regardless of how small they
initially are. In fact, these perturbations remain small compared with the Laplacian
and the focusing nonlinearity terms even at the time of arrest, when focusing reaches
its peak [7, 12, 26]. Therefore, the question arises as to whether small damping can
also arrest blowup, and whether it always does so.

At present, there is no definite answer to this question based on rigorous analysis.
However, previous numerical and asymptotical studies [2, 3, 16, 31, 32] suggest that
the answer depends on the magnitude of the damping parameter δ in the following
way: For a given initial condition that leads to blowup in the undamped NLS, there
is a threshold value δth, which depends on the initial condition, such that collapse is
arrested when δ > δth and a singularity forms when δ < δth.

Our results in this paper agree with this description. In addition, using rigorous,
asymptotic and numerical analysis,

1. we prove a necessary condition for blowup in the damped critical NLS, both
for functions in �2 and for functions in a bounded domain Ω ∈ �2 (section 2).

2. We derive a reduced system of two ordinary-differential equations that de-
scribe self-focusing in the presence of small damping (35).

3. We identify the two nondimensional parameters which govern damped self-
focusing (section 3.4).

4. We provide analytical and asymptotical estimates for δth (sections 2.1 and
3.4).

5. We show that when the solution of the damped critical NLS becomes singular
in finite time, its blowup rate is the same as that of the undamped NLS
(section 3.5).

6. We show that the radially-symmetric profile ψR remains an attractor in
damped self-focusing under perturbations which break up the radial sym-
metry of the initial condition. Nonisotropy of the initial condition, however,
reduces δth (section 4).

7. We show that δth is small in critical NLS, contrary to the case of the super-
critical NLS (sections 2.1 and 6).

8. We identify the existence of a critical exponent for the effect of nonlinear
damping: When the exponent of nonlinear damping is cubic or higher, damp-
ing always arrests blowup. However, at lower exponents of damping, the
picture is qualitatively similar to the case of linear damping, i.e., there ex-
ists a threshold value δth such that when δ > δth, there is no blowup, and
when δ < δth, the solution blows up at the same rate as the undamped NLS
(section 5).
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9. We extend the numerical method of dynamical rescaling to the damped NLS
(section 7).

10. We prove that the optimal constant in the Gagliardo–Nirenberg inequality
in critical dimension on a bounded domain is equal to that in free-space
(Appendix B).

11. We prove that the lower bound for critical power for singularity formation
in the undamped NLS on a bounded domain is equal to that in free-space
(Appendix B).

2. Rigorous analysis. We begin with a few notations. The Lp norm of a
function f(x, y) in �2 is

||f ||p :=
(∫

|f |p dxdy
)1/p

.

In the nonlinear optics context, ||f ||22 is called the power of f . The H1 norm of f is
defined as

||f ||H1 :=
√

||f ||22 + ||∇f ||22 .

The natural space for analyzing existence and blowup of NLS solutions is H1.
From the local existence theory for solutions of the Cauchy problem (2) it follows
that if ψ0 ∈ H1, the solution exists in H1 for t ∈ [0, Tloc], where Tloc is a function
of ||ψ0||H1 [15, 18]. Therefore, when ||ψ||H1 can be (formally) bounded, the solution
exists for all t. In addition, let T δ be defined such that the maximal interval of
existence of the solution in H1 is [0, T δ). Then, either T δ =∞ or

lim
t→T δ

||ψ||H1 =∞ .

In the latter case, the solution is said to blowup at time T δ.

2.1. Conditions for blowup. Let us define

u(t, x, y) := exp(δt)ψ(t, x, y) .

Then, the equation for u is

iut +∆u+ exp(−2δt)|u|2u = 0 , u(0, x, y) = ψ0(x, y) .(3)

Multiplying (3) by u∗ (the complex conjugate of u) and subtracting the conjugate
equation gives

exp(δt)||ψ||2 = ||u||2 ≡ ||ψ0||2 .(4)

Since, in addition, exp(δt)||∇ψ||2 = ||∇u||2, ψ and u blow up at the same finite time
T δ, if at all. In that case

lim
t→T δ

||∇u||2 = lim
t→T δ

||∇ψ||2 =∞ .

Multiplying (3) by u∗
t , adding the conjugate equation and integrating by parts gives

−(||∇u||22)t +
1

2
e−2δz(||u||44)t = 0
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or

H(t) := ||∇u||22 −
1

2
exp(−2δt)||u||44 − δ

∫ t

0

exp(−2δτ)||u(τ, ·)||44 dτ ≡ H(0) .

Therefore,

||∇u||22 = H(0) +
1

2
exp(−2δt)||u||44 + δ

∫ t

0

exp(−2δτ)||u(τ, ·)||44 dτ .(5)

Global existence theory for the NLS is based on the Gagliardo–Nirenberg inequal-
ity

||u||44 ≤ C1,2||∇u||22||u||22 .(6)

The optimal constant C1,2 in (6) is equal to [36]

C1,2 =
2

Nc
,

where Nc is the critical power for singularity formation in the undamped NLS, whose
value is given by

Nc = ||R||22 ∼= 11.69 ,

R(r), the Townes soliton, is the positive radially-symmetric solution of

∆R−R+R3 = 0 , R′(0) = 0 , R(∞) = 0 ,(7)

and

r =
√

x2 + y2 .

Combining (4), (5), and (6), we have

||∇u(t, ·)||22(8)

≤ H(0) +
||ψ0||22
Nc

[
exp(−2δt)||∇u(t, ·)||22 + 2δ

∫ t

0

exp(−2δτ)||∇u(τ, ·)||22 dτ

]
.

As we have already mentioned, the local existence theory for the NLS implies
that when ||u||H1 can be formally bounded, the solution exists globally. Since ||u||2 ≡
||ψ0||2, from inequality (8) we can recover the well-known result that

||ψ0||22 ≥ Nc(9)

is a necessary condition for singularity formation in the undamped NLS (1), since
otherwise ||∇u||2 remains bounded. We now use (8) to extend this result to the
damped NLS.

