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Abstract. We analyze self-focusing and singularity formation in the nonlinear Schrödinger
equation (NLS) with high-order dispersion iψt±∆qψ+ |ψ|2σψ = 0, in the isotropic mixed-dispersion
NLS iψt + ∆ψ + ε∆2ψ + |ψ|2σψ = 0, and in nonisotropic mixed-dispersion NLS equations which
model propagation in fiber arrays.
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1. Introduction. The canonical model for propagation of intense laser beams in
a bulk medium with Kerr nonlinearity is given by the nonlinear Schrödinger equation
(NLS)

iψt(x, y, t) + ∆ψ + |ψ|2ψ = 0, ψ(x, y, 0) = ψ0(x, y),(1)

where ∆ = ∂xx+ ∂yy. This equation is a special case of the NLS in d dimensions and
with a general power-law nonlinearity

iψt(x, t) + ∆ψ + |ψ|2σψ = 0, ψ(x, 0) = ψ0(x),(2)

where x = (x1, . . . , xd) and ∆ = ∂x1x1
+ · · ·+ ∂xdxd

.
Two key questions in NLS theory are (1) Can solutions become singular (blow up,

collapse) in finite time? and (2) Do finite-energy waveguide solutions ψ = eiωtQω(x)
exist, and are they stable? It is well known that the answer to these questions for
the NLS (2) depends on the product σd as follows. When σd < 2 (subcritical NLS),
all solutions exist globally, and the waveguide solutions are stable. When, however,
σd = 2 (critical NLS) or σd > 2 (supercritical NLS), solutions of the NLS (2) can
become singular, and the waveguide solutions are unstable.

The role of small fourth-order dispersion has been considered in a series of papers
by Karpman and Shagalov (see [21] and the references therein), who studied the
equation

iψt(t,x) + ∆ψ + |ψ|2σψ + ε∆2ψ = 0(3)

in the case when ε < 0, where ∆2 is the biharmonic operator. Using a combination
of stability analysis and numerical simulations, they showed that (1) when dσ ≤ 2,
the waveguide solutions of equation (3) are stable for all ε < 0, (2) when 2 < dσ < 4,
the waveguide solutions are stable for ε � −1, and (3) when 4 ≤ dσ, the waveguide
solutions are unstable, and the instability can result in a collapse.
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The results of Karpman and Shagalov show that there is a second critical expo-
nent/dimension dσ = 4. In this study, we show that the reason for this is that σd = 4
is the critical exponent/dimension of the biharmonic NLS

iψt(t,x) + ε∆2ψ + |ψ|2σψ = 0.
The biharmonic NLS was considered in [20, 31] in the context of stability of solitons
in magnetic materials when the effective quasi-particle mass becomes infinite but re-
ceived little attention otherwise. In section 4, we show that some but not all properties
of the NLS (which are briefly reviewed in section 3) remain valid for the biharmonic
NLS. In particular, when ε > 0, all solutions of the biharmonic NLS exist globally.
When ε < 0, the critical exponent for singularity formation is σd = 4. In addition,
when σd = 4, a sufficient condition for global existence is that the input power (L2

norm) be below a threshold value. As in the case of the critical NLS, the calculation
of the threshold power reduces to the determination of (new) optimal constants in
Sobolev inequalities. The results for the biharmonic NLS are extended to the NLS
with any order of dispersion in section 5.

In section 6, we consider the NLS (3) with mixed dispersion. We first show that
the sufficient conditions for global existence are the same as for the biharmonic NLS.
Thus we might be tempted to conclude that the biharmonic term has a defocusing
effect when ε > 0 and that it is focusing when ε < 0. As is often the case in NLS
theory, however, global estimates can lead to misleading conclusions. Indeed, we
show that when the NLS is critical (σd = 2) and ε is small, during the initial stages
of propagation the biharmonic term is focusing when ε > 0 and is defocusing when
ε < 0. Thus the effect of the biharmonic term (focusing or defocusing) depends on
whether it is small or large compared with the Laplacian.

We can use the above conclusions to motivate the results of Karpman and Sha-
galov as follows. When σd < 2, NLS waveguides are stable, and therefore a small
defocusing (i.e., ε < 0) biharmonic term does not affect stability. When σd = 2,
NLS waveguides are only mildly unstable, and therefore any amount of defocusing
by the biharmonic term is sufficient to stabilize the waveguides. When σd > 2, NLS
waveguides are “genuinely” unstable, and therefore the defocusing biharmonic term
has to be sufficiently large in order to stabilize the waveguides. In other words, |ε|
should be sufficiently large so that waveguide propagation is predominantly governed
by the corresponding biharmonic equation, which is stable for σd < 4.

2. Physical motivation. In this section, we discuss the physical motivation
behind (3). We first note that high-order dispersion terms do not arise naturally in
the NLS in the sense that they do not correspond to high-order terms in a Taylor
expansion. Indeed, let us recall the traditional derivation of the NLS (1) in nonlinear
optics from the scalar nonlinear Helmholtz equation (NLH)

(∂xx + ∂yy + ∂zz)E(x, y, z) + k2E = 0, k2 = k20

(
1 +

4n2
n0

|E|2
)
,(4)

where E is the electric field, k0 is the wavenumber, n0 is the linear index of refraction,
and n2 is the Kerr coefficient. We separate the fast oscillations from the slowly varying
amplitude and change to nondimensional variables using1

x̃ =
x

r0
, ỹ =

y

r0
, t̃ =

z

2LDF
, ψ(x̃, ỹ, t̃) = 2r0k0

√
n2
n0

E(x, y, z)e−ik0z,(5)

1Note that in nonlinear optics the physical variable z plays the role of “time.”
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where ψ is the dimensionless electric-field amplitude and LDF = k0r
2
0 is the diffraction

length. Dropping the tilde signs, the nondimensional NLH is given by

δ

4
ψtt(x, y, t) + iψt +∆ψ + |ψ|2ψ = 0,(6)

where ∆ = ∂xx + ∂yy and δ = 1/r20k
2
0 > 0. Because the input beam width r0 is

typically much larger than its wavelength λ = 2π/k0, it follows that

δ =
λ2

π2r20
� 1.

In fact, even if the beam width gets to the order of a single wavelength, i.e., r0 ≈
λ, then δ ≈ 1/π2 � 1. This observation is the motivation behind the paraxial
approximation, which amounts to setting δ = 0, in which case the NLH (6) reduces
to the NLS (1).

2.1. Nonparaxiality. As we have already said, solutions of the NLS (1) can
become singular at a finite time. This indicates that some of the small terms that
are neglected in the derivation of the NLS from Maxwell equations become important
near the singularity and prevent the collapse. Since the last step in the derivation of
the NLS from Maxwell equations is the paraxial approximation, a natural question is
whether nonparaxiality arrests the blowup.

At present, there is no definite answer to this question, which is based on rigorous
analysis. Numerical simulations [5, 8, 29] and asymptotic analysis [9] suggest that
nonparaxiality always arrests the collapse. Because solving the NLH numerically as
a true boundary value problem is hard,2 the standard approach in solving the NLH
numerically is to approximate it with an initial value problem (see, e.g., [5, 7, 8, 29]).
This can be done by approximating the nonparaxial term ψtt with

3

ψtt = − [∆2ψ + 4|ψ|2∆ψ + 4ψ∇ψ∇ψ∗ + 2ψ∗∇ψ∇ψ + |ψ|4ψ]+O(δ).

