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Abstract

We show that the ground-state solitary waves otfitecal nonlinear Schrodinger equatiopyi(z, r)+Ay+V (er) |y |4y =
0 in dimensiord > 2 are orbitally stable as — 0 if V(0)V®(0) < G4[V"(0)]?, whereG, is a constant that depends only
ond.
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1. Introduction

The critical nonlinear Schrodinger equation
(1,0 + Ay + [y Yy =0, ¥(0,% =vox), xeR? (1.1)

models the propagation of intense laser beams in a homogeneous bulk medium with a Kerr nonlinearity. It is well
known that solutions of1.1) can become singular in finite time |iﬂfo|§ > Ng, Where|wo|§ =/ |¢o|§dx is the

input beam power, andc, the critical power for singularity formation, is a constant which depends onlyion

The critical powerN, thus, sets an upper limit on the amounpof/ver(hp@) that can be propagated with a single
beam. The critical NL§1.1) admits solitary wavegr = €*' R, (x) whose power is exactly equal to the critical
power, i.e.) Rw|§ = N [17]. These solitary waves are, however, strongly unstable. As a result, it is not possible to
realize stable high-power propagation in a homogeneous bulk media.

A few years ago, it was suggested that stable high-power propagation can be achieved in plasma by sending :
preliminary laser beam that creates a channel with a reduced electron density, and thus reduces the nonlinearit
inside the channdl,8]. Under these conditions, beam propagation can be modeled, in the simplest case, by the
inhomogeneous nonlinear Schrédinger equation

iV + Ay + V(e [Y?y =0, (1.2)
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whereV (ex) is proportional to the electron density anis a small parameter. It is possible to set the experimental
system so that both the potentidland the initial condition/g are radially symmetric, i.e} = V(r) andyo =
Yo(r), wherer = |X|. In this case, the equation fgris

32 d-19
ar2 ror
Existence and nonexistence of blowup solutiong1.oP) were studied by Merle for certain types of inhomo-
geneitied10]. These results imply that a necessary condition for blowup in the radially symmetri¢lcase that

|1p0|§ > N¢/V?/2(0). For comparison, in the absence of the preliminary b&ae V (co) and the critical power

is Nc/ V4/2(c0). We thus see that it is possible to raise the critical power for blowup by lowering the magnitude of

the nonlinearity near the origin. In particular, whe&ii0) = 0 all solutions of(1.3) exist globally.
The solitary waves ofl.3) are given by = €' ¢, (r), whereg,, is the solution of

Ao (r) — 0y + V(er)gd T =0, ¢ (0) =0, ¢,(c0) =0. (1.9

iV (1) + Ay + V(en|yYiy =0, A= (1.3)

The following theorem gives the existence of positive (ground-state) solitary waves.

Theorem 1. Let0O < V(r) < C and letw > 0. Then

(1) there exists a positive solution (i.4).
(2) the positive solution is unique wheris small enough

SeeSection Jor the proof of part (1) an&ection 4for the proof of part (2).

We note that existence of solutions(@f4)was proved if15] in the framework of a more general equation. Our
proof is, however, considerably simpler because of radial symmetry. The method used in the existence proof was
originally due to Strausgl4] and to Berestycki and Lior4].

When the inhomogeneity is induced by the preliminary laser bé&), increases monotonically froi(0) to
V(00). In that case,

Ne Ne
Vd/2(0) = Vd/2(c0) T

Therefore, it is reasonable to assume that when © « 1, the power of the solitary waves will be below the
critical power for blowupNc/ V4/2(0). In that case, one can expect the solitary waves to be stable, because solitary
waves in NLS equations are typically unstable if and only if a small perturbation can lead to singularity formation.
Surprisingly, however, our results show that monotonicity’d§ not the correct condition for stability.

Throughout this paper, we make the following assumption¥ on

. 2 ; 2
€||Ln0|¢w|2 = ||_)moo|¢w|2- (1.5)

V>0, V eC*N Lo, WWO@) | <ce fori=1,23 4, (1.6)

whereV () is theith derivative ofV . We note that these assumptions are consistent with the electron density induced
by the preliminary beam.
The natural definition of stability of solitary waves is the oneddital stability.