Lemma 2.1 (necessary condition for blowup). If the solution u of (3) (hence the
solution ψ of (2)) blows up at a finite time T δ, then

||ψ0||22 ≥ exp
(
2δT δ

)
Nc .(10)
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Proof. We prove Lemma 2.1 by showing that the negation of condition (10) leads
to a contradiction. Let us denote G(t) := ||∇u(t, ·)||22. Therefore,

lim
t→T δ

G(t) =∞ .(11)

When δ ≤ 0, from (8) and the negation of condition (10), we have that for all
0 ≤ t < T δ,

G(t) ≤ H(0) + νG(t) , ν :=
||ψ0||22
Nc

exp
(−2δT δ

)
< 1 ,

which is in contradiction with (11).
When δ > 0, let us first show that (11) implies that there exists a monotonically

increasing sequence {tn}∞n=1 such that tn → T δ and

∫ tn

0

exp(−2δτ)G(τ) dτ = o(G(tn)) as n → ∞ .(12)

To see why (12) holds, let us define F (t) :=
∫ t
0
G(τ) dτ . When δ > 0,

∫ t

0

exp(−2δτ)G(τ) dτ ≤ F (t) , 0 ≤ t < T δ .

If limt→T δ F (t) < ∞, then (11) implies that (12) holds for any sequence tn → T δ.
Otherwise, limt→T δ F (t) =∞, and therefore,

lim
t→T δ

logF =∞ =⇒ lim sup
t→T δ

(logF )′ =∞ =⇒ lim sup
t→T δ

G/F =∞ =⇒

there exists a sequence tn → T δ such that F (tn) = o(G(tn)).
From (8) and (12), it follows that

G(tn) ≤ H(0) +G(tn)[ν + o(1)] as n → ∞,

where ν < 1, which is in contradiction with (11).
The necessary condition for blowup (10) is a generalization of (9). This result is

intuitive, since near T δ (3) approaches the undamped NLS

iψt +∆ψ + κ|ψ|2ψ = 0 ,(13)

with κ = exp(−2δT δ), and the critical power for blowup of solutions of (13) is equal
to Nc/κ. Alternatively, in light of (4), Lemma 2.1 implies that the power at the time
of blowup has to be above critical

||ψ(T δ, ·)||22 ≥ Nc .

An immediate consequence of Lemma 2.1 is the following.
Corollary 2.2. If ||ψ0||22 < Nc and δ ≥ 0, solutions of (2) and (3) exist for all

0 ≤ t < ∞.
Lemma 2.1 is not optimal, in the sense that it involves the (unknown) blowup

time T δ which varies with δ. In order for it to involve only the blowup time of the
undamped NLS T 0 := T δ=0, we use the following conjecture.
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Fig. 1. Blowup time T δ is monotonically increasing in δ for 0 ≤ δ < δth. When δ > δth, there
is no blowup. Here, the initial condition is ψ0 =

√
1.1R(r) and δth ≈ 0.02. Continuous and dotted

lines are simulation results of the damped NLS (2) and of the reduced system (35), respectively.

Conjecture 1. For a given initial condition ψ0, T δ = T δ(ψ0) is monotonically
increasing in δ.

Conjecture 1 is intuitive from physical considerations, since damping delays self-
focusing (as evident, for example, in Figure 1). However, at present there is no rigorous
proof of this result. In fact, even a simpler result, that T 0(κ) in (13) is monotonically
decreasing in κ, has not been proved.

The following Lemma follows directly from Lemma 2.1 and Conjecture 1.

Lemma 2.3 (necessary condition for blowup). Assuming that Conjecture 1 holds,
if the solution u of (3) (hence the solution ψ of (2)) blows up at a finite time, then

||ψ0||22 ≥ exp
(
2δT 0

)
Nc .(14)

Lemmas 2.1 and 2.3 provide lower bounds for the critical input power for blowup,
as a function of δ. In Figure 2 we compare these theoretical lower bounds with the
actual critical power for various initial profiles, which we calculate numerically. As
expected, condition (14) is not sharp, and for non-Townesian initial conditions (10) is
also not sharp.1 However, condition (10) does seem to be sharp for Townesian initial
conditions cR(r) in the limit as δ → 0.

The results of Lemmas 2.1 and 2.3 can also be interpreted as a condition on δ for
global existence for a given initial condition ψ0. For example, (14) implies that when

δ > δub :=
1

2T 0(ψ0)
log

||ψ0||22
Nc

,(15)

damping arrests self-focusing and the solution exists globally.

The previous results can be summarized in the following theorem.

Theorem 2.4 (threshold damping δth). Assume that Conjecture 1 holds. Then,
for a given initial condition ψ0 there is a threshold value δth = δth(ψ0) such that when
δ < δth, the solution of (2) blows up at a finite time, and when δ > δth, the solution
of (2) exists globally. In addition, δth ≤ δub.

1The theoretical lower bound Nc for the critical power in the undamped NLS, (9), is sharp for
Townesian initial conditions cR(r) [36]. However, for all non-Townesian initial conditions, the critical
power is strictly higher than Nc [28, 29], although typically not by much [8].
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Fig. 2. Ratio of calculated critical power in the damped NLS (2) over theoretical lower bound
estimates as a function of δ: Nc exp(2δT δ) (solid line) and Nc exp(2δT 0) (dashed line). Initial

conditions are (A) ce−r2 , (B) cR(r), and (C) ce−r4 .
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Fig. 3. Simulation values of threshold damping δth in the damped NLS ((2), solid line) as a
function of initial power p = ||ψ0||22/Nc. Also plotted are the theoretical upper bound δub ((15),

dashed line) and the asymptotic estimate ((44), dots). Initial conditions are (A) ce−r2 , (B) cR(r),

and (C) ce−r4 .

Proof. From Conjecture 1 it follows that if the solution blows up when δ = δ0,
then it blows up for all 0 ≤ δ ≤ δ0. In addition, from Lemma 2.3 it follows that there
is no blowup for δ > δub. Therefore,

δth = sup

{
δ | uδ blows up

}
≤ δub .

In Figure 3 we present the results of Figure 2 in terms of the threshold damping
δth. In agreement with our earlier discussion, the upper bound δub for δth is not sharp,
except for the case of Townesian initial conditions ψ0 = (1 + ε)R(r) in the limit as
ε → 0+.