The resulting perturbed NLS with nonparaxial effects, which is an initial value prob-
lem, is given by

iψt(x, y, t) + ∆ψ + |ψ|2ψ − δ
[
∆2ψ + 4|ψ|2∆ψ + 4ψ∇ψ∇ψ∗(7)

+2ψ∗∇ψ∇ψ + |ψ|4ψ] = 0.
In the scalar NLH (4) (hence in (7)) the coupling between the components of the

vectorial electric field is neglected. When vectorial effects are included, the model
equation is given by the vectorial NLH. It can be shown [12] that, to leading order,
the vectorial NLH can be approximated with the scalar equation

iψt(x, y, t) + ∆ψ + |ψ|2ψ(8)

−δ

4

[
∆2ψ + 4|ψ|2∆ψ + 4ψ∇ψ∇ψ∗ + 2ψ∗∇ψ∇ψ + |ψ|4ψ]︸ ︷︷ ︸

nonparaxiality

+δ

[
4 + 6γ

1 + γ
|ψx|2ψ + (ψx)

2ψ∗ +
1 + 2γ

1 + γ

(|ψ|2ψxx + ψ2ψ∗
xx

)]
︸ ︷︷ ︸

vectorial effects

= 0,

2For a recent numerical study of the scalar NLH as a true boundary value problem, see [16].
3For derivation, see Appendix E in [12].
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where γ is a constant. For convenience, we have noted the terms that correspond to
nonparaxiality and to vectorial coupling. Thus, in (7) and (8), the small biharmonic
term with ε = −δ < 0 arises as (part of) the nonparaxial correction to the NLS.

2.2. Fiber arrays. In the last few years, it has been suggested that faster trans-
mission in optical fibers may be achieved by using an array of coupled optical wave-
guides arranged on a line, in which the pulses undergo two-dimensional self-focusing.
The model equation for the nth fiber is given by

iψn
z − β2ψ

n
tt + 2γ|ψn|2ψn + δ(ψn+1 − 2ψn + ψn−1) = 0,(9)

where ψn(t, z) is the electric field envelope in the nth fiber, δ is the coupling coefficient
between neighboring fibers, β2 is the group velocity dispersion, and γ is the nonlinear
coefficient. For theoretical and numerical studies of (9), see, e.g., [1, 2, 3, 4, 24, 33].

When time dispersion is anomalous (β2 < 0), the change of variables

t̃ = δh2z, ψ̃n =
1

h

(
2γ

δ

)1/2
ψn, ỹ =

[
h

(
δ

|β2|
)1/2]

t,

where h is the distance between fibers, yields (after dropping the tildes)

iψn
t (y, t) + ψn

yy + |ψn|2ψn +
ψn+1 − 2ψn + ψn−1

h2
= 0.(10)

Let ψ(x = nh, y, t) = ψn(y, t), and assume that the optical field is slowly varying over
a number of fibers in the x direction, i.e., h � 1. Using Taylor expansion, we have
that

ψn+1 − 2ψn + ψn−1

h2
= ψxx + εψxxxx +O(ε2),(11)

where ε = h2/12. Therefore, propagation in fiber arrays can be approximated with
the perturbed NLS

iψt(x, y, t) + ∆ψ + |ψ|2ψ + εψxxxx = 0.(12)

Thus the discrete coupling between the fibers gives rise to an anisotropic biharmonic
term with ε > 0.

3. Review of NLS theory. We now give a short review of the theory of sin-
gularity formation in the NLS, which is mostly due to Weinstein [32]. For more
information, see also [14, 30]. Let us consider the NLS

iψt(t,x) + ∆ψ + µ|ψ|2σψ = 0, µ = ±1.(13)

Two important conserved quantities of (13) are the power and the Hamiltonian, i.e.,

||ψ||22 ≡ ||ψ0||22, H(ψ) ≡ H(ψ0),(14)

where

H(ψ) = ||∇ψ||22 −
µ

σ + 1
||ψ||2σ+22σ+2,
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and

||f(x)||p =
(∫

|f(x)|p dx
)1/p

.

Solutions of the NLS (13) satisfy the variance identity

Vtt = 8H − 8µdσ − 2
2σ + 2

||ψ||2σ+22σ+2,

where

V =

∫
|r|2|ψ|2 dx and r = |x|.

From the variance identity and Hamiltonian conservation, it follows that when µ = 1,
σd ≥ 2, and H(ψ0) < 0, the solution of the NLS (13) becomes singular at a finite
time.

From the local existence theory for the NLS (13), it follows that a priori bounds
of the H1 norm imply global existence [19, 22]. Therefore, from (14), it follows that
when µ = −1 (defocusing NLS), all solutions of (13) exist globally. Global existence
theory for the focusing NLS (i.e., µ = 1) is based on theGagliardo–Nirenberg inequality
[17, 18, 28]

||f ||2σ+22σ+2 ≤ Cσ,d||∇f ||σd2 ||f ||2+σ(2−d)
2 ,(15)

where σ satisfies {
0 ≤ σ, d ≤ 2,
0 ≤ σ < 2/(d− 2), d > 2,

(16)

and Cσ,d is a constant which depends on d and σ. From power conservation, Hamil-
tonian conservation, and the Gagliardo–Nirenberg inequality, one can obtain the
a priori bound

||∇ψ||22 ≤ H(0) + κ||∇ψ||σd2 ,

where κ is a positive constant whose value is given by

κ =
Cσ,d

σ + 1
||ψ0||2+σ(2−d)

2 .

Hence solutions of the NLS (13) with µ = 1 exist globally if σd < 2 (subcritical NLS)
or if σd = 2 (critical NLS) and ||ψ0||22 < Nc, where the critical power Nc is given by

Nc =

(
σ + 1

Cσ,d

)1/σ
.(17)

Because solutions of the NLS (13) can only become singular when σd ≥ 2, the critical
exponent/dimension for singularity formation in the NLS (13) is given by σd = 2.

The calculation of the optimal constant Cσ,d in inequality (15) is based on mini-
mization of the functional

J [f ] :=
||∇f ||σd2 ||f ||2+σ(2−d)

2

||f ||2σ+22σ+2

.(18)
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By calculating the variational derivative of J [f ], Weinstein [32] showed that, in the
critical case σd = 2,

1

Cσ,d
=

1

σ + 1
||R||2σ2 ,

where R is the radially symmetric ground-state4 solution of

∆R(r)−R+R4/d+1 = 0, R′(0) = 0, R(∞) = 0.(19)

Therefore, when µ = 1 and σd = 2, the critical power for singularity formation is
given by Nc = ||R||22. In addition, the ground-state solution of (19) is positive and
monotonically decreasing and has zero Hamiltonian (H(R) = 0).

When d = 1 and σ = 2, (19) becomes

R′′(r)−R+R5 = 0, R′(0) = 0, R(∞) = 0.

This equation has a unique nontrivial solution R = 31/4sech1/2(2r). Therefore, when
d = 1, the critical power is given by Nc =

∫∞
−∞ R2(r) dr =

√
3π/2.