Definition. Let ¢, be a solution of1.4). We say thaty (r, 1) = €' ¢,,(r) is an orbitally stable solution dfL..3)if
Ve > 0,38 > Osuchthatforany (r, 0) € HX(R") which satisfies inf|y (r, 0) — € p,,| 1 < 8, the corresponding
solutiony (r, r) of (1.3) satisfies

supigfh/?(r, 1) — €,y < €.
t
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Our stability proof followd5,7,9,12] We define

d(w) = E(¢p) + 00 (¢0), (1.7)
where
1 2 1 4/d+2 1 2
E(u) = §/|VM| —4/d+2/V(er)|u| ) Q(M)=§/|M| . (1.8)

We recall that the generic condition for stability of solitary waved’igéw) > 0 [13,18] We have the following
lemma.

Lemmal. Let(1.6)hold. Thend”(w) > O for e sufficiently small if and only if

VOVP0) < GV (O, (1.9)
where

Ga=6" " f{r2R4/?+r1£341/5+22R4/d+1)} (1.10)
is a constant which depends only onRir) is the ground-statesolution of

AR — R+ RY¥1 =0, R'(0) = R(c0) =0, (1.12)

andLo= A — 1+ (4/d + 1)RY.
We now state our main theorem which shows that the conditiég®) > 0 indeed implies stability.

Theorem 2. Let(1.6)and(1.9)hold, letw > Oand letg,, be the ground-state solution (f.4). Themyr = €’ ¢, (r)
is an orbitally stable solution aftL.3)for ¢ sufficiently small

This result suggests that it may be possible to produce stable high-power beam propagation in plasma by sendin
a preliminary beam.

In order to motivate the conditiofi.9), we use perturbation analysis $®ction 2o calculate the power af,,.
Let ¢, (r; €) be the solution ofl1.4)and leté = ¢/,/w. Then, we have, a&— 0,

1 s .4@2+d) [riRYd+2
|RI5 —

2 _
IPol2 = Vara g T 28V ()2

(Ga[V" ()% = V(O VP (0) + oe%} : (1.12)

whereR is the ground-state solution (f.11)andG is defined in(1.10) Thus, the stability conditio(iL.9)is also a
necessary and sufficient condition for the power of the solitary waves to be below the critical| ggyer</2(0).
Indeed, from(1.8), (4.6) and (5.4)ve have that!’(w) = (1/2)|¢w|§. Therefore, the stability conditiod’ (w) > 0
is satisfied if and only if¢w|§ is monotonically increasing i@ hence monotonically decreasingen

The failure of the reasoning leading to the ‘conclusion’ that monotonicity whplies stability of solitary waves
thus lies in the assumption that monotonicityyoimplies thaﬂ¢w|§ is monotonically decreasing in Indeed, when
V is monotonic ther¥’”(0) > 0. In principle, this term would have given(€¥) contributions to|¢>w|§, whereas
V@ (0) would only give Gé*) contributions. However, because thé®) terms due td/”(0) completely balance
each other, stability is determined by batH(0) andV ¥ (0).

1 That is, the nontrivial solution with the smallest norm.
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We calculated numerically that in the physically relevant ease2,
/ r*R* dr ~ 1.4359 / r’R3L7Y(r?°R3r dr ~ —0.2001

