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Self-focusing of elliptic beams: an example of the
failure of the aberrationless approximation
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We show that the increase in critical power for elliptic input beams is only 40% of what had been previously
estimated based on the aberrationless approximation. We also find a theoretical upper bound for the critical
power, above which elliptic beams always collapse. If the power of an elliptic beam is above critical, the beam
self-focuses and undergoes partial beam blowup, during which the collapsing part of the beam approaches a
circular Townesian profile. As a result, during further propagation additional small mechanisms, which are
neglected in the derivation of the nonlinear Schrödinger equation (NLS) from Maxwell’s equations, can have
large effects, which are the same as in the case of circular beams. Our simulations show that most predictions
for elliptic beams based on the aberrationless approximation are either quantitatively inaccurate or simply
wrong. This failure of the aberrationless approximation is related to its inability to capture neither the par-
tial beam collapse nor the subsequent delicate balance between the Kerr nonlinearity and diffraction. We
present an alternative two-stage approach and use it to analyze the effect of nonlinear saturation, nonparaxi-
ality, and time dispersion on the propagation of elliptic beams. The results of the two-stage approach are
found to be in good agreement with NLS simulations. © 2000 Optical Society of America
[S0740-3224(00)02009-9]
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1. INTRODUCTION
The propagation of intense laser beams in a medium with
Kerr nonlinearity is one of the classic problems in nonlin-
ear optics. The effect of ellipticity of the input beam on
beam propagation was considered by Giuliano et al.1 To
analyze the nonlinear Schrödinger equation (NLS) for
beam propagation they used the aberrationless approxi-
mation, i.e., the assumption that the beam maintains a
Gaussian shape during propagation:
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where a* (z) and b* (z) are the beam widths in the x and
y directions, respectively. Using this assumption, they
reduced the NLS to a system of two coupled ordinary-
differential equations for a* (z) and b* (z). The reduced
system was used to predict that the critical power of col-
limated beams will increase with ellipticity e as

Pcr~e ! 5 h~e !Pcircular , h~e ! 5
e 1 1/e

2
, (2)

where e 5 b* (0)/a* (0) and Pcircular is the critical power
of the corresponding circular beam. This result was later
rediscovered in Ref. 2, where it was pointed out that the
increase in critical power can be used to transfer more
power through a Kerr medium. In subsequent studies
the aberrationless approximation was used in analysis of
the propagation of elliptic beams in the presence of addi-
tional effects, such as nonlinear saturation, time disper-
sion, and graded refractive index.3–5 In none of those
studies,1–5 however, were the predictions of the aberra-
tionless approximation compared with simulations of the
original NLS.
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Application of the aberrationless approximation in NLS
analysis goes back to the early days of self-focusing
research6 and was most likely motivated by the case of
linear propagation, in which input Gaussian beams main-
tain a Gaussian profile during propagation. Over the
years it became clear that predictions based on the origi-
nal aberrationless paraxial-approximation method of Ref.
6 can be quantitatively inaccurate as well as qualitatively
incorrect.7–9 As a result, various modifications were sug-
gested, such as use of a variational approach (the varia-
tional method or the collective coordinate approach)9 and
replacement of the Gaussian ansatz with super-
Gaussians10 or with a sech profile.9 These methods are
sometimes called the aberrationless paraxial approxima-
tion, the variational method, and the collective coordinate
approach. All these methods, however, are based on the
aberrationless approximation, i.e., the assumption that
the beam maintains the same shape during propagation.

Gross and Manassah11 studied the validity of the aber-
rationless approximation for elliptic beams, both for the
aberrationless paraxial approximation method and for
the variational method. Their study pointed to signifi-
cant differences between quantitative predictions of the
aberrationless approximation and actual results obtained
in NLS simulations. In addition, they found out that el-
liptic beams are transformed into circular beams with
propagation, a finding that is in qualitative disagreement
with predictions of the aberrationless approximation.

In this study we use numerical simulations of the
NLS in (2 1 1) dimensions to study further the propaga-
tion of elliptic beams in Kerr media. In addition, we pro-
vide what we believe is the first comparison of predictions
of the aberrationless approximation for elliptic beams
propagating in Kerr media in the presence of additional
2000 Optical Society of America
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small mechanisms, with simulations of the corresponding
perturbed NLS. Our results show that most predictions
of the aberrationless approximation are either quantita-
tively inaccurate or qualitatively incorrect. We identify
the inherent weaknesses of the aberrationless approxima-
tion assumption and present an alternative two-stage
method for analyzing the propagation of elliptic beams.
Although most of this paper is dedicated to elliptic beams,
our criticism of the aberrationless approximation as well
as of the alternative two-stage method applies also for cir-
cular beams.