When d ≥ 2, (19) has an infinite number of solutions in H1. However, (19) has
a unique positive solution [23], which is the minimizer of J [f ]. Of special interest
in the nonlinear optics context is the case when d = 2 and σ = 1, corresponding to
the NLS (1). In this case, the minimizer R(r), the so-called Townes soliton, is the
ground-state solution of

R′′ +
1

r
R′ −R+R3 = 0, R′(0) = 0, R(∞) = 0.(20)

Therefore, the critical power when d = 2 is Nc = 2π
∫∞
0

R2 rdr ≈ 11.7.

4. Biharmonic NLS. We now extend the NLS theory presented in section 3 to
the biharmonic NLS

iψt(x, t) + ε∆2ψ + |ψ|2σψ = 0, ε = ±1.(21)

We say that ψ becomes singular at t = Tc if ||ψ(·, t)||H2 < ∞ for 0 ≤ t < Tc and if
limt→Tc ||ψ(·, t)||H2 =∞, where

||f ||H2 =
√
||f ||22 + ||∇f ||22 + ||∆f ||22.

Power and Hamiltonian conservation are given by (14) with

H = −ε||∆ψ||22 −
1

σ + 1
||ψ||2σ+22σ+2.

4.1. Waveguide solutions. We can look for waveguide solutions of (21) of the

form ψ = eiλ
4tRB,λ(x). In that case, RB,λ satisfies

−λ4RB,λ + ε∆2RB,λ +R2σ+1B,λ = 0.(22)

Lemma 4.1. Two necessary conditions for existence of nontrivial solutions to
(22) in H2 are ε < 0 and σ < 4/(4− d).

4i.e., the nontrivial solution with the smallest power.
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Proof. If we multiply (22) by RB,λ and integrate by parts, we get that

−λ4||RB,λ||22 + ε||∆RB,λ||22 + ||RB,λ||2σ+22σ+2 = 0.(23)

Similarly, if we multiply (22) by x · ∇RB,λ and integrate by parts, we get that

λ4||RB,λ||22 + ε

(
4

d
− 1
)
||∆RB,λ||22 −

1

σ + 1
||RB,λ||2σ+22σ+2 = 0.(24)

If we multiply (24) by (4/d− 1) and subtract from (23), we get that

λ4||RB,λ||22 =
4− (d− 4)σ
4(σ + 1)

||RB,λ||2σ+22σ+2.

If we multiply (24) by (σ + 1) and add to (23), we get that

λ4σ||RB,λ||22 = −ε
4− (d− 4)σ

d
||∆RB,λ||22.

The necessary conditions follow from the requirement that the right-hand side of the
last two equations must be positive.

From now on, we consider only the case when ε = −1 in (22), i.e.,
−λ4RB,λ(x)−∆2RB,λ +R2σ+1B,λ = 0.(25)

If we add (23) and (24), we get that

H(RB,λ) =
σd− 4
4(σ + 1)

||RB,λ||2σ+22σ+2,

showing that 


H(RB,λ) < 0, σd < 4,
H(RB,λ) = 0, σd = 4,
H(RB,λ) > 0, σd > 4.

Let RB,λ be a solution of (25). Then RB,λ(x) = λ2/σRB(λx), where RB := RB,1

is the solution of

−RB(x)−∆2RB +R2σ+1B = 0.(26)

It is easy to see that

||RB,λ||22 = λ(4/σ−d)||RB ||22, H(RB,λ) = λ4+(4−σd)/σH(RB).(27)

Thus the critical case σd = 4 has the two unique properties that H(RB) = 0 and

||RB,λ(x)||22 = ||RB(x)||22.(28)

In addition, from (27), it follows that

d

dλ
||RB,λ||22 > 0 ⇐⇒ σd < 4,

suggesting that the waveguide solutions ψλ(x, t) = eiλ
4tRB,λ(x) are stable if and only

if σd < 4.
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4.2. Existence. As in the case of the NLS (2), estimates of the linear biharmonic
operator of (21) (see [6]) imply the so-called Strichartz estimates, which in turn imply
local well-posedness inH2. Therefore, a priori bounds of ‖ψ‖H2 imply global existence
in the biharmonic NLS (21).

Theorem 4.2. The following conditions are sufficient for global existence in (21):
1. ε > 0.
2. ε < 0, and σd < 4.
3. ε < 0, σd = 4, and ||ψ0||22 < NB

c , where

NB
c =

(
σ + 1

Bσ,d

)1/σ
.(29)

Proof. When ε = 1, Hamiltonian conservation leads to the a priori bound

||∆ψ||22 ≤ |H(0)|.
In addition, using integration by parts and the Cauchy–Schwarz inequality,

||∇ψ||22 ≤
∫

|ψ||∆ψ| dx ≤ ||∆ψ||2||ψ||2.(30)

Since ||ψ||22 is conserved, we conclude that ||ψ||H2 is globally bounded. Hence, when
condition 1 holds, all solutions of the biharmonic NLS exist globally.

When ε = −1, from Hamiltonian conservation we have that

||∆ψ||22 = H(0) +
1

σ + 1
||ψ||2σ+22σ+2.(31)

In order to bound ||ψ||2σ+22σ+2, we make use of the Gagliardo–Nirenberg inequality [17,
18, 28]

||f ||2σ+22σ+2 ≤ Bσ,d||∆f ||σd/22 ||f ||2+2σ−σd/2
2 ,(32)

where {
0 ≤ σ, d ≤ 4,
0 ≤ σ < 4/(d− 4), d > 4,

(33)

and Bσ,d is a constant which depends on d and σ. From relations (31) and (32) and
power conservation, we get that

||∆ψ||22 ≤ H(0) + κ||∆ψ||σd/22 ,(34)

where κ is a positive constant whose value is given by

κ =
Bσ,d

σ + 1
||ψ0||2+2σ−σd/2

2 .(35)

Therefore, conditions 2 and 3 imply that ||∆ψ||22 is globally bounded.
We recall that the NLS (13) is called focusing or defocusing when diffraction and

nonlinearity are working against or with each other, respectively. Since the Laplacian
is a negative operator, this corresponds to µ > 0 and to µ < 0, respectively. Since
the biharmonic operator is positive, this suggests that ε > 0 is the defocusing bihar-
monic NLS and ε < 0 is the focusing biharmonic NLS. Thus Theorem 4.2 shows that
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the critical exponent/dimension for singularity formation in the focusing biharmonic
NLS (21) is given by σd = 4.

The calculation of the optimal constant Bσ,d in inequality (32) is based on mini-
mization of the functional

JB [f ] :=
||∆f ||σd/22 ||f ||2+2σ−σd/2

2

||f ||2σ+22σ+2

(36)

over all functions 0 �≡ f ∈ H2. However, unlike the case of the NLS, where J [|f |] =
J [f ] for all f ∈ H1, one cannot assume that the minimizer of JB (if it exists) is
positive, because it is not true that JB [|f |] = JB [f ] for all f ∈ H2. In fact, if there is
a minimizer, it oscillates between positive and negative values (see (39)). Therefore,
one cannot follow [32] and use Steiner symmetrization to show that the minimizer is
radially symmetric and then use radial symmetry to prove the existence of a minimizer
in H2.