Therefore G» ~ —1.6723. SinceG» < 0, a necessary condition for stability is tHat? (0) be negative!
We recall that the NLS

iV (%) + Ay + Y[y =0, ¥(0,X) = Yo(x), XxeRY, (1.13)

is called subcritical, critical, and supercritical whed < 2,0d = 2, andod > 2, respectively. It is well known
that solutions of the NLS can become singular only in the critical and in the supercritical cases, and that the solitary
wave solutions are stable only in the subcritical case. Indeed, there is a general ‘rule’ that solitary waves of NLS
equations are stable if and only if the equation does not admit blowup solutions. We see, thus, that when condition
(1.9)is satisfiedEq. (1.3)is an exception to this ‘rule’ as it admits blowup solutions yet its waveguides are 3table.
Finally, we note that inhomogeneity of the nonlinearity is unlikely to affect the orbital stability of subcritical
solitary waves of(1.13) or the strong instability of supercritical ongédndeed,d”(w) > 0, d"(w) = 0 and
d"(w) < 0, when the NLS1.13)is subcritical, critical and supercritical, respectively. Our calculation (see proof
of Lemma 7 shows that the effect of inhomogeneity @f\w) is O(¢*). Therefore, stability can be affected by the
inhomogeneity only in the critical case.
The paper is organized as follows Saction 2we derivg(1.12)which motivates our rigorous results.Jections 3
and 4 we prove existence and some propertigsgorem } of solitary wave solutionsSection 5gives the proof of
the stability resultsTheorem 2.

2. Perturbation analysis

In this section, we derivfl.12)by a perturbation analysis.
Let ¢, = [w/ V (0)]%/4S(/wr). Then, the equation fof is

AS(rie) — S+ %s;‘/d“ =0. (2.1)
Whenér « 1, we can expand

‘;((éor)) ~ 1+ ae%? 4 be*r* + 0@), (2.2)
wherea = V”(0)/2V (0) andb = V®(0)/24V (0). We look for a solution of2.1) of the form

S = R +aé’g(r) + é*h(r) + O(5). (2.3)
Therefore,

" = R™ + e?amR' g + &4 <mR"1h + (”21 ) asz2g2> + 0",

and the equations fak, g, andh are(1.11)

4
Ag—g+ (E + 1) RYdg = —p2RYdH, (24)

2 Another exception to this rule is the critical NLS on bounded domg@hs
3 Strong instability of supercritical solitary waves was proveglli.
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and

Ah —h+ (3 + 1) RYp = —ag?r? (3 + 1> RY4g — praRY/d+1,
respectively. If we multiply(2.1) by R and integrate by parts we get that

—/VRVS—/RS+/VR5‘W+1=0.

If we substitutg(2.2) and (2.3)n this equation and collect terms, theéd®) and Qé%) equations are

4
—/VRVg —/Rg+ (Z +1)/R4/"+1g = —/r2R4/d+2,

and
4
—/VRVh—/Rh—i— <E+l>/R4/d+lh
4 4
_ §+1 a2/R4/ng_a2 (E+1>fr2R4/d+1g—b/r4R4/d+2.
2

If we multiply (1.11)by S and integrate by parts we get that

—/VRVS—/RS+/SFW+1=0.

If we substitutg(2.3)in this equation and collect terms, thga®) and Qé*) equations are

—/VRVg—/Rg+fR4/d+lg =0

and

—/VRVh—/Rh+/R4/d+1h =0.

From(4.2)we have that

2
_ S2 _c Vs4/d+2
/ Yot Y ya+2

/ V' (ér)S¥4+2 = 0.

If we substitutg(2.2) and (2.3)n this equation and collect terms, th¢d®) and Qé%) equations are

2 4 2
> [ Ro= 2p4/a+2 | (2 5\ g4+l / 2 pa/d+2
/ 9=314 [’ VA 81T @ar2] " ’

and

2th+a2/g2:i—2;i/br4R4/d+2+4—;2da2/r2R4/d+1g

+ gR‘W“h + dz (3 + 1) a® / RY4g2,

(2.5)

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

respectively. If we subtra¢®.7)from (2.5), we get that 4d [ R¥4+1g = — [ r2R%4+2_Substitution intq(2.10)

gives that

/Rg:O.