Remark. Since

exp(2δthT0) ≤ exp(2δubT0) =
||ψ0||22
Nc

,

we see that δth is typically small,
2 as indeed can be seen in Figure 3.

2This property is unique to the damped critical NLS (see section 6).



SELF-FOCUSING IN THE DAMPED NLS 1687

2.1.1. Maximal time of blowup. In the undamped NLS (1), for given initial
conditions ψε

0(x, y) = (1+ ε)φ0(x, y) such that blowup occurs for ε > 0 and no blowup
occurs for ε < 0, we can define the corresponding time of blowup by T 0(ε;φ0(x, y)).
Then, depending on φ0(x, y), limε→0+ T 0(ε;φ0(x, y)) can be either finite or infinite.
From a continuity argument, it is clear that these two possibilities correspond to
whether the NLS solution with ε = 0 become singular in finite time or exists globally,
respectively. Indeed, we recall that if ψ is a solution of (1), and if L depends linearly
on t,

L(t) = 1 +
t

F
, F constant ,

then ψ̃, defined by the lens (pseudoconformal) transformation3 [33]

ψ̃(t, x, y) =
1

L(t)
ψ(τ, ξ, η) exp

(
i
Lt

L

r2

4

)
,

where

ξ =
x

L
, η =

y

L
, τ =

∫ t

0

1

L2(t′)
dt′ ,

is an exact solution of (1) with the initial condition

ψ̃0(x, y) = ψ0(x, y) exp

(
i
r2

4F

)
.

In addition, t and τ are related by

1

t
+
1

F
=
1

τ
.

Therefore,

1

limε→0+ T 0(ε;φ0(x, y))
+
1

F
=

1

limε→0+ T 0(ε;φ0(x, y) exp(ir2/4F ))
,

implying that with proper choice of F , limε→0+ T 0(ε;φ0(x, y) exp(ir
2/4F )) can be

always made either finite or infinite.
We note that numerical simulations suggest the following.
Conjecture 2. When φ0(x, y) is real, then limε→0+ T 0(ε;φ0) =∞ .
We are not aware of a rigorous4 proof for this conjecture, except for the special

case φ0 = R(r) (see Figure 4), where the solution exists globally for ε ≤ 0 but becomes
singular for ε > 0 [36].

In contrast, in the case of the undamped NLS, the following corollary shows that
T δ always has a finite limit as δ ↗ δth (see Figure 1) and provides an upper bound
for it.

Corollary 2.5. Assuming that Conjecture 1 holds, then

sup
0≤δ<δth

T δ = lim
δ→δth−

T δ ≤ 1

2δth
log

||ψ0||22
Nc

< ∞ .

3For additional information on the role of the lens transformation in NLS theory, see, e.g., sections
2.2 and 2.3 in [12].

4An asymptotical “proof” is given is section 3.1.1.
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Fig. 4. Time of blowup in the undamped NLS ((1), solid line) for the initial conditions ψ0 =
(1+ε)R(r) is well approximated by the adiabatic law prediction ((34) with β ≈ (2ε+ε2)Nc/M , dots).

Proof. From Lemma 2.1,

T δ <
1

2δ
log

||ψ0||22
Nc

for δ < δth ,

and by Conjecture 1, T δ is monotonically increasing in δ.

2.2. A variance identity. Let us define the variance of u as

V (t) = ||ru||22 .

Then, differentiating V twice with respect to t, using (3) and integrating by parts
gives

Vtt = 8

[
||∇u||22 −

1

2
e−2δt||u||44

]
.

Therefore, the variance identity for the damped NLS can be written as

Vtt = 8

[
H(0) + δ

∫ t

0

e−2δτ ||u(τ)||44 dτ

]
,

or

Vttt = 8δe
−2δt||u(t)||44 .

From these identities we see that, unlike the undamped critical case and the
damped supercritical case (section 6), the condition H(0) < 0 does not guarantee
blowup when δ > 0. In fact, at present there is no rigorous proof that solutions of (2)
can indeed become singular in finite time.

The following conclusions can be made from the variance identity:
1. When δ < 0, the condition H(0) < 0 is sufficient for blowup.
2. V δ(t) > V δ=0(t) > V −δ(t) for all δ > 0 and t > 0.

2.3. Damped NLS in H1
0(Ω). Let us consider the damped NLS on a domain

Ω ∈ �2 which is smooth and simply-connected:


iψt +∆ψ + |ψ|2ψ + iδψ = 0, t ≥ 0 , (x, y) ∈ Ω ,

ψ(t, x, y) = 0, t ≥ 0 , (x, y) ∈ ∂Ω ,

ψ(0, x, y) = ψ0(x, y), (x, y) ∈ Ω .

(16)
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We would like to know whether the results of section 2.1 remain valid for solutions
of (16) which are in H1

0 (Ω). In order to answer this, we note that we can extend the
results of section 2.1 to (16) provided that the following three conditions hold.

Condition I. A priori bounds of ||ψ||H1
0 (Ω) imply global existence.

Condition II. The Gagliardo–Nirenberg inequality, which now reads

||u||4L4(Ω) ≤ C1,2(Ω)||u||2L2(Ω)||∇u||2L2(Ω) .(17)

Note that, in general, the optimal constant in Sobolev inequalities depends on the
domain. However, in Appendix B we prove that C1,2 is independent of the domain
Ω, i.e.,

C1,2(Ω) = 2/||R||2L2(�2) .

Condition III. Vanishing of boundary terms in integration by parts.
Condition I follows from the global existence proof of [35]. Conditions II and III

clearly hold for a bounded smooth domain Ω. Therefore, we have the following.
Proposition 2.6. All results obtained in section 2.1 for (2) remain true for (16),

with the obvious changes that all norms are over Ω instead of over �2.
For example, combining Corollary 2.2 with Proposition 2.6 gives the following.
Corollary 2.7. If ||ψ0||2L2(Ω) < Nc and δ ≥ 0, the solution of (16) exists for all

0 ≤ t < ∞.
The result of Corollary 2.7 is stated (without proof) in [30]. Tsutsumi proved

that there exists a constant MΩ > 0 such that solutions of (16) on a bounded domain
Ω exist globally when ||ψ0||H1

0 (Ω) ≤ MΩ [35]. Therefore, Corollary 2.7 provides a lower

bound for the optimal constant MΩ: MΩ ≥ N
1/2
c .