Let us assume that the minimum of JB [f ] over all functions 0 �≡ f ∈ H2 is
attained.5 In this case, following [32], if we calculate the variational derivative of
JB [f ], we find that, in the critical case when σd = 4 (see Appendix A),

1

Bσ,d
=

1

σ + 1
||RB ||2σ2 , σ = 4/d,

where RB is the ground-state solution of

−∆2RB −RB +R
8/d+1
B = 0,(37)

i.e., the solution of (37) with the smallest power. Therefore, we have the following
result.

Lemma 4.3. Let ε = −1 and σd = 4. Then the critical power for singularity
formation in the biharmonic NLS (21) is given by

NB
c = ||RB ||22,(38)

where RB is the ground-state solution of (37).
Let us also assume that the ground-state is radially symmetric, i.e., RB = RB(r).

WKB analysis of (37) shows that

RB ∼ ce−r/
√
2 cos(r/

√
2), r � 1.(39)

Therefore, unlike the ground-state of the NLS, the ground-state solution of (37) is
neither positive nor monotonic.

4.3. Numerical calculation of waveguides. When d = 1 and σ = 4, the
equation for RB(r) is given by

−R
(4)
B (r)−RB +R9B = 0(40)

subject to

R′
B(0) = R′′′

B (0) = RB(∞) = R′
B(∞) = 0.

5The question of whether the minimizer is unique is also open.
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0 5 16

0

0.48

1.15
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R
B
(r)
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B
’’(0)<0

 
R

B
’’(0)>0         

Fig. 1. The two nontrivial solutions of (40).

Table 1
Parameters of two numerical solutions of (40) which are shown in Figure 1. Top: Solid line.

Bottom: Dotted line.

RB(0) R′′
B(0) ||RB ||22 JB(RB)

1.141176 -0.743742 2.986793 15.91661
0.4830812 0.4829379 6.290556 313.1744

Our numerical calculations (see Appendix B) suggest that this nonlinear boundary-
value problem has two nontrivial solutions in H2 (see Figure 1). Both solutions are
indeed neither positive nor monotonically increasing. Inspection of the parameters
of these two solutions in Table 1 shows that the ground-state is the one which is
monotonically decreasing near the origin. Thus minf JB [f ] ≈ 15.96 and

B4,1 = 0.5973586.

This calculation shows that the critical power for singularity formation in (44) is

NB
c = ||RB ||22 = 2.986793.(41)

We note that, with less than 1% relative error, minf JB [f ] ≈ 50/π, B4,1 ≈ π/50, and
NB

c ≈ (250/π)1/4.
4.4. Biharmonic NLS on a bounded domain. Let us consider the bihar-

monic NLS on a smooth bounded domain Ω ∈ R
d with Dirichlet boundary conditions,

i.e., {
iψt(x, t) + ε∆2ψ + |ψ|2σψ = 0, t ≥ 0, x ∈ Ω,
ψ(x, t) = 0, t ≥ 0, x ∈ ∂Ω,

(42)

where ψ(x, 0) = ψ0(x) ∈ H2
0 (Ω). Then, as with the NLS on a bounded domain [10],

the sufficient conditions for global existence for (21) are also sufficient for (42).
Theorem 4.4. The following conditions are sufficient for global existence in (42):
1. ε > 0.
2. ε < 0, and σd < 4.
3. ε < 0, σd = 4, and ||ψ0||22 < NB

c , where NB
c is given by (38).

6For comparison, JB [e(−x2)] ≈ 16.55, JB [sech(x)] ≈ 18.4, and JB [sech1/2(x)] ≈ 22.3.
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In particular, the (lower bound for the) critical power for singularity formation in
the critical biharmonic NLS on bounded domains is the same as on R

d.
Proof. The proof of Theorem 4.4 is identical to that of Theorem 4.2, except

that one makes use of the following Gagliardo–Nirenberg inequality for functions
f ∈ H2

0 (Ω):

||f ||2σ+2L2σ+2(Ω) ≤ Bσ,d(Ω)||∆f ||σd/2L2(Ω)||f ||2+2σ−σd/2
L2(Ω) ,(43)

where σ is given by (33). Therefore, the only nontrivial point is to show that, in the
critical case when σd = 4,

NB
c (Ω) = NB

c (R
d), where NB

c (Ω) :=
σ + 1

Bσ,d(Ω)
.

In general, the optimal constant in a Sobolev inequality depends also on the domain.
Indeed, for general d and σ, it is only true that Bσ,d(Ω) ≤ Bσ,d(R

d), where Bσ,d(R
d)

are the optimal constants calculated in Appendix A. However, as in [10], one can use
the scaling property (28) to prove that, in the critical case when σd = 4, the optimal
constants are independent of the domain, i.e.,

B4/d,d(Ω) = B4/d,d(R
d).

4.5. Blowup. There are only two known methods for proving blowup in the
focusing NLS (1): the variance identity, which shows that solutions can blow up when
σd ≥ 2 and H(0) < 0 and the lens (pseudoconformal) transformation, which, in the
critical case when σd = 2, can be used to construct exact blowup solutions. We do
not know whether these results can be extended to the focusing biharmonic NLS.
Therefore, at present, we rely on numerical simulations to see that solutions of the
biharmonic NLS can blow up when σd ≥ 4.

In Figure 2A, we present numerical simulations of the critical biharmonic NLS
(σ = 4 and d = 1)

iψt(r, t)− ψrrrr + |ψ|8ψ = 0,(44)

with the initial conditions ψ0 = (1+δ)RB(r). The solution blows up for δ = 0.001 but
does not blow up for δ = −0.001. These simulations provide support to the conjecture
that the solution blows up for all δ > 0 but does not blow up for all δ < 0. If this
conjecture is correct, we can conclude the following:

1. The waveguide solutions

ψ(r, t) = eiλ
4tλ1/2RB(λr)

of the critical biharmonic NLS (44) are unstable.
2. The critical power (41) for singularity formation in the critical biharmonic
NLS (44) is sharp in the sense that there exist solutions with input power
slightly above the critical power which become singular.

When we solve the biharmonic NLS (44) with different initial profiles, we see that, as
in the case of the critical NLS [11], the actual critical power is strictly above NB

c yet
only a few percent above NB

c . For example, from Figures 2B–2D, we can conclude
that the critical power for Gaussian initial conditions ψ0 = c · exp(−r2) is between
1.003NB

c and 1.004NB
c ; for initial conditions ψ0 = c · sech(r), it is between 1.01NB

c
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Fig. 2. Calculation of lower bound (dots) and upper bound (solid line) for the critical power for
blowup in (44) for various input profiles. (A) ψ0 = cRB(r): Global existence when N(0) = 0.999Nc,
blowup when N(0) = 1.001Nc. (B) ψ0 = c exp(−r2): Global existence when N(0) = 1.003Nc,
blowup when N(0) = 1.004Nc. (C) ψ0 = c · sech(r): Global existence when N(0) = 1.01Nc, blowup
when N(0) = 1.02Nc. (D) ψ0 = c(1 + r4)−1: Global existence when N(0) = 1.005Nc, blowup when
N(0) = 1.01Nc.