The paper is organized as follows: In Section 2 we cal-
culate numerically the critical power for elliptic beams.
Our calculations show that the increase in critical power
is much smaller than that predicted by the aberrationless
approximation.2 In Section 3 we show that this discrep-
ancy is related to the fact that the aberrationless approxi-
mation assumes whole-beam collapse, whereas self-
focusing beams undergo partial-beam collapse. In
Section 4 we show that the profile of the collapsing part of
the beam is close to a modulated Townesian. As a result,
there is a delicate balance between diffraction and nonlin-
earity that the aberrationless approximation is too crude
to capture. In Section 5 we present a two-stage approach
to the propagation of elliptic beams and use it to analyze
the effect of nonlinear saturation, nonparaxiality, and
time dispersion. Unlike those of the aberrationless ap-
proximation, the predictions of the two-stage method are
found to be in good agreement with NLS simulations.

2. CRITICAL POWER
The nonlinear optical process of self-focusing sets an up-
per limit on the amount of laser power that can be propa-
gated through a Kerr medium (i.e., n 5 n0 1 n2I, where
n0 is the linear refractive index, n2 is the nonlinear re-
fractive index, and I is the intensity). For power above
this threshold the beam undergoes catastrophic collapse,
with the peak intensity becoming sufficiently high to
damage the material. Although the exact value of the
critical power depends on the spatial distribution of the
input beam, the critical power for beams with circular in-
put profiles is typically not more than a few percent above
the theoretical lower bound value Pcr

lb of Eq. (7) below.12

We now consider the critical power of elliptic beams.
For a scalar monochromatic field E(x, y, z, t)
5 A(x, y, z)exp(ik0 z 2 v0 t), the propagation of a laser
beam in a Kerr medium is governed by

2ik0 Az 1 D'A 1 4e0ck0
2n2uAu2A 5 0,

D' 5 ]xx 1 ]yy ,

where k0 5 v0n0 /c is the wave number and

A~x, y, 0 !5 A0~A~x/a* !2 1 ~ y/b* !2!

is the amplitude of the input elliptic beam. We change to
nondimensional variables:

x̃ 5 x/r0 , ỹ 5 y/r0 , z̃ 5 z/2Ldf ,

c ~ x̃, ỹ, z̃ ! 5 2k0r0Ace0n2A~x, y, z !,
where r0 5 Aa* (0)b* (0) and Ldf 5 k0r0
2 is the diffrac-

tion length. The input power of the beam is given by

P0 5 2e0n0c E uA0u2dxdy 5
l2

8p2n0n2
N0 ,

N0 5 E u c0u2dx̃dỹ. (3)

Dropping the tildes yields the NLS for the nondimen-
sional envelope c :

icz~x, y, z ! 1 D'c 1 u cu2c 5 0,

c ~x, y, 0 ! 5 c0~x, y !, (4)

with the elliptic input profile

c0~x, y ! 5 cf~A~x/a0!2 1 ~ y/b0!2!, (5)

where a0 5 a* (0)/r0 , b0 5 b* (0)/r0 , and c is a constant.
Thus the normalized input beam widths satisfy a0b0
5 1.

Let us briefly review the rigorous theory on blowup
(singularity formation) in the NLS [Eq. (4)]. For more
details, see Refs. 13 and 14. The NLS has waveguide so-
lutions of the form

c 5 exp~ia2z !lR~ar !, r 5 Ax2 1 y2, (6)

where a is a positive constant and R(r), the so-called
Townes soliton, is the circular ground-state solution of

S ]2
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]r DR 2 R 1 R3 5 0,

R8~0 ! 5 0, R~`! 5 0.

Solutions of NLS do not blow up if their initial power N0
is below the critical power Ncr , which is equal to the
power of the Townes soliton15:

Ncr 5 2p E R2rdr ' 2p 3 1.8623.

Solutions of NLS do blow up, however, if their initial
Hamiltonian is negative (see Section 3 below):

H0 5 E u¹c0u2dx dy 2 1/2E u c0u4dx dy , 0.