Note, in particular, that Corollary 2.7 (and Appendix B) implies that the lower
bound for the critical power in the undamped NLS on a bounded domain is the same
as in free-space:

Nc(Ω) = Nc(�2) .

In fact, numerical simulations suggest that on bounded domains the lower bound Nc

is generically sharp [8]. For more on self-focusing in bounded domains, see [11].

3. Asymptotic analysis. The (rigorous) analysis in section 2 on the effect of
damping on critical self-focusing leaves many questions open. For example,

• what is the dynamics of damped self-focusing?
• What are the nondimensional parameters which govern damped self-focusing?
• What is the effect of the initial focusing angle?
• When blowup occurs, what is its asymptotic rate?

In order to address these questions, we turn to asymptotic analysis of (2) using mod-
ulation theory, which is a systematic perturbation method for analyzing the effect of
small perturbations on self-focusing in the critical NLS.

3.1. Modulation theory: Review. In this section we provide a short review
of modulation theory. For more details, see [12, 13]. Modulation theory is based on
the observations that near the singularity,

1. the self-focusing part of the solution, ψs, is of the form

ψs(t, x, y) ∼ ψR(t, r) ,



1690 G. FIBICH

where

ψR =
1

L(t)
R(ρ) exp(iS) , ρ =

r

L
, S = τ(t) +

Lt

L

r2

4
,

∂τ

∂t
=

1

L2
,(18)

and R(r) is the Townes soliton (7).
2. The key parameter of the problem,

β(t) := −L3Ltt(19)

is small.
Averaging over the transverse (x, y) coordinates leads to the following result.

Proposition 3.1 (modulation theory). If

ψ ∼ ψR , |β(t)| � 1 ,

and the perturbation is small, i.e.,

|εF | � |∆ψ| and |εF | � |ψ|3 ,

then self-focusing in the perturbed NLS

iψt +∆ψ + |ψ|2ψ + εF (ψ,ψt,∇ψ, . . .) = 0 , |ε| � 1 ,(20)

is given to leading order by the reduced system

βt(t) +
ν(β)

L2
=

ε

2M
(f1)t − 2ε

M
f2 , Ltt(t) = − β

L3
.(21)

The auxiliary functions f1 and f2 are given by

f1(t) = 2L(t)Re

[∫
F (ψR) exp(−iS)[R(ρ) + ρR′(ρ)] dxdy

]
,(22)

f2(t) = Im

[∫
ψ∗
RF (ψR) dxdy

]
,(23)

ν(β) is defined as

ν(β) ∼



4πA2
R

M exp
(−π/β1/2

)
, β > 0,

0, β ≤ 0,

and

M =
1

4
||rR||22 ∼= 3.46 , AR = lim

r→∞R(r)r1/2 exp(r) ∼= 3.52 .

From (18) we can see that the modulation variable L(t) is proportional to the
transverse width of the self-focusing part of the solution, as well as to 1/||ψ||H1 and
to 1/|ψ(t, 0, 0)|. Therefore, blowup corresponds to L ↘ 0 and complete defocusing to
L ↗ ∞.

The power of ψs can be expanded asymptotically as [12]

||ψs||22 ∼ Nc + βM − ε

2
f1 .

Therefore, when f1 ≡ 0 (as in the case of (2)), β is proportional to the excess power
above critical of ψs :

β ∼ ||ψs||22 −Nc

M
.(24)
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3.1.1. Adiabatic law of blowup: Review. The search for the rate of blowup
of the undamped NLS (1) has a long history and was believed to have ended with the
derivation of the loglog law [14, 19, 25]

L(t) ∼
(

2π(T 0 − t)

log log(T 0 − t)−1

) 1
2

as t → T 0.(25)

The loglog law can be derived from the reduced system (21) with ε = 0:

βt(t) = −ν(β)

L2
,(26)

Ltt(t) = − β

L3
.(27)

To do that, (26) is decoupled from (27) by rewriting it in terms of τ

βτ = −ν(β) .(28)

The leading order solution of (28) is

β ∼ π2

log2 τ
.(29)

Expressing relation (29) in terms of L and t leads to (25).
After the derivation of the loglog law, it turned out that it does not become valid

even after L becomes as small as 10−90. In [6, 12] it was shown that the reason for
this “failure” of the loglog law is that even at these huge focusing levels the leading
order approximation (29) for (28) is not valid. However, one can solve the reduced
equations (26), (27) in the domain of physical interest with a multiple-scales approach.
To do that, we note that when β is small, changes in β (26) are slow compared with
changes in L (27). Therefore, to leading order one can neglect nonadiabatic effects
and solve the system

Ltt = −βL−3 , β ≡ β0 , β0 := β(0) .(30)

Integrating (30) twice leads to Fibich’s adiabatic law [6, 12]

L(t) ∼
√
2
√

β (T 0 − t) + C(0) (T 0 − t)
2
,(31)

where

C(t) = L2
t −

β

L2
.

Numerical simulations show that the adiabatic law (31) becomes valid almost from
the onset of self-focusing [6, 12]. Nonadiabatic effects can be added to this leading
order approximation by adding the slow variation in time of β and C.

As focusing progresses, (31) reduces to Malkin’s adiabatic law [26],

L(t) ∼
√
2
√

β(T 0 − t) ,(32)

which becomes valid after some focusing has occurred. In the far-far asymptotic limit
Malkin’s law reduces to the loglog law. Thus, the three laws are consistent with each
other, but their domain of validity differ considerably.
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The adiabatic law (31) can be used to estimate T 0 from the initial conditions
[6, 12]:

T 0 ∼ L2
0

β
1/2
0 − L0Lt(0)

.(33)

For example, in the case of an initially-collimated beam (ψ0 real), Lt(0) = 0 and (33)
becomes

T 0 ∼ L2
0√
β0

.(34)

Therefore,

lim
β0→0+

T 0 =∞ ,

which, in light of (24), can be viewed as an asymptotical “proof” of Conjecture 2.