and 1.02NB
c ; and for initial conditions ψ0 = c · (1+ r4)−1, it is between 1.005NB

c and
1.01NB

c .
In the case of the critical NLS, the asymptotic profile near the singularity is a

modulated ground-state. This feature is closely related to the unique characteristics of
critical self-focusing, such as power concentration [27] and sensitivity to small pertur-
bations [14, 15]. Our numerical simulations show that, in the case of the biharmonic
NLS (44), the solution also approaches a modulated ground-state near the singularity,
i.e.,

|ψ| ∼ L−1/2(t)RB(r/L(t)),(45)

where RB is the ground-state solution of (40) and the scaling function L(t) vanishes
at the blowup point. To show that, we plot L1/2(t)|ψ| as a function of r/L(t), where
L(t) is determined from L(t) = R2B(0)/|ψ(0, t)|2 (Figure 3). Although the initial
conditions are not close to RB , by the time the solution has focused to one-third of
its initial width, the profile near the singularity is already close to the asymptotic
profile (45).
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Fig. 3. Convergence of blowup solutions of the critical biharmonic NLS (44) to the asymptotic

profile (45). (A) ψ0 =
√

1.05NB
c · 8/(3√2π) · (1 + r4)−1. Here N(0) = 1.05NB

c , L(0) ≈ 0.69, and

L(t1 = 0.175) ≈ 0.375L(0). (B) ψ0 =

√
1.1NB

c

√
2/π ·e−r2 . Here N(0) = 1.1NB

c , L(0) ≈ 0.50, and

L(t1 = 0.0465) ≈ 0.464L(0).

5. High-dispersion NLS. In this section, we sketch the extension of some of
the results of section 4 to the NLS with qth-order dispersion

iψt(t,x) + ε∆qψ + |ψ|2σψ = 0, ψ(0,x) = ψ0(x), ε = ±1.(46)

Power and Hamiltonian conservation are given by (14) with

H =

{
ε||∇(∆mψ)||22 − 1

σ+1 ||ψ||2σ+22σ+2, q = 2m+ 1,

−ε||∆mψ||22 − 1
σ+1 ||ψ||2σ+22σ+2, q = 2m.

Alternatively, we can write the Hamiltonian as

H = (−1)q−1ε||(−∆)q/2ψ||22 −
1

σ + 1
||ψ||2σ+22σ+2,

where ||∆q/2ψ||22 =
∫ |k|q|ψ̂|2 dk.

Theorem 5.1. The following conditions are sufficient for global existence in (46):
1. ε(−1)q > 0.
2. ε(−1)q < 0, and σd < 2q.
3. ε(−1)q < 0, σd = 2q, and ||ψ0||22 < [(σ + 1)/Dσ,d,q]

1/σ, where Dσ,d,q is the
optimal constant in the inequality (47).

Proof. When ε(−1)q > 0, from Hamiltonian conservation we have a priori bounds
for ||∇(∆mψ)||22 when q is odd and for ||∆mψ||22 when q is even. Therefore, by standard
arguments, the solutions exist globally.

When ε(−1)q < 0, we can combine the Gagliardo–Nirenberg inequality

||f ||2σ+22σ+2 = Dσ,d,q||(−∆)q/2f ||σd/q2 ||f ||2σ+2−σd/q
2(47)

with power and Hamiltonian conservation to get that

||(−∆)q/2f ||22 ≤ H(0) +
1

σ + 1
Dσ,d,q||(−∆)q/2ψ||σd/q2 ||ψ0||2σ+2−σd/q

2 .

Therefore, conditions 2 and 3 guarantee that ||(−∆)q/2f ||22 is globally
bounded.
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Thus (46) is defocusing if ε(−1)q > 0 and focusing if ε(−1)q < 0. In the latter
case, the critical exponent/dimension for collapse is σd = 2q.

The optimal constants Dσ,d,q can be calculated as in Appendix A. In addition, in
critical dimension σd = 2q, these optimal constants are independent of the domain.

6. Mixed dispersion. We are now ready to analyze the NLS with both low-
order and high-order dispersion terms

iψt(t,x) + ∆ψ + |ψ|2σψ + ε∆2ψ = 0, ε = ±1.(48)

6.1. Rigorous analysis. We first note that power and Hamiltonian conserva-
tion in (48) are given by (14) with

H = −ε||∆ψ||22 + ||∇ψ||22 −
1

σ + 1
||ψ||2σ+22σ+2.(49)

We now show that the sufficient conditions for global existence in the biharmonic
NLS (21) are also sufficient for the mixed-dispersion NLS (48).

Theorem 6.1. The following conditions are sufficient for global existence in (48):
1. ε > 0.
2. ε < 0, and σd < 4.
3. ε < 0, σd = 4, and ||ψ0||22 < NB

c , where NB
c is given by (38).

Proof. We first note that the estimates of the linear operator associated with (48)
(see [6]) can be used to show that a priori bounds of ||ψ||H2 imply global existence
in (48).

When ε = 1, from power and Hamiltonian conservation and inequality (30), we
have that

||∆ψ||22 +
1

σ + 1
||ψ||2σ+22σ+2 = −H(0) + ||∇ψ||22 ≤ −H(0) + ||∆ψ||2||ψ0||2,

showing that ||∆ψ||2 is globally bounded. When ε = −1, from Hamiltonian conserva-
tion, we have that

||∆ψ||22 = H(0) +
1

σ + 1
||ψ||2σ+22σ+2 − ||∇ψ||22 ≤ H(0) +

1

σ + 1
||ψ||2σ+22σ+2.

Therefore, the proof is the same as that of Theorem 4.2.

6.2. Asymptotic analysis. The a priori estimates in Theorem 6.1 lead to suf-
ficient conditions for global existence for the mixed-dispersion NLS (3). These global
estimates do not provide information, however, on the dynamics of solutions. Such
information can be obtained when the biharmonic term is a small perturbation of the
NLS. For example, as shown by Karpman and Shagalov, when ε < 0 and σd < 2, the
small biharmonic term does not affect the stability of waveguide solutions.

We now consider the case where the biharmonic term is a small perturbation of
the critical NLS (σ = 1, d = 2)

iψt(x, y, t) + ∆ψ + ε∆2ψ + |ψ|2ψ = 0.(50)

The critical case is especially interesting for the following reason. Unlike the case
when σd < 2, solutions of (50) can collapse in the absence of the biharmonic term,
and the waveguides are unstable. However, in contrast with supercritical collapse,
critical collapse can be arrested by infinitesimally small perturbations. This differ-
ence between critical and supercritical collapse explains the results of Karpman and
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Shagalov that when σd = 2, waveguides become stable for any small ε < 0, whereas
when 2 < σd < 4, waveguides become stable only when (−ε) is sufficiently large [21].

We now analyze the effect of a small biharmonic term using modulation theory,
which is an asymptotic theory for analyzing the effects of small perturbations on
critical self-focusing [14, 15]. As we shall see, our results agree with those of Karpman
and Shagalov for (50). In addition, we show that the generic propagation dynamics
for ε < 0 is focusing-defocusing oscillations. We also analyze the case when ε > 0,
which was not considered by Karpman and Shagalov.

Modulation theory is based on the observation that, after some propagation has
taken place, the collapsing part of the beam rearranges itself as a modulated Towne-
sian, i.e., |ψ| ∼ L−1(t)R(r/L(t)), where R(r) is the Townes soliton (20). Therefore,
self-focusing dynamics is described by the modulation variable L(t), which is propor-
tional to beam-width and also to 1/(on-axis amplitude). In particular, L → 0 and
L → ∞ correspond to blowup and to complete defocusing, respectively.