Therefore, blow up occurs for the elliptic input profile [Eq.
(5)] when

c2 . S 1

a2 1
1

b2D E u¹f u2dxdy

E uf u4dxdy

or

E u c0~x, y !u2dxdy . h~e !G@ f #,

where

G@ f # 5

2E uf u2dxdy E u¹f u2dxdy

E uf u4dxdy

.
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We recall that minf (x, y)G@ f # 5 Ncr is attained for
f 5 R(r), whereas for all other profiles G@ f # is higher.15

In addition, h(e) attains its minimum at e 5 1 (circular
profile). Therefore the critical power for the elliptic input
profile [Eq. (5)] satisfies

Ncr < Ncr@cf ~A~x/a0!2 1 ~ y/b0!2!# < h~e !G@ f #.

Reexpressing the critical power in physical units yields
the lower bound for the critical power12:

Pcr
lb 5

l2

8p2n0n2
Ncr , (7)

and the upper bound

Pcr
ub 5

l2

8p2n0n2
h~e !G@ f #. (8)

The upper bound [Eq. (8)] implies that for any input pro-
file f and any level of ellipticity e there is always a critical
power above which collapse will occur.

To calculate the critical power of elliptic beams, we
solve numerically the NLS in (211) dimensions [Eq. (4)]
with the elliptic initial conditions of Eq. (5). Although
blowup is defined as beam intensity becoming infinite in a
finite distance, in the nonlinear optics context a more re-
alistic definition is the point when the beam power ex-
ceeds the material’s breakdown threshold. In our simu-
lations we define collapse as occurring when beam
intensity reaches 103 times the input peak intensity. We

Fig. 1. Normalized on-axis intensity as a function of axial dis-
tance for Gaussian beams c0 5 c exp@2(x/e)2 2 y2# with initial el-
lipticity e 5 1.3. Blowup occurs when c 5 2A0.7872 (i.e., P0

5 1.015Pcircular ; solid curve). When c 5 2A0.795Nc (i.e., P0
5 1.005Pcircular ; dotted curve), no blowup occurs.
vary the input power until we find a lower power that
does not lead to collapse and an upper power that does
lead to collapse, whose difference is below 0.01Pcircular .
For example, for input Gaussian beams with ellipticity
e 5 1.3, blowup occurs when P0 5 1.015Pcircular ,
whereas, for P0 5 1.005Pcircular , collapse is arrested (Fig.
1). Therefore Pcr(1.3) 5 1.01Pcircular for Gaussian beams.
We remark that in these calculations one has to be careful
to set the numerical boundaries sufficiently far from the
origin to avoid reflections from the boundaries.

Because Pcr(e) 5 Pcr(1/e), in Fig. 2 we plot the critical
power as a function of h(e) rather than as a function of e
(Ref. 17) for collimated Gaussian, super-Gaussian, and
Townesian input beams (the corresponding values of
Pcircular are 1.02Pcr

lb, 1.09Pcr
lb, and Pcr

lb, respectively12).
Our simulations show that, for all three input profiles, the
critical power is well approximated18 by the relation

Pcr~e ! ' @0.4h~e ! 1 0.6#Pcircular . (9)

From relation (9) we see that the relative increase in criti-
cal power is 0.4@h(e) 2 1# rather than the predicted
@h(e) 2 1# of Eq. (2). Thus the increase in critical power
that is due to ellipticity is only 40% of what was previ-
ously predicted based on the aberrationless approxima-
tion.

We recall that the critical power for singularity forma-
tion in the NLS is independent of input beam
focusing.13,16 Therefore, in theory, the value of Pcr(e) is
independent of the input focusing angle. In practice,
however, the critical power for a beam to exceed the ma-
terial’s breakdown threshold does decrease with input
beam focusing. However, this decrease is typically so
small that, even under this definition, relation (9) can be
applied for both collimated and focused beams.

3. PARTIAL-BEAM BLOWUP
To explain the disagreement of relation (2) with the nu-
merical results of relation (9) we first observe that the
theoretical upper bound Pcr

ub of Eq. (8) for the critical
power does satisfy Eq. (2). This observation has a simple
explanation, as both Eqs. (2) and (8) are derived from the
condition that H0 5 0. We thus see that Pcr(e) in Eq. (2)
is the aberrationless approximation for the theoretical up-
per bound Pcr

ub rather than for the actual critical power.
Fig. 2. The increase in critical power with initial ellipticity (dotted curves with circles) is well approximated by relation (9) (solid
curves). Input beam profiles are A, Gaussian; B, super-Gaussian; C, Townesian.
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Hence the disagreement of Eq. (2) and relation (9) reflects
the fact that the upper bound Pcr

lb is a poor predictor of
the actual critical power. The reason for this has to do
with the condition that H0 5 0 and not with the effect of
ellipticity. Indeed, numerical simulations with circular
beams show that the condition H0 5 0 leads to a signifi-
cant overestimate of the actual critical power. For ex-
ample, for circular beams with a super-Gaussian profile
c0 5 c exp(2r4), the difference between the actual critical
power and the upper bound derived from the condition
H0 5 0 is 40%.12

To understand the limitations of the condition H0 5 0
we recall that solutions of the NLS satisfy the variance
identity19

Vzz~z ! 5 8H0 , V 5 E r2u cu2dxdy.