3.2. Derivation of reduced equations for damped critical self-focusing.
If we apply Proposition 3.1 to (2), then F = iψ,

f1 ≡ 0, and f2 = Im

∫
ψ∗
R(iψR) = Nc ,

and to leading order, self-focusing in the damped critical NLS (2) is given by

βt(t) = −ν(β)

L2
− 2Ncδ

M
, Ltt(t) = −β(t)

L3
.(35)

The first equation in (35) can be interpreted as follows: Power losses of the
collapsing part of the beam ψs (left-hand side), are due to nonadiabatic radiation to
the noncollapsing part of the beam and damping effects (first and second terms on
the right-hand side). Self-focusing dynamics in (35) depends on whether nonadiabatic
radiation is dominant over damping or vice versa. As we shall see, when damping
dominates over nonadiabatic radiation, to leading order self-focusing dynamics is given
by (36). In this case, either damping dominates over the focusing nonlinearity and
self-focusing is arrested, or self-focusing dominates over damping and the solution
blows up (section 3.4). In the later case, damping effects become negligible compared
with nonadiabatic radiation near the singularity and self-focusing is described there by
the system (26)–(27) (section 3.5). This is, of course, also the case when nonadiabatic
radiation dominates over damping from the onset of self-focusing. Note, however,
that when self-focusing starts in the nonadiabatic regime where β is not small, it is
possible for the relative sizes of damping and nonadiabatic radiation to change more
than once (Figure 8B).

3.3. “Proof” of Conjecture 1. When nonadiabatic power radiation is small
compared with power loss due to damping, (35) can be approximated with

Ltt(t) = −β(t)

L3
, β = β0 − 2Ncδ

M
t .(36)

We now prove the following result, which is the asymptotic analogue of Conjecture 1.
Lemma 3.2. Let L(t; δ) be the solution of (36), and let T (δ) be the time when

L vanishes, i.e., L(T (δ); δ) = 0. Then, for given initial conditions L0 and Lt(0), the
function T (δ) is monotonically increasing in δ.



SELF-FOCUSING IN THE DAMPED NLS 1693

Proof. We first note that β is monotonically decreasing in δ. Therefore, for t > 0
and sufficiently small, Ltt, and hence Lt and L, are monotonically increasing in δ.
Therefore, Ltt = −β/L3 remains monotonically increasing in δ, and hence also Lt

and L, for as long as the solution exists.

3.4. Threshold damping for blowup. At the time of blowup T δ, the excess
power above critical of ψs should be positive. Therefore, in light of (24), (36), a
necessary condition for blowup is

β0 ≥ 2Ncδ

M
T δ .(37)

This necessary condition for blowup is the asymptotic analogue of the analytic con-
dition (10). To see that, we note that from (37) we have that δT δ = O(β0) � 1.
Therefore, we can expand the exponential in (10) and use (24) to see that the two
conditions agrees with O(β) accuracy (which is the order of accuracy of modulation
theory).

From Conjecture 1 we have that T δ > T 0. Therefore, the necessary condition for
blowup (37) can be rewritten as

β0 ≥ 2Ncδ

M
T 0 ,(38)

which is the asymptotic analogue of condition (15).
In order to find out the dynamics of damped critical self-focusing, we change to

the rescaled variables

L̃ =
L

L0
, t̃ =

t

TSF
,

where L0 = L(0) is the initial transverse width of the solution and TSF = L2
0/
√
β0 is

the adiabatic law estimate for the time of blowup of an initially-collimated beam un-
dergoing self-focusing (see (34)). Under this transformation, the system (36) becomes

−L̃3L̃t̃t̃ = 1− θt̃ , L̃(0) = 1 , L̃t̃(0) = v0 ,(39)

where

θ :=
2Nc

M

δL2
0

β3/2(0)
, v0 :=

L0Lt(0)

β
1/2
0

.(40)

We thus see that the dynamics of the damped NLS is determined by the two non-
dimensional parameters θ and v0. These two parameters depend on the initial condi-
tion ψ through L0, β0, and Lt(0) which correspond to the width, power, and diver-
gence angle of the input beam, respectively.

The parameter θ can be written as

θ =
TSF
Tdamp

, Tdamp :=
β0M

2Ncδ
.

Therefore, θ is equal to the ratio of the blowup time TSF due to nonlinear self-focusing
(in the absence of damping and initial focusing), to the characteristic time for damping
to reduce the power below critical (37). From this interpretation, it is clear that when
θ is small, nonlinearity dominates over damping and blowup occurs, while when θ
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is large, damping dominates and the power goes below critical before catastrophic
self-focusing can occur.

The second nondimensional parameter can be written as

v0 =
TSF

TLF
, TLF :=

L(0)

Lt(0)
,

i.e., the ratio of the characteristic time for nonlinear self-focusing with no initial
focusing TSF , to the characteristic time for initial focusing to focus the solution to a
point in the absence of diffraction and nonlinearity.

Although (39) cannot be solved explicitly, it is clear that there is a threshold
value θth = θth(v0) such that

• when θ < θth, L̃ vanishes at a finite time (i.e., blowup).
• When θ > θth, blowup is arrested and there is a single focusing-defocusing
cycle.

These two possibilities for the dynamics of damped self-focusing can be seen in Fig-
ure 5. Thus, the nondimensional system (39) together with the interpretation of the
two nondimensional parameters θ and v0 provide a complete qualitative description
of damped critical self-focusing. We note that this qualitative picture is consistent
with numerical simulations of damped critical self-focusing [2, 16, 31].

The critical damping parameter is given by (40)

δth ≈ θthM

2Nc

β
3/2
0

L2
0

.(41)

The fact that δth ∼ L−2
0 is evident from a simple rescaling argument applied to (2).

In addition, if we denote by p the initial power, normalized by Nc,

p :=
||ψ0||22
Nc

,

then, in light of (24), relation (41) implies that

δth ∼ (p− 1)3/2 .(42)

The validity of relation (42) is supported by numerical simulations (Figure 6). Finally,
we note that (41) is consistent with our earlier results that a solution with higher power
can blow up in the presence of larger damping and that in critical self-focusing δth is
relatively small.