Let us rewrite (50) as a perturbed NLS

iψt(x, y, t) + ∆ψ + |ψ|2ψ + εF [ψ] = 0,(51)

where F [ψ] := ∆2ψ. Modulation theory for (51) is based on the following assumptions:
1. The solution ψ is close to a modulated Townes soliton, i.e.,

ψ(r, t) ∼ ψR(r, t) :=
1

L(t)
R(ρ)eiS ,(52)

where R(ρ) is the Townes profile (20) and

ρ(r, t) :=
r

L(t)
, S(r, t) := τ(t) +

r2Lt(t)

4L(t)
, τt(t) :=

1

L2(t)
.(53)

2. Let β(t) = −L3Ltt. Then |β| � 1.
3. The perturbation term is small, i.e., |εF | � |∆ψ| and |εF | � |ψ|3.

Under these assumptions, self-focusing dynamics of the perturbed NLS (51) is de-
scribed, to leading order, by [14, Proposition 4.1]

Ltt(t) = − β

L3
, βt(t) =

ε

2M

(
f1,t − 4f2

)
,(54)

where

f1(t) =
L

π
Re

∫
F [ψR][R(ρ) + ρR′(ρ)]e−iS dxdy,

f2(t) =
1

2π
Im

∫
F [ψR]ψ

∗
R dxdy.

(55)

Application of modulation theory to (50) yields the following result.
Proposition 6.2. Self-focusing dynamics of the solution of (50) is given, to

leading order, by the reduced system

Ltt(t) = − β

L3
, βt(t) =

εCbiharNc

2M

(
1

L2

)
t

,(56)

where M = 1
4

∫∞
0

ρ2R2ρ dρ ≈ 0.55 and Cbihar ≈ 12.
Proof. See Appendix C.
Thus, in the case of the critical NLS, the small biharmonic perturbation leads

to the same generic reduced equations (and therefore has the same effect) as that of
nonlinear saturation, nonparaxiality, and vectorial effects [12, 13, 14, 26].
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Fig. 4. Dynamics of maxr |ψ(r, t)|2 for solutions of (50) with Gaussian initial conditions (58).
(A) N(0) = 2Nc. (B) N(0) = 1.25Nc.

6.2.1. Initial stage. We first consider the effect of the small biharmonic term
in (50) during the initial stage of propagation. If we integrate (56) once, we get that

β(t) =
εCbiharNc

2M

1

L2
+ β0, β0 = β(0)− εCbiharNc

2ML2(0)
.(57)

When ε > 0, we see from (57) that β increases as L → 0. Therefore, the biharmonic
perturbation accelerates self-focusing. Conversely, when ε < 0, β decreases as L → 0,
and the biharmonic perturbation slows down self-focusing. Thus a small biharmonic
term is initially focusing when ε > 0 and defocusing when ε < 0.

The last conclusion appears to contradict the global existence results in sec-
tion 6.1, which show that the biharmonic term is defocusing when ε > 0 and focusing
when ε < 0. There is no contradiction, however, because, as far as global existence is
concerned, the Laplacian is a lower-order term, and the competition is between the
biharmonic term and the nonlinearity. In contrast, in (50), the biharmonic term is
a lower-order term, and the competition is between diffraction and nonlinearity. In
that case, the biharmonic term is focusing when it acts with7 the nonlinearity and
vice versa. Thus, the role of the biharmonic term (focusing or defocusing) depends on
both its sign and whether it is small or large.

To confirm this prediction of modulation theory, we solve (50) with Gaussian
initial conditions

ψ(r, t = 0) = 2
√

N(0) e−r2

,(58)

whose input power is N(0). These initial conditions lead to blowup in the NLS (1)
when N(0) ≥ 1.018Nc [11]. In Figure 4 we see that, indeed, during the initial stage,
self-focusing is faster when ε > 0 compared with the NLS (2), which, in turn, is faster
than when ε < 0.

In order to analyze subsequent propagation, we separate the two cases ε < 0 and
ε > 0.

6.2.2. ε < 0. We can follow [9, 15] and integrate (56) to get

(yt)
2 = −4H0

My
(yM − y)(y − ym), y(t) := L2(t),(59)

7i.e., has the same sign in the Hamiltonian (49) as
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Fig. 5. Peak amplitude of solutions of (50), (58) with N(0) = 1.25Nc. (A) ε = −0.001, (B)
ε = −0.01, (C) ε = −0.1.

where

ym ≈ − Mβ0
−2H0

(
1−√

1 + 4δ

)
∼ −εNcCbihar

4Mβ0

[
1 +O(δ)

]
,

yM ≈ Mβ0
−2H0

(
1 +

√
1 + 4δ

)
∼ Mβ0

−H0

[
1 +O(δ)

]
,

(60)

δ = −εNcCbiharH0/4M
2β20 and H0 ≈ H(0).

We recall that a necessary condition for blowup in the NLS (1) is that the input
power be above critical, i.e., N(0) > Nc. In modulation theory variables, this con-
dition amounts to β(0) ≈ [N(0) − Nc]/M > 0 [14]. However, when β(0) > 0 and
ε < 0, we see from (59) and (60) that y(t) ≥ ym > 0. Therefore, blowup is arrested by
the high-order dispersion, and the minimal width is Lm ∼ L(0)

√|ε|NcCbihar/4Mβ0.
Even at this stage, the magnitude of the higher-order dispersion term in (50) is O(β)
smaller than that of the NLS terms ∆ψ and |ψ|2ψ, providing an a posteriori justifica-
tion for treating this term as a small perturbation. Therefore, when ε < 0, modulation
theory remains valid for a long time.

A sufficient condition for blowup in the unperturbed NLS (2) is H(0) < 0. How-
ever, from (59) and (60) we see that, if β0 > 0 and H(0) < 0, then ym ≤ y(t) ≤ yM ;
i.e., arrest of blowup is followed by focusing-defocusing oscillations. When nonadia-
batic radiation is added to (56), the oscillations decay with propagation [9].

The focusing-defocusing oscillations that are predicted by modulation theory can
be seen in numerical simulations of (50) with Gaussian initial conditions (58) with
power N(0) = 1.25Nc and N(0) = 2Nc (Figures 5 and 6, respectively). In both cases,
as (−ε) increases, the effect of the defocusing biharmonic term increases and the peak
height of the oscillations decreases, in agreement with (60). In particular, when |ε|
is sufficiently large, the biharmonic term dominates over diffraction, and the pulse
simply defocuses as its propagation is dominated by a defocusing biharmonic NLS.

6.2.3. ε > 0. We have already seen that, when ε > 0, the reduced system (56)
predicts that high-order perturbation accelerates self-focusing. In fact, it is easy to
see that if the solution of the reduced system (56) with ε = 0 (which corresponds to
the NLS (1)) blows up at time Tc (i.e., L(Tc) = 0), then the solution of the reduced
system (56) with ε > 0 blows up even faster (i.e., L(T ∗) = 0 and 0 < T ∗ < Tc). The
prediction that self-focusing is initially accelerated is confirmed numerically in Figure
4. However, if we run the simulations of Figure 4 for a longer time, we can see that



1454 GADI FIBICH, BOAZ ILAN, AND GEORGE PAPANICOLAOU

0 1.5
0

33

t

A

||ψ||∞

0 1.5
0

33

B

t

0 4
0

5

C

t

||ψ||∞

0 4
0

5

D

t

Fig. 6. Peak amplitude of solutions of (50), (58) with N(0) = 2Nc. (A) ε = −0.001, (B)
ε = −0.01, (C) ε = −0.1, (D) ε = −1.