Therefore V(z) 5 4H0z2 1 Vz(0)z 1 V(0). As a result,
when H0 , 0, the function V(z) vanishes at some
z* . 0. For example, in the case of collimated beams,
V(z) 5 4H0 z2 1 V(0) and

V~z* ! 5 0, z* 5 @V0 /~24H0!#1/2. (10)

Unfortunately, Eq. (10) has often been misinterpreted to
imply the following:

1, the blowup point is given by z* ;
2, at the blowup point the whole beam collapses toward

its center;
3, there is a qualitative difference between collapse

when H0 , 0 (whole-beam collapse) and when H0 . 0
(partial-beam collapse); and

4, the condition H0 5 0 provides a good estimate of the
critical power.

These wrong conclusions are reinforced when the aber-
rationless approximation assumption is used because
then V(z) 5 L2(z)V(0) and the variance identity reduces
to (L2)zz(z) 5 8H0 /V0 5 (L2)zz(0). For example, in the
case of elliptic beams the aberrationless approximation
for the variance identity is (a2 1 b2)zz(z) 5 (a2

1 b2)zz(0) [see Eq. (3) of Ref. 1 and Eq. (5) of Ref. 2].
Therefore, under the aberrationless approximation, the
condition H0 5 0 appears to be both necessary and suffi-
cient for blowup, and blowup [i.e., L(z) 5 0 or a2(z)
1 b2(z) 5 0] appears to occur when V(z) 5 0 (i.e.,
whole-beam collapse).

The logical failure of the above conclusions occurs be-
cause the variance identity holds only so long as the beam
does not blow up. Therefore the correct conclusion from
the variance identity is that, when H0 , 0, the beam
blows up at some finite distance zc such that zc < z* . In
fact, NLS simulations show that blowup always occurs at
zc , z* (see, e.g., Fig. 3). This observation follows, for
example, from the well-known Dawes–Marburger for-
mula for the location of the blowup point of Gaussian
beams, c0 5 c exp(2r2/2) (Refs. 7 and 20):

zc 5 0.184@~ p1/2 2 0.852!2 2 0.0219# 2 1/2,

p 5 N0 /Ncr , (11)

which has 10% relative accuracy, as well as from the more
accurate formula21 [Eq. (3.43) of Ref. 13]
zc 5 0.317~ p 2 1 !20.6346, (12)

which has a relative accuracy of 1%. Figure 3 shows that
the actual value of zc is significantly smaller than the
variance identity prediction for the location of the blowup
point of Gaussian beams:

z* 5 S 1

pNc/2 2 1 D 1/2

(13)

Fig. 3. Location of blowup as predicted by the variance identity
[Eq. (13), dashed curve] and by the aberrationless approximation
[Eq. (14), dashed-dotted curve] is significantly larger than the ac-
tual value (circles). Also shown are the curve-fitted Eqs. (11)
(dotted curve) and (12) (solid curve).

Fig. 4. Dynamics of Vi for the circular input beam c (r, 0)
5 2A1.527Ncr exp(2r2) (i.e., P0 5 1.5Pcircular , H0 5 22.4).
Here Ni 5 0.75Ncr , Ncr , 1.25Ncr , N0 ' 1.52Ncr , and zc
' 0.23.
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as well as from the aberrationless approximation predic-
tion

z* 5 S 1

p 2 1 D 1/2

. (14)

Inasmuch as zc , z* , the variance identity implies
that at the blowup point zc the variance is positive rather
than zero. Therefore we can conclude that collapse is al-
ways a partial-beam process rather than a whole-beam
process, regardless of whether H0 is positive or negative.
The inability of the aberrationless approximation to cap-
ture the partial-beam collapse is related to many of its
misleading predictions [such as those that follow Eq.
(10)].

One can only speculate as to why these misinterpreta-
tion of the consequences of the variance identity have per-
sisted for so many years. One reason may be that, in the
case of circular Gaussian input beams, the difference be-
tween the actual critical power and the power derived
from the condition H0 5 0 is only 5%.12 Another reason
is that the aberrationless approximation was considered
to be an approximation rather than an assumption.