In Figure 7, which we obtain by solving (39) numerically, we plot θth as a function
of v0. To a good approximation,

θth ≈ 0.78− 0.82v0 .(43)

Substituting (43) in (41) gives

δth ≈
(
0.78− 0.82L0Lt(0)

β
1/2
0

)
M

2Nc

β
3/2
0

L2
0

.(44)

We can also adopt a somewhat different approach, based on the condition for
global existence (38) and the adiabatic law estimate for the blowup time (33). This
yields an estimate for the upper bound δub:

δub ∼
(
1− L0Lt(0)

β
1/2
0

)
Mβ

3/2
0

2NcL2
0

.
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Fig. 5. Damped self-focusing, according to the reduced system (39).
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Fig. 6. Simulation results of log δth as a function of log(p− 1) (circles). Initial conditions are

(A) ce−r2 with 1.05 ≤ p ≤ 2, (B) cR(r) with 1.05 ≤ p ≤ 2, and (C) ce−r4 with 1.3 ≤ p ≤ 2. Slope
of interpolating lines is close to the 3/2 prediction of relation (42).
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Fig. 7. Value of θth as a function of v0 ((39), solid) and its linear approximation ((43), dots).

Note the similarity between this upper bound estimate and (44). For example, in the
case of an initially-collimated beam this bound is larger than the estimate (44) by
roughly 30%. Finally, if we substitute (24) and (33) in (15), we get

δub ∼ β
1/2
0

2L2
0

(
1− L0Lt(0)

β
1/2
0

)
log

(
1 +

βM

Nc

)
,

which, for small β, agrees asymptotically with the previous estimate.
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Fig. 8. Solution of the reduced system (35) for damped self-focusing with nonadiabatic effects.
(A) Changes in β are very small compared with the focusing rate, i.e., damped self-focusing is
adiabatic. (B) Effect of damping, δL2, becomes negligible compared with nonadiabatic losses, ν(β),
near the blowup point. Here, β0 = 0.4, L0 = 1, L′(0) = 0, and δ = 0.015.

3.5. Blowup rate. Near the singularity the damped NLS (2) approaches the
undamped NLS (13). Therefore, it may seem reasonable to assume that the blowup
rate in (2) is the same as that of the undamped NLS. However, blowup in the crit-
ical NLS is characterized by the near-balance between the focusing nonlinearity and
diffraction, and is highly sensitive to small perturbations [12]. As a result, it is un-
clear a priori which of the two small mechanisms, nonadiabatic losses and damping, is
dominant near the blowup point. In order to determine this, we note that by following
the multiple-scales approach that leads to the adiabatic law (section 3.1.1), the first
order correction to β is given by

βτ ∼ −ν(β0)− 2Nc

M
δL2 .(45)

Therefore, the effect of damping becomes negligible as L → 0 and damped self-focusing
is governed asymptotically by the reduced system (26)–(27) of the undamped NLS. As
a result, the rate of blowup is the same as the one of the undamped NLS: It is given
by the adiabatic law (31), which, as focusing goes on, reduces to (32) and eventually
in the far-far asymptotic limit reduces to the loglog law (25). It should be noted,
however, that while damping does not change the blowup rate, it does delay the time
of blowup, as evident in Figure 1.

In Figure 8 we present a numerical solution of the reduced nonadiabatic sys-
tem (35). As can be seen, when β is small, damped self-focusing is essentially adia-
batic: While L decreases by five orders of magnitude, β does not even decrease by one
order of magnitude. In addition, one can see that the small nonadiabatic term ν(β)
remains relatively unchanged, while the damping term δL2 quickly becomes negligible
in comparison, thus providing a support to the validity of the above analysis of the
blowup rate of the damped NLS.

In Figure 9 we compare the blowup rate of solutions of the damped NLS (2)
with the predictions of the three asymptotic laws. As can be seen, only the adiabatic
law (31) provides a reasonable approximation for the blowup rate in the domain of
physical interest 1 ≤ 1/L ≤ 105.

4. Stability of isotropic self-similar dynamics. A key assumption of mod-
ulation theory (which we use in the asymptotic analysis in section 3) is that near the
singularity the solution approaches the radially-symmetric attractor ψR. While it is
clear that ψ remains radially-symmetric when ψ0 is radially-symmetric, it is not clear
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Fig. 9. Relative error in the predictions of Fibich’s adiabatic law ((31), solid line), Malkin’s
adiabatic law ((32), dash-dot), and the loglog law ((25), dots) for the blowup rate L of the solution of
the damped NLS (2). Initial conditions are: (A) ψ0 =

√
1.3R(r) with δ = 0.06, (B) ψ0 =

√
1.1R(r)

with δ = 0.01.

a priori that ψR remains an attractor under symmetry-breaking perturbations. We
note that at present, there is no rigorous theory to support the assumption of the
stability of radially-symmetric self-similar dynamics. This assumption is supported,
however, in numerical studies of self-focusing in NLS and perturbed NLS [9, 20, 21].

In order to test the effect of nonisotropic initial conditions on damped self-
focusing, as well as the validity of the assumption of radial symmetry in the asymp-
totic analysis5 of the damped NLS, we integrate the damped NLS (2) with highly
nonisotropic initial conditions

ψ0 = c exp(−(0.4x)2 − y2) ,(46)

where

c = 2
√
0.52Nc ≈ 1.97(47)

(i.e., ||ψ0||22 = 1.3Nc). We monitor the solution nonisotropy with the ratio of the
widths of the solution in the x and y directions

Lx

Ly
=

√∫ |(ψ|2)y| dxdy∫ |(ψ|2)x| dxdy .

The relative increase in amplitude is monitored with ||ψ||∞/||ψ0||∞.
In Figure 10A we see that when δ = 0.01 the solution blows up. The initial

oscillations in Lx/Ly disappear after focusing by a factor of five (Figure 10B) as
the collapsing part of the solution6 converges to the radially-symmetric profile ψR

(Figure 11). Singularity formation is arrested, however, when δ = 0.015 (Figure 12A).
In this case, the solution also converges to a radially-symmetric profile during the self-
focusing stage (Figure 12B). These simulations confirm that the radially-symmetric
profile is an attractor during self-focusing.