0 0.2 1
0

21

t

||ψ||
∞

A

0 0.2 2
0

6.5

t

||ψ||
∞

B
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focusing is arrested, after which the solution simply diffracts to infinity8 (Figure 7).
In order to explain this disagreement, we recall that modulation theory is derived

under the assumption that |β| � 1. However, from (57) we see that β(t) → ∞ as
L → 0. Therefore, as the solution focuses, the validity of the assumption β � 1 breaks
down, and (57) no longer describes the dynamics of the PDE (50). Roughly speaking,
the validity of modulation theory breaks down when β ∼ 1, which corresponds to
L ∼ √

ε.
The breakdown of modulation theory can also be explained at the PDE level as

8We verified that the small oscillations during the defocusing stage are not a numerical artifact
repeating these simulations with different grid sizes and over larger computational domains.
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Fig. 8. Spatial profile of the solution of Figure 7B (solid line) and a modulated Townes profile
(dotted line).

follows. Modulation theory is derived under the assumption that the perturbation
term is small compared with the Laplacian. As L → 0, the biharmonic term increases
faster than the Laplacian. Therefore, roughly speaking, the validity of modulation
theory breaks down when ε∆2ψ becomes of comparable magnitude to ∆ψ, which
again corresponds to L ∼ √

ε.
To see the breakdown of modulation theory numerically, we plot in Figure 8 the

profile of the solution at various times with the corresponding modulated Townesian
profile. As can be seen, as the solution initially focuses (0 ≤ t ≤ 0.3), the inner part
of the solution approaches a Townesian profile, while the rest of the beam undergoes
strong radiation. For t ≥ 0.3, the solution simply diffracts to infinity and bears no
resemblance to the Townes profile. At this stage, ψ is no longer close to the Townes
profile, which is a key assumption of modulation theory.

We now analyze the dynamics after the validity of modulation theory breaks
down. We have already seen that, at this stage, ε∆2ψ is no longer a small term. As
the solution continues to focus, ε∆2ψ eventually becomes dominant over ∆ψ, and the
dynamics is captured, to leading order, by the defocusing biharmonic NLS

iψt + ε∆2ψ + |ψ|2ψ = 0, ε > 0.(61)

Since solutions of (61) simply diffract to infinity, the overall dynamics of solutions
of (50) with 0 < ε � 1 is a single focusing-defocusing cycle. Clearly, if ε is sufficiently
nonsmall, the dynamics is captured by (61) from the beginning. In that case, there
is no initial focusing, and the solution diffracts to infinity. The above predictions are
confirmed with simulations of (50) with Gaussian initial conditions (58) with power
N(0) = 1.25Nc and positive values of ε. Indeed, when ε is sufficiently small, there is a
single focusing-defocusing cycle, whereas for ε ≥ 0.1 there is no initial focusing stage,
and the solution simply defocuses (see Figure 9).

7. Fiber arrays revisited. Our rigorous global existence analysis of the mixed-
dispersion NLS (48) does not extend to the NLS (12) because of the anisotropy of its
biharmonic term. One can expect that the overall effect of εψxxxx (with ε > 0) would
be similar to that of the full biharmonic term; i.e., collapse is initially accelerated
but later arrested, resulting in a single focusing-defocusing cycle. In addition, the
solution should lose its radial symmetry. These predictions are confirmed numerically
in Figures 10 and 11. One can clearly see that the mechanism for the arrest of collapse
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√
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is strong radiation in the x direction due to the ψxxxx term.
9

Because of the anisotropy of (12), proving global existence rigorously requires a
more delicate analysis than for (48) and is, at present, an open problem. In [14], it
was shown that application of modulation theory to the fiber arrays NLS (12) leads
to the reduced equations

Ltt(t) = − β

L3
, βt(t) =

ε|C1|
2M

(
1

L2

)
t

,(62)

where |C1| ≈ 9Nc/2. Equations (62), which have the same form as (56), predict the
initial acceleration of self-focusing, but they cease to be a valid approximation once
εψxxxx becomes comparable to ψxx. Thus the addition of ψxxxx further destabilizes
the already unstable waveguide solutions. In contrast, analysis and numerical sim-
ulations of the semidiscrete NLS (10) show that it has stable waveguide solutions
[1, 2, 3, 4, 24, 33]. This inconsistency was resolved in [14] by keeping one more term

9In order to avoid reflections from the numerical boundaries, the computational domain should
be larger in the x direction. For example, in Figure 11, the computational domain is −40 ≤ x ≤ 40
and −12 ≤ y ≤ 12 (see section 8).
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Fig. 11. 3D view of the solution of (12) in Figure 10.

in the Taylor expansion in (11), in which case the equation for the propagation in
fiber arrays is

iψt(x, y, t) + ∆ψ + |ψ|2ψ + εψxxxx +
2

5
ε2ψxxxxxx = 0.(63)

Application of modulation theory to (63) shows that, indeed, the addition of ε2ψxxxxxx

stabilizes the waveguide solutions and leads to focusing-defocusing oscillations.

8. Radiation and numerical boundary conditions. In our simulations of
the (2+1)D equations (2) and (12), we use a finite-difference scheme on a rectangular
Cartesian grid with fourth-order accuracy in space. Time-stepping is implemented
using a fourth-order Runge–Kutta method. We impose zero-Dirichlet boundary con-
ditions at the outer boundaries. Because these boundary conditions are reflecting
rather than absorbing, special care is taken to assure that the computational domain
is sufficiently large so that reflections from the numerical boundaries have no effect.

Because the dispersion relation for the linear biharmonic Schrödinger equation is
ω = k4, rather than ω = k2 for the linear Schrödinger equation, the propagation of
the higher modes in the biharmonic NLS (21) and the mixed-dispersion NLS (48) is
much faster than in the NLS (2) (see Figure 12). Therefore, in simulations of (21)
and (48), we use substantially larger domains than in comparable NLS simulations.
For example, in Figure 7A, the computational domain is 0 ≤ r ≤ 200. For comparison,
a similar simulation of the NLS requires a much smaller computational domain, e.g.,
0 ≤ r ≤ 10.

9. Final remarks. In this paper, we present the first systematic study of the
biharmonic NLS (21), an equation which received little attention until now. We show
that some properties of the NLS (13) extend to the biharmonic NLS while others do
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Fig. 12. Contour plots of log10 |ψ(t, r)| for the solution of Figure 7B.

not. Naturally, there are various important questions on the biharmonic NLS that
are not addressed in this study such as a local existence theory, proof of existence
of a (radially symmetric?) minimizer for the functional JB (36), blowup rate in the
critical and supercritical cases σd ≥ 4, a modulation theory for the effect of small
perturbations in the critical case σd = 4, etc.