Although such has not been rigorously proved, NLS
analysis and simulations strongly suggest that the power
collapsing toward the beam axis is always equal to Ncr .
To compare this property for circular and elliptic beams,
let us define Vi(z) to be the variance of the part of the
beam with power Ni .22 Thus whole-beam collapse corre-

Fig. 5. Same as Fig. 4 but for the elliptic input beam c (x, y)
5 2A1.19Ncr exp@2(x/1.3)2 2 y2# [i.e., P0 5 1.5Pcr(1.3), H0
5 21.8] and zc ' 0.30.
sponds to Vi(zc) 5 0 for all Ni . In contrast, if the
amount of power going into the beam center is equal to
Ncr , then

Vi~zc! 5 0, N i < Ncr ,

Vi~zc! . 0, Ni . Ncr . (15)

In particular, V(zc) 5 V0(zc) . 0. The results in Figs. 4
and 5 are clearly in agreement with expressions (15),
showing that blowup for both circular and elliptic input
beams (even with a negative Hamiltonian) is partial, with
power Ncr . Additional numerical and analytic support
for the fact that the collapsing power is always equal to
Ncr is given in Section 4.

4. PARTIAL-BEAM COLLAPSE WITH A
CIRCULAR TOWNESIAN PROFILE
To follow the dynamics of a self-focusing elliptic beam, we
would like to recover the normalized beam widths a(z)
and b(z) from NLS simulations. Under the assumption
of aberrationless propagation, i.e.,

u cu2 5
1

a~z !b~z !
FF x

a~z !
,

y

b~z !
G ,

we can do this by using

a~z ! 5 F c*

E u~ u cu2!xudxdyG
1/2

b~z ! 5 F c*

E u~ u cu2!yudxdyG 1/2

, (16)

where

c* 5 F E u~ u c0u2!xudxdy G1/2F E u~ u c0u2!yudxdy G1/2

.

In the case of partial-beam collapse the whole-beam ap-
proach of Eqs. (16) should be modified, because a and b
are the widths of the collapsing part of the beam whereas
the calculation in Eqs. (16) is over the entire beam cross
section. Therefore a more accurate way to recover a and
b is with

a~z ! 5 F c*

E V~z !
u~ u cu2!xudxdyG

1/2

,

b~z ! 5 F c*

E V~z !
u~ u cu2!yudxdyG 1/2

, (17)

where

c* 5 F E
V0

u~ u c0u2!xudxdyG1/2F E
V0

u~ u c0u2!yudxdyG1/2

.

The integration domain V(z) is chosen such that it corre-
sponds to the collapsing part of the beam. For example,
in our simulations we use V(z) 5 L̃(z)V0 , where L̃(z)
5 u c0(0, 0)/c (0, 0, z)u and V0 5 $(x, y)u24.5 < x, y
< 4.5%.
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In Figs. 6 and 7 we plot the evolution of a/b as a func-
tion of normalized on-axis intensity and axial distance,
respectively. First we note the difference between the
values of a/b recovered with Eqs. (16) and (17), which
provides further support that collapse is partial and not
whole beam. As the collapsing power is always equal to
Nc , at higher input powers the noncollapsing part of the
beam has more power, explaining why the difference be-
tween Eqs. (16) and (17) increases as the input power is
raised. Because we are interested in the widths of the
collapsing part of the beam, from now on we recover a and
b by using Eqs. (17).

At all input powers, near the blowup point the collaps-
ing part of the beam approaches a circular profile,
whereas at higher input powers it takes more focusing
(and requires getting closer to the blowup point) to ap-

Fig. 6. Beam astigmatism as a function of normalized on-axis
intensity, according to Eqs. (16) (dotted curves) and (17) (solid
curves). Here e 5 1.3, c0 5 2AcPcr(0) exp@2(x/e)2 2 y2#, and
Pcr(e) 5 1.92Pcircular . A, c 5 0.839, P0 5 1.1Pcr(e); B, c
5 1.144, P0 5 1.5Pcr(e); C, c 5 1.525, P0 5 2Pcr(e); D, c
5 3.05, P0 5 4Pcr(e).

Fig. 7. Beam astigmatism as a function of axial distance for the
correspondingly labeled parts of Fig. 6.
proach a circular profile. We note that convergence to a
circular profile was also observed in Refs. 11 and 23 and is
consistent with self-focusing experiments with elliptic in-
put beams, where it was found that ‘‘the damaged region
was found to possess a circular rather than an elliptic
cross section.’’ 1 Note that under the whole-beam defini-
tion [Eqs. (16)] a/b does not approach 1 (Figs. 6C and 6D),
indicating that the noncollapsing part of the beam does
not become circular.