(2.12)
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If we subtract(2.8) from (2.6), we get that
4 4 4
Z/ aa+yy, — [ 7+ 1 az/ R4 g2 _ 42 (3 n 1) /r2R4/d+lg —bfr4R4/d+2.
2

Substitution intq(2.11)gives that
d
2/Rh~|— aZ/g2= 2+—db/r4R4/d+2+a2/r2R4/d+lg. (2.13)

Therefore, combining

/32 _ / R? + 2a€2/ Rg+ &* [2/ Rh+ azfgz} +0(e9),

with (2.12) and (2.13yives that
[ d
/52=/R2+é4 ZJr_db/r4R4/d+2+a2/r2R4/d+1g} + 0.

Therefore,

d V@0 [V”(0)]2
|Rel5 =[V(0)] IR|5 + € 25dawo ) " +—4V2(0) r g | +0

Sinceg = £L71(—r2R*4+1), relation(1.12)follows.

3. Existence of aground state

In order to proveTheorem 1 we introduce the minimization problem

M) = inf I, (3.1)

u€Hpggig)

subject to constraink («) = 1, where

I, (u) =/w|u|2+|Vu|2, K (u) =/V(er)|u(r)|4/d+2. (3.2)

Lemma2. LetO < V(r) < C and letw > 0. Then the minimization probler(8.1) has a positive minimizer

Proof. Letu, be a minimizing sequence, i.€,(u,) — M(w) andK (u,) = 1. We can assume thaj is positive.
Sinceluy| g1 < C uniformly inn, we have thai,, <~ u. weakly inHt and thud,, (ue) < iMool (y) = M(w).
Because the embeddirfgl ;. (R?) — L*¥?*2 is compact we have that, — u, strongly inL#+2. Since, in
addition, V is bounded,

1
IKYP(ue) — KYP )| = IVYPucly — IVYPunl | < VP e — un)l, < VI lue — unl, — O,

wherep = 4/d + 2. ThereforeK (u.) = 1 andu, is a positive minimizer of3.1). O

Proof of (1) in Theorem 1. For clarity we write from now orp instead ofp,,, except where we want to emphasize
the parametric dependence ®n
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The Euler—Lagrange equation for the minimize®fl) is
Aue — wue + )\V(er)|u€|4/d"'1 =0,
wherel is a Lagrange multiplier. Let
¢ = 1Y%,

Then,¢ is a positive solution of1.4).

4. Several technical lemmas

(3.3)

(3.4)

In this section, we prove several technical results that are usgddtion 5and also part (2) ofheorem 1We

first note that standard calculations show that solutior{4 @) satisfy the following identities:

—/|¢’|2—w/|¢|2+fV<er>¢4/d+2=o,

which are usually referred to as Pohozaev identities.

Lemma 3. Letu,. be the minimizer of3.1) and lety be given by(3.4). Then
Io(¢) = K(¢) = [M ()],

In addition whenw = 1then

d/2+1
plyn = luel/EH

Proof. The identityl,(¢) = K(¢) is simply(4.1). SinceK (u.) = 1, it follows from (3.4) that
L= [K@Y @D,

Therefore,
M (@) = loe) = 272 1,$) = [K@)] Y Z V1, (8) = [1 @)Y @D,

which leads td4.3). Eq. (4.4)follows from (4.3)sincel1(-) = | - |y1.

Let
¢ (r) = R (Voor).
Then, by(1.4),

.
AR.(r) — R+ V <eﬁ) R4+ — 0,

Lemmad4. Let P, = dR./dw. Then

r 4/d+1 d _3p / (. 4/d+2
Vie— )R P.=—= v — )R .
/ <€ Vo ) ¢ I Vo)

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)
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Proof. Differentiating(4.7)with respect tav gives
4 r 1 _
AP, — P + (3 + 1) 1% (eﬁ) R¥p, — Sew 3/2py  RYAHL — 0, (4.9)

If we multiply (4.9)by R, and integrate, we have

- / VR, VP, — / R P + (3 + 1) /VF{W“& — %ew—3/2/rv’R;‘/d+2 =0.
If we multiply (4.7)by P, and integrate, we have
—/VRGVPG —/RGPE +/VF{W+1P€ =0.
The difference of the last two equations gi{és3). O