Simulation results show that δth ≈ 0.015 for the initial conditions (46), (47).
For comparison, for isotropic Gaussian initial conditions with the same initial power,

5We did not assume radial symmetry in the rigorous analysis in section 2.
6The “outer” part of the solution which does not self-focus does remain nonisotropic.
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Fig. 10. Damped self-focusing (2) with nonisotropic initial conditions (46), (47), and δ = 0.01.
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Fig. 11. Convergence to the radially-symmetric profile ψR for the solution of Figure 10. (A)
t = 2.48, L = 0.42, and ||ψ||∞/||ψ0||∞ = 2, (B) t = 2.69, L = 0.21, and ||ψ||∞/||ψ0||∞ = 5.2.
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Fig. 12. Same as in Figure 10 with δ = 0.015.
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δth ≈ 0.20 (Figure 3). This drastic change in the value of δth is due to the increase
in the effective critical power for blowup of elliptic beams, compared with radially-
symmetric ones. For example, the threshold power for blowup in the undamped NLS
(1) for the initial conditions (46) is ||ψ0||22 ≈ 1.20Nc [9]. Thus, the initial power of
(46), (47) is only about 8% above the “effective” critical power for (46). Indeed, for
isotropic Gaussian initial conditions with p = (1.3/1.2)Nc we calculate numerically
that δth ≈ 0.025, which is of the same order as the value of δth for the initial conditions
(46), (47).

5. Nonlinear damping. The damped NLS (2) is a special case of

iψt +∆ψ + |ψ|2ψ + iδ|ψ|qψ = 0(48)

with q = 0 (linear damping). In the nonlinear optics context, the origin of nonlinear
damping is multiphoton absorption, and the damping power q can take on integer
values between 2 and 8. For example, in the case of solids the number q corresponds
to the number of photons it takes to make a transition from the valence band to
the conduction band. Similar behavior can occur with free atoms, in which case q
corresponds to the number of photons needed to make a transition from the ground
state to some excited state or to the continuum.

Application of modulation theory to (48) with F = i|ψ|qψ gives that f1 ≡ 0 and

f2 =
cq
Lq

, cq = ||R||q+2
q+2 > 0 .

Therefore, self-focusing in (48) is given to leading order by

βt = −ν(β)

L2
− 2cqδ

M

1

Lq
,

or

βτ = −ν(β)− 2cqδ

M
L2−q .(49)

This equation was already derived in [4].
Equation (49) shows that the effect of nonlinear damping depends on the sign of

(q − 2):
• When q < 2, self-focusing dynamics is qualitatively similar to the case of
linear damping:
– When δ > δth(ψ0; q), focusing is arrested and there is one focusing-
defocusing cycle.

– When δ < δth(ψ0; q), damping effects become negligible near the singu-
larity and the blowup rate is the same as that of the undamped NLS.

• When q = 2, nonadiabatic effects become negligible compared with damping
and to leading order

βτ ∼ −ε , ε =
4Ncδ

M
,(50)

where we have used the relation c2 = 2Nc. Following [10], if we make the
change of variables,

A =
1

L
, s = ε−2/3(β0 − ετ) ,



1700 G. FIBICH

and use the relation β = Aττ/A, (50) is transformed into Airy’s equation

Ass = sA .

The initial condition is given at s0 := s(t = 0) = ε−2/3β0 > 0 and s is
monotonically decreasing as t increases. The solution of Airy’s equation is a
linear combination of the Airy and Bairy functions:

A = k1Ai(s) + k2Bi(s),

where k1 and k2 are constants. We recall that for s > 0, as s decreases Bi(s)
decays exponentially while Ai(s) increases exponentially (e.g., [1]). There-
fore, as t increases A ∼ k1Ai(s) and focusing is arrested when Ai(s) attains
its global maximum at s2 ≈ −1.0. Although Ai(s) oscillates as s → −∞,
the reduced system is valid only until s3 ≈ −2.3 where Ai(s) vanishes, corre-
sponding to a complete defocusing (L =∞).7 Therefore, in this case there is
a single focusing-defocusing event, regardless of how small δ is.
The amount of power loss in a collapsing event can be estimated by8

∆N ∼ M

∫ τ(s3)

τ(s0)

ε dτ ∼ M(β0 − ε2/3s3) .

Therefore, in the limit δ → 0, the amount of power loss is equal to Mβ0, i.e.,
the excess power above critical of the solution.

• When q > 2, damping effects are even stronger. As a result, damping always
arrests blowup regardless of how small δ is. When the initial power is slightly
above critical, (49) is valid from the onset of self-focusing and self-focusing
dynamics consists of a single focusing-defocusing cycle. However, if the initial
power is highly above critical, numerical simulations show a pattern of several
focusing-defocusing cycles, with abrupt power losses due to dissipation at the
times of maximal focusing [23].

6. Supercritical damped NLS. It is interesting to compare the effect of linear
damping in the critical NLS with its effect in the D-dimensional supercritical NLS

iψt +

(
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
D

)
ψ + |ψ|2σψ + iδψ = 0 , σD > 2 .(51)

Tsutsumi proved that the conditions

H(0) ≤ 0

and

δ
2σ

σD − 2V (0) + V ′(0) ≤ 0 ,(52)

where V is the variance, lead to finite-time blowup of the solution of (51) [34]. How-
ever, this result does not carry over to the critical case σD = 2.

7Strictly speaking, the reduced system is not valid once L� 1. At that stage, however, the NLS
solution simply continues to defocus, as does the solution of the reduced system [10].

8Nonadiabatic effects, ν(β), represent power radiation and do not contribute to overall power
loss.
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From the condition (52) it follows that there is blowup if

δ ∈ 0
[
0, − V ′(0)

V (0)

σD − 2
2σ

]
.

Since it is reasonable to assume that Conjecture 1 is also true in the supercritical
case, one can expect that Theorem 2.4 remains true in the supercritical case, i.e., for
a given initial condition ψ0 which leads to blowup in the undamped supercritical NLS,
there exists a threshold value δth = δth(ψ0) such that there is finite-time blowup for
δ ≤ δth and global existence for δ > δth. However, since blowup in the supercritical
NLS is much less sensitive to small perturbations, δth should be much larger than in
the critical case.