Although this has not been rigorously proved, there is a
substantial body of evidence that near the blowup point
the collapsing part of the beam approaches a circular pro-
file that is a modulated Townes soliton, i.e., u cu
; L21(z)R(r/L(z)), where L(z) is the normalized beam
width. Our simulations confirm this asymptotic-profile
property for input elliptic beams. For example, in Fig. 8
we see that, after focusing by a factor of 5, the beam pro-
file in the vicinity of the z axis is already close to a modu-
lated Townes profile. This asymptotic-profile property is
consistent with expressions (15), and explains why the

Fig. 8. Convergence of the collapsing part of an elliptic input
beam to the circular Townesian profile L21(z)(Rr/L(z)). Here
c0 5 2A1.1646Ncr exp@2(3x/4)2 2 y2# with P0 5 1.5Pcr(4/3) and
H0 5 21.75. Spatial coordinates: x (dashed curves), y (dotted
curves), and r (solid curves). A, z 5 0.22, L 5 0.52; B, z
5 0.28, L 5 0.32; C, z 5 0.31, L 5 0.165.
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collapsing power is always equal to Ncr . The existence
of an asymptotic profile also explains the lines with slope
'21 observed on a log-log scale in Figs. 4B and 5B when
Ni < Ncr , because then

Vi ; L2~z !Vi~0 ! ; Vi~0 !R2~0 !u c ~z, 0 !u22.

We note that Fig. 8 also shows that the noncollapsing
part of the beam does not become circular.

Because the Townes profile looks quite similar to a
Gaussian profile it might seem that the aberrationless ap-
proximation can be a reasonable assumption for the ad-
vanced stages of the propagation. Such is not the case,
however, because the Townesian profile has the unique
property that diffraction and focusing Kerr nonlinearity
completely balance each other. As a result, as the profile
gets closer to a Townesian the propagation dynamics de-
pends on the small difference between diffraction and
nonlinearity, and small additional mechanisms that were
neglected in the derivation of NLS from Maxwell equa-
tions, such as nonparaxiality,24 time-dispersion,25 and
nonlinear saturation,26 can have a large effect. These
additional mechanisms can have a large effect even when
they are small compared with the diffraction and nonlin-
ear terms, precisely because they compete against the
small difference between Kerr nonlinearity and diffrac-
tion, rather than separately against diffraction and
nonlinearity.13 The inability of the aberrationless ap-
proximation to capture this delicate balance is its second
major weakness.

5. TWO-STAGE APPROACH: AN
ALTERNATIVE TO THE ABERRATIONLESS
APPROXIMATION
As we have seen, the failure of the aberrationless approxi-
mation results from its inability to model the partial
blowup feature during the early stage of the propagation
and from the subsequent delicate balance between Kerr
nonlinearity and diffraction. Based on the results of the
previous sections we can, however, propose an alternative
two-stage approach to analyzing the propagation of ellip-
tic beams:
First stage: The first stage of the propagation lasts un-
til the beam gets close to the focal point27 and moderate
focusing has taken place. During this stage the collaps-
ing part of the beam changes from elliptic to a circular
Townes profile. Small additional mechanisms, which
were neglected in the derivation of the NLS from Maxwell
equations, have a relatively small effect during this stage.
Therefore this part of the propagation can be modeled by
the unperturbed NLS [Eq. (4)].

Second stage: The second stage of the propagation oc-
curs when the beam in near and beyond the blowup point.
During this stage the focused part of the beam is close to
a circular Townes soliton. As a result, small additional
mechanisms can have large effects on the beam propaga-
tion, and these effects are the same as in the case of cir-
cular beams. Therefore these effects can be analyzed by
use of modulation theory13,28 which is based on perturba-
tions about the Townes profile and provides a systematic
method for deriving reduced equations that are indepen-
dent of the transverse (x, y) coordinates.

We have already seen that the two-stage approach de-
scribes self-focusing of elliptic beams governed by the
NLS model [Eq. (4)]. We now show how this approach
can be used to analyze the propagation of elliptic beams
in the presence of additional mechanisms.

A. Saturating Nonlinearity
The propagation of elliptic beams in a medium with satu-
rable nonlinearity can be modeled by

icz~x, y, z ! 1 D'c 1
u c u2

1 1 eu c u2 c 5 0, 0 , e ! 1.