Our analysis of the mixed-dispersion NLS (3) leads to the conclusion that when
both diffraction and high-dispersion are present, their qualitative effect depends on
their relative magnitudes. Thus the sufficient conditions for global existence for the
biharmonic NLS are also sufficient for the mixed-dispersion NLS (3). In that case,
the biharmonic term is focusing when ε < 0 and defocusing when ε > 0. When, how-
ever, the biharmonic term is a small perturbation of the critical NLS, it is stabilizing
(defocusing) when ε < 0 and destabilizing (focusing) when ε > 0.

Our results for the mixed-dispersion NLS (3) do not extend directly to the NLS
with nonparaxial effects (7), because it includes additional small terms. The quintic
term in (7) has the same as the biharmonic one, i.e., stabilizing waveguides and arrest-
ing critical collapse [26]. Asymptotic and numerical results show that the remaining
terms do not change these effects [9, 12].

Appendix A. Optimal constants Bσ,d. Because the optimal constants Bσ,d

have not been calculated before, we present the calculation for a general d and σ and
not just for the case when σd = 4. We first note that

1

Bσ,d
= inf
0 �≡f∈H2

JB [f ].(64)

The Euler–Lagrange equation for the minimizer f of (36) can be derived from the
condition that

d

dε
JB [f + εg]|ε=0 = 0 for all g ∈ H2,

which gives

σd

2‖∆f‖22

∫
∆f∆g dx+

2 + 2σ − σd/2

‖f‖22

∫
fg dx

− 2σ + 2

‖f‖2σ+22σ+2

∫
f2σ+1g dx = 0.(65)
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Let fα,β(x) = βf(αx). Then it is easy to see that JB [f
α,β ] = JB [f ]. Let us choose α0

and β0 so that ‖fα0,β0‖2 = ‖∆fα0,β0‖2 = 1. Therefore, JB [fα0,β0 ] = 1/‖fα0,β0‖2σ+22σ+2.
To keep our notations clear, we denote from now on fα0,β0 by f . Equation (65) for
the minimizer f can be rewritten as∫

g

[
σd

4
∆2f+

(
1 +

σ

4
(4− d)

)
f − JB [f ](σ + 1)f

2σ+1

]
dx = 0.

Since this equation is valid for all g ∈ H2,

σd

4
∆2f+

(
1 +

σ

4
(4− d)

)
f − JB [f ](σ + 1)f

2σ+1 = 0.(66)

In order to “remove” the unknown constant JB [f ] from this equation, we note that

f(x) = ((σ + 1)JB [f ])
−1/2σ

RB,λ0

(√
4

σd
x

)
,(67)

where RB,λ is a solution of (25) and λ0 = 1 + σ(4 − d)/4 > 0. In addition, since
‖f‖2 = 1, it follows from (67) and (27) that

JB [f ] =
1

σ + 1

(
σd

4

)σd/2

‖RB,λ0‖2σ2 =
1

σ + 1

(
σd

4

)σd/2

λ
(4−σd)
0 ‖RB‖2σ2 ,(68)

where RB is a solution of (26). In general, (26) can have more than one solution.
However, in light of (68), the minimum of JB is attained at RB , the ground-state
solution of (26), and

min
0 �≡f∈H2

JB [f ] =
1

σ + 1

(
σd

4

)σd/2

λ
(4−σd)
0 ‖RB‖2σ2 .

We thus have the following result.
Lemma A.1. The optimal constant in the Gagliardo–Nirenberg inequality (32) is

given by

Bσ,d =

(
σd

4

)−σd/2

λ
(σd−4)
0

σ + 1

‖RB‖2σ2
,

where RB is the ground-state solution of (26).
In the critical case when σd = 4, this result simplifies as follows.
Lemma A.2. Let σ = 4/d. Then the optimal constant in the Gagliardo–Nirenberg

inequality (32) is given by

Bσ,d =
σ + 1

‖RB‖2σ2
,

where RB is the ground-state solution of (37).

Appendix B. Calculation of waveguides. Equation (40) is a nonlinear bound-
ary value problem. We solve it using a shooting method; i.e., we search for the
values of RB(0) and R′′

B(0) such that the solution will decay at infinity.
10 To sim-

plify the search for RB(0) and for R
′′
B(0), we multiply (40) by R′

B , use the identity

10Since RB(r) is even, all odd derivatives of RB vanish at r = 0.
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R
(4)
B R′

B = [R
(3)
B R′

B −R
′′2
B /2]′, integrate, and use the condition of decay at infinity to

get that

−R
(3)
B R′

B +
1

2
R

′′2
B − 1

2
R2B +

1

10
R10B = 0.

Substituting r = 0 gives

R′′
B(0) = ±

√
R2B(0)−

1

5
R10B (0).

Therefore, we need only to search for RB(0) and only in the domain 0 < RB(0) ≤
51/8 ≈ 1.22.

Appendix C. Proof of Proposition 6.2. In order to apply modulation theory
to (51), we first note from (51) and (55) that

f2 =
1

2π
Im

∫
ψ∗
R∆

2ψR dxdy
IBP
=

1

2π
Im

∫
|∆2ψR|2 dxdy = 0,(69)

where “IBP” stands for integration by parts. From (55) we also get that

f1(t) =
L

π
Re

∫
(∆2ψR)[R(ρ) + ρR′(ρ)]e−iS dxdy.(70)

The calculation of this integral can be considerably simplified by using the following
observation.

Lemma C.1. Let |β| � 1. Then

∆2ψR(r/L) = L−1eiS(∆2R(r/L))
[
1 +O(|β|1/2)

]
.(71)

Proof. We first obtain from (52) that

ψR,x = L−1(Rx + iRSx)e
iS .(72)

In addition, from (53), we have that

Sx =
1

2
ρLt cos θ, Rx =

R′ cos θ
L

.(73)

Because β = L3Ltt � 1, we have that LLt = O(|β|1/2) � 1. Therefore, from (72)
and (73), we obtain that

ψR,x = L−1eiSRx

[
1 +O(|β|1/2)

]
.

Repeated application of this argument gives (71).
Using (71) and (20) in (70) and integrating by parts, we get that

f1(t) ∼ 1

π

∫
(∆2R(r/L))[R(ρ) + ρR′(ρ)] dxdy

IBP
=

1

π

∫
(∆R(r/L))∆(ρR)′ dxdy

(20)
=

2

L2

∫
(R−R3)

(
∂ρρ +

1

ρ
∂ρ

)
(ρR)′ ρdρ.

(74)
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Integration by parts shows that∫
(R−R3)

(
∂ρρ +

1

ρ
∂ρ

)
(ρR)′ ρdρ

= −
∫

R
′2 ρdρ+ 3

∫
(R2R

′2 − ρRR
′3) ρdρ.(75)

It is well known that ∫
R

′2
ρdρ = Nc.(76)

In [12], it is shown that

3

∫
R2R

′2 ρdρ = I6 − 2Nc, 3

∫
ρRR

′3 ρdρ = 3Nc − I6,(77)

where I6 :=
∫
R6 ρdρ. Substituting (75), (76), and (77) in (74), we obtain that

f1(t) ∼ CbiharNc

L2
, Cbihar =

4I6
Nc

− 12.

Numerical evaluation of I6 shows that it can be approximated with I6 ≈ 6Nc with
about 1% relative accuracy [12]. Therefore, we arrive at

f1(t) ∼ −12Nc

L2
.(78)

Equation (56) follows from (54), (69), and (78).
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