The numerical results of Akrivis et al. [2] support this qualitative picture. In this
study a Galerkin finite-element method was used to integrate the damped NLS, (2),
in two dimensions (critical case) and in three dimensions (supercritical case). The
results suggest that in the supercritical damped NLS there is also a critical threshold
for δ and that in the two dimensional damped NLS “much smaller values of δ were
needed to lead to definite blowup” compared with the three dimensional damped
supercritical NLS.

7. Numerical method. We solve (3) in the radially-symmetric case by extend-
ing the method of dynamic rescaling for the unperturbed NLS [27] to the case of the
damped NLS. To do that, we introduce the rescaling transformation for the function
u and for the independent variables t and r

u(t, r) =
1

L(t)
V (τ, ρ) , ρ =

r

L(t)
, τ(t) =

∫ t

0

1

L2(s)
ds .

The rescaled function V (τ, ρ) satisfies

iVτ +∆V + e−2δt|V |2V − ia(ρV )ρ = 0 ,

where

a(τ) = L
dL

dt
=
1

L

dL

dτ
and t(τ) =

∫ τ

0

L2(s) ds .

The choice

a(τ) = −e−2δt

G(0)

∫ ∞

0

|V |2 Im(V∆V ∗) ρdρ ,

where

G(τ) =

∫ ∞

0

|Vρ|2 ρdρ ,

has the useful property that

Gτ = 2a

(
G(τ)−G(0)

)
.

Therefore, global smoothness of V is maintained since G(V ) ≡ G0 and a < 0 when
the solution is focusing.
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The equation for V is solved on a fixed grid by combining a Crank–Nicholson
implicit method for the Laplacian with a predictor-corrector stage for the other terms.
For more details, see [5, 24]. As a consistency check, we monitor the conservation of∫∞
0

|V |2 ρdρ and of G.
We use a bisection approach in order to find δth. The algorithm determines that

blowup occurs when L becomes smaller than 10−6 and that blowup is not going to
occur if Lt becomes positive after the initial transient.

8. A final remark. The NLS model (1) for beam propagation through a Kerr
medium, in which damping is neglected, leads to finite-time singularity. As we have
seen, when linear damping is included in the model, it acts as a defocusing mechanism
which delays the onset of blowup and may even arrest it. However, linear damping
arrests blowup only when it is “sufficiently large” (or, more accurately, sufficiently
“nonsmall”) and it does not prevent the singularity formation when δ < δth. This
kind of effect on singularity formation distinguishes linear damping from all other
defocusing perturbations of NLS analyzed so far using modulation theory [10, 12],
which always arrests blowup, regardless of how small they initially are. Therefore,
linear damping is not a potential candidate for the regularizing mechanism that would
allow extension of solutions on NLS beyond the blowup point. However, the role of
“viscosity” can be played by nonlinear damping with power greater or equal to three,
since it always arrests blowup, regardless of how small it initially is.

Appendix A. Physical value of δ.
The propagation of laser beams is governed by the vectorial Maxwell equations.

In the case of cw (continuous wave) laser beams, Maxwell equations be reduced to
the scalar Helmholtz equation [22][

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
E(z, x, y) + k2E = 0 , k2 =

ω2
0n

2

c2
,(53)

where ω0 is frequency, c is speed of light, and n is the index of refraction. The linear
Schrödinger equation for the electric field envelope ψ, i.e., (2) without the nonlinear
term, is derived from (53) by using the substitution E = exp(ik0z)ψ(z, x, y) with
k0 =

√
(Re(k2), changing to the nondimensional variables

t̃ =
z

2LDF
, x̃ =

x

r0
, ỹ =

y

r0

and dropping the nonparaxial term ψzz. Therefore,

δ = r2
0 Im (k

2) .

In addition, in transparency, Re (k2
0) ∼ k2

0 and the expression for δ can be rewritten
as

δ ∼ r2
0k

2
0

Im(k2)

Re(k2)
.

In terms of the absorption coefficient α (e.g., [17])

δ = αLDF .

For example, for water in the visible spectrum α < 3 × 10−3 cm−1 [17]. Therefore,
when LDF is on the order of 1 cm, δ is less than one percent.
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Appendix B. C1,2(Ω) = C1,2(�2).
Lemma B.1. Let Ω ⊂ �2 be a smooth simply-connected domain and let C1,2(Ω)

be the optimal constant in the Gagliardo–Nirenberg inequality

||f ||4L4(Ω) ≤ C1,2(Ω)||f ||2L2(Ω)||∇f ||2L2(Ω) , f ∈ H1
0 (Ω) .

Then,

C1,2(Ω) = C1,2(�2) .

Proof. For any f ∈ H1
0 (Ω), we define the corresponding f̃ ∈ H1(�2) by

f̃ =

{
f, x ∈ Ω,
0, x �∈ Ω.

Therefore,

1

C1,2(Ω)
= inf

f∈H1
0 (Ω)

||f ||2L2(Ω)||∇f ||2L2(Ω)

||f ||4L4(Ω)

= inf
f̃

||f̃ ||22||∇f̃ ||22
||f̃ ||44

≥ inf
f∈H1(�2)

||f ||22||∇f ||22
||f ||44

=
1

C1,2(�2)
.

On the other hand, let us define fε ∈ H1
0 (Ω) by

fε(r) =




1

ε
R
(r
ε

)
, r ≤ M/2,

gε(r), M/2 ≤ r ≤ M,
0, |x| ≥ M,

where M is a positive number such that {|x| ≤ M} ⊂ Ω, R is the Townes soliton (7),
and gε(r) is a smooth monotonically decreasing function such that gε(M) = 0 and
gε(M/2) = (1/ε)R(M/2ε). Since R(r) ∼ c exp(−r)r−1/2 for r � 1, we have that

1

C1,2(Ω)
≤ lim

ε→0

||fε||22||∇fε||22
||fε|44

=
||R||22||∇R||22

||R|44
.

Therefore, in light of [36]

1

C1,2(�2)
=

||R||22||∇R||22
||R|44

;

the lemma is proved.
Finally, we note that since (as in the free-space case [36])

Nc(Ω) =
2

C1,2(Ω)
,

we get the following.
Corollary B.2. The lower bound for the critical power in bounded domains is

the same as in free-space, i.e.,

Nc(Ω) = Nc(�2) .
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