(18)

In Ref. 3 it was concluded, based on the aberrationless ap-
proximation, that in this case ‘‘stationary self-trapping is
forbidden,’’ in contrast to the case of elliptic beams in a
medium with a Kerr nonlinearity for which, based on the
aberrationless approximation, it was predicted that the
‘‘self-trapping regime [will be given by] H0 5 0.’’ 2 In
fact, both predictions are wrong. There are no self-
trapping solutions of the nonsaturated NLS [Eq. (4)],
except for the waveguide solutions [Eqs. (6)], which have
precisely the ciritical power and are known to be
Fig. 9. Beam widths in the x direction @a(z), dotted curves] and the y direction @b(z), dashed curves] for the elliptic beam c0(x, y)
5 2A1.91Ncr exp@2(x/1.3)2 2 y2#, with P0 5 1.5Pcr(1.3), propagating in media with saturating-nonlinearity parameter e 5 0.01. The
equations that govern propagation are A, Eq. (18); B, Eq. (19); C, Eq. (20).
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unstable.15 All other solutions with power above critical
undergo collapse, whereas those with power below critical
go through a single focusing–defocusing event (see Fig. 1).
In contrast, elliptic beams propagating in a a medium
with saturable nonlinearity can undergo almost periodic
focusing–defocusing oscillations (Fig. 9A), which are
reminiscent of the propagation pattern observed in cw
self-trapping experiments.29

The results in Fig. 9A agree with the two-stage ap-
proach to self-focusing of elliptic beams. The first stage
lasts approximately one cycle, during which the collaps-
ing part of the beam becomes circular. Therefore, fur-
ther propagation can be analyzed by application of modu-
lation theory to Eq. (18). Doing so results in a reduced
equation, which shows that beams with input power mod-
erately above Ncr undergo focusing–defocusing oscil-
lations,13,28 as indeed we can observe from Fig. 9A.

Another prediction of modulation theory (see proposi-
tion 5.1 in Ref. 13) is that the leading-order effect of satu-
ration is the same, regardless of whether one models
saturation by using Eq. (18):

icz~x, y, z ! 1 D'c 1
1 2 exp~22eu cu2!

2e
c 5 0 (19)

or

icz~x, y, z ! 1 D'c 1 u c u2c 2 eu c u4c 5 0. (20)

Therefore, based on the two-stage approach, we can pre-
dict that elliptic beams propagating in a medium with
saturating nonlinearities given by relation (19) or Eq. (20)
will also become circular and undergo focusing–
defocusing cycles, just as in the case of Eq. (18). The
simulation results in Figs. 9B and 9C confirm this predic-
tion.

B. Nonparaxiality
The NLS as the model equation for laser beam propaga-
tion through a Kerr medium is derived from the scalar
Helmholtz equation for the electric field E:

S D' 1
]2

]z2DE~x, y, z ! 1 k2E 5 0,

k2 5 k0
2S 1 1

2n2

n0
uEu2D .

To make this derivation, one introduces the slowly vary-
ing envelope form E 5 c exp(ik0z) for the electric field to
get the nondimensional form of the Helmholtz equation:

eczz 1 icz 1 D'c 1 u cu2c 5 0, e 5 S l

4pr0
D2

. (21)

Because beam wavelength l is much smaller than initial
beam radius r0 , it follows that 0 , e ! 1. This suggests
that eczz can be neglected, in which case Eq. (21) reduces
to the NLS [Eq. (4)].

Neglecting eczz is called the paraxial approximation or
the parabolic approximation. This approximation is
valid for rays that propagate almost parallel to the z axis,
but it breaks down near the focal point. Feit and Fleck,30

and later Akhmediev and Soto-Crespo31,32 showed nu-
merically that nonparaxiality arrests the collapse of cir-
cular beams, leading instead to focusing–defocusing
cycles. Fibich24 used modulation theory to show analyti-
cally that nonparaxiality arrests self-focusing and leads
to focusing–defocusing oscillations and that, throughout
the beam propagation, nonparaxiality remains small com-
pared with diffraction and the Kerr nonlinearity.

Based on the two-stage approach, we expect elliptic in-
put beams that are propagating in the presence of small
nonparaxiality first to undergo partial beam collapse,
during which they approach a circular Townesian profile,
and then to go through focusing–defocusing cycles. Un-
fortunately, at present it is not possible to compare this
prediction with simulations of Eq. (21), because Eq. (21) is
a nonlinear boundary-value problem that includes back-
scattering. Therefore we adopt the standard approach to
solving Eq. (21) numerically, which is to replace that
equation with an evolution equation for the forward-
propagation wave. Mathematically, this amounts to re-
placing the eczz term with terms that involve only spatial
derivatives (see, e.g., Ref. 33). The resultant modified
equation for propagation in the presence of weak non-
paraxiality, which differs from Eq. (21) only in O(e2)
terms, is

icz 1 D'c 1 u cu2c 5 e@D'
2 c 1 4u cu2D'c 1 4u“'cu2c

1 2~“'c!2c* 1 u cu4c#. (22)

In Fig. 10 we present simulations of Eq. (22) that confirm
the prediction of the two-stage approach: The beam un-
dergoes focusing–defocusing oscillations, and the inner
part of the beam becomes circular after two cycles.

C. Normal Time Dispersion
The propagation of ultrashort elliptic pulses in a medium
with normal (positive) group-velocity dispersion is mod-
eled by

icz~x, y, z, t ! 1 D'c 2
Ldf kvv

T2 c tt 1 u cu2c 5 0,

where T is the pulse duration and kvv . 0 is the normal
group-velocity dispersion. In Ref. 4 it was concluded,
based on the aberrationless approximation, that ‘‘for posi-
tive group-velocity dispersion and only moderate astigma-
tism, there is a minimum pulse duration below which the
spatial collapse is completely prevented at any input

Fig. 10. Same as Fig. 9 but for propagation in the presence of
nonparaxial effects [Eq. (22) with e 5 0.0025].
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power.’’ Our approach predicts a different outcome, as
follows: During the first stage of the propagation the
pulse self-focuses while it approaches a circular Towne-
sian profile. From this point, further propagation is
similar to that of circular beams. We recall that the criti-
cal power for circular ultrashort pulses increases with
normal group-velocity dispersion but that this increase is
finite rather than infinite.34 In addition, based on modu-
lation theory, it was predicted in Ref. 35 that the collapse
of ultrashort pulses whose power is moderately above this
critical power will involve asymmetric pulse splitting, a
prediction that was confirmed both experimentally and
numerically in Refs. 36 and 37. Therefore we predict
that sufficiently intense38 ultrashort elliptic pulses will
also collapse while they are undergoing asymmetric pulse
splitting. Whether this prediction or the one in Ref. 4 is
correct, however, can be determined only either by com-
parison with simulations of the time-dispersive NLS or by
experiments.

6. FINAL REMARK
The aberrationless approximation leads to a significant
simplification in the analysis of the propagation of laser
beams in Kerr media. Unfortunately, the results of this
study show that, in the case of elliptic beams, application
of the aberrationless approximation can lead to highly in-
accurate quantitative predictions as well as to qualitative
predictions that are simply wrong. As we have seen, this
failure of the aberrationless approximation is related to
its inability to capture the partial blowup process during
the first stage of the propagation and the subsequent deli-
cate balance between diffraction and nonlinearity, which
gives rise to the large effect of small mechanisms. As
these deficiencies of the aberrationless approximation are
not related to beam ellipticity, our criticism of the aberra-
tionless approximation applies also to the case of circular
beams. Obviously, not all predictions of the aberration-
less approximation are incorrect or inaccurate. However,
a priori (i.e., before comparison with NLS simulations), it
is not possible to know which predictions will turn out to
be correct and which will not. In addition, the choice of
profile function in the aberrationless approximation
seems to be ad hoc and to vary with application. There-
fore it is also not clear, a priori, which profile function
should be used.

The above discussion suggests that, ideally, one should
always compare predictions based on the aberrationless
approximation with numerical simulations of the NLS.
In some cases, comparison with numerical simulations is
not easy. For example, in the case of ultrashort elliptic
beams (Subsection 5.C), such a comparison requires solv-
ing the NLS in (3 1 1) dimensions. In that case, one
may consider a comparison with experiments (as was
done in Ref. 39). However, in the case of elliptic cw
beams, and even more so in the case of cw circular beams,
there is no real difficulty in solving the NLS numerically.

In this paper we have presented a two-stage approach
to analyzing the propagation of elliptic beams. Unlike
for the aberrationless approximation, predictions based
on the two-stage approach seem to be in good agreement
with NLS simulations. This approach applies also to cir-
cular beams, the only difference being that, during the
first stage, the collapsing part of the beam approaches the
Townes profile while maintaining a circular profile. The
validity of this approach for circular beams is manifested
by the success of predictions of modulation theory for
beam propagation in the presence of various small
mechanisms.13
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