Let us define the linearized operatty on Hédial(Rd ) by

4 r
Le=A—-1+(-+41)V [ e—)RY. 4.10
=a-ar(Gaa)v () (10
We can rewritg4.9)as
Le(Pe) = 3ew 32V RYITL, (4.11)

It is well known that Ke(Lo) is empty (see e.g11]) and thath1 is bounded. Therefore, there exists a constant
Co > 0 such that

[Lov|2 > Colvl2. (4.12)

Lemmab. LetR, be the solution of4.7), then

(@) |Rely1 < C uniformly ase — O.
; r 2 2
(b) Jino‘v <eﬁ) R%(r) — V(O)R§(r) N =0. (4.13)
(c) Letw > O and lete be sufficiently small. Thefi, is invertible andﬁ;l is bounded
(d) LetR. be apositive solution @#.7). Then there exist positive constaagsco and L such thaR, (r) < coe™"/ V2
forall 0 < e <e¢pandforallr > L.

Proof. Without loss of generality, we can set= 1. From(4.4) and (4.6)t follows that |R¢|y1 = |@elpy1 =
lue |‘gf+1. Therefore, it is sufficient to show thif. | ;1 is uniformly bounded. To see that, ket = acug, Whereug
is the minimizer of the minimization proble(@.1)whene = 0 and, is chosen so that (v.) = 1. Therefore, for
the minimizeru, of (3.1)we have thatue| 1 = I1(ue) < I1(ve) = ocf]l(uo). Since lim_ o = 1 it follows that
lue| 1 is uniformly bounded. That completes the proof of (a).

To prove (b), we note from (1) and standard elliptic regularity th¢8ywe have thaR, — Ry weakly in H1
and strongly irle)C, whereRg is the unique solution g#4.7)for ¢ = 0. From the radial lemma of Strauss, we have
that

[Re| <

= m|R€|H1 for r > 1 (414)

Again, in light of (a), we only need to pro\é.13)on a bounded domain which is now obvious.
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Remark. Our stability proof is limited to the case > 2 because we rely on the uniform decay estinfat&4)in
the proof of (b).

We now proceed to prove (c). Singg = Lo + (4/d + 1)(V(e(r/@))R§ — V(O)Rg), we have that

(Lev, Lev) = {(Lov, Lov) + <L’ov, ( ) <V <e%) RE2 — V(O)Rg) v>
#{(G+2) (v (75) e - vioms) o)
+ (f + 1> <<V (eL> R? — V(O)R2> v (V <6L> R? — V(O)R2> v>
d \/5 € 0 ’ \/5 € 0
> |L’ov|§—2(g 1) <e : )Rf— V(O)R3
2
-(7+1) (%)
Using(4.12) we have that

4 4 2
ILev[3 > v [cg - (2 (2 + 1) Co+ (6—1 + 1) ) ’V (e%) R? — V(O)R3 J .

Therefore, in light of (b), whea is sufficiently small there exist§; > 0 such that£5v|§ > C1|v|§, from which
(c) follows.
Next we prove (d)Eq. (4.7)can be rewritten as

AR, = (1 1% (@> R‘W) Re.

FromLemma 5 inequality(4.14)and(1.6)it follows that there existo, L > 0 such that for all O< € < ¢g and for
allr > L,

()

Letv.(r) = co e /V2 _ R¢, wherecq is sufficiently large such that (L) > 0. Then,

% [vl2|Lov]2

oo

RZ—V(OR3| |v|5.

o0

S

NI =

Ave = cone/V2 _ AR = cone/V2 — R.(1— VRY) < Lege V2 — LR, = v,

Therefore, from the maximum principle for exterior domdi8f we have that, > 0 for all » > L, and thus that
Re(r) < co e’/¥2, This completes the proof of the lemma.

Proof of (2) in Theorem 1. We prove uniqueness of positive solutions §4r7), which is equivalent t¢1.4) up to
a simple rescaling.
Let Ry, Ry, be two solutions of4.7), i.e.,

r 4/d+1 .
ARi—Ri—i-V(e— R’ =0, i=12
° ﬂ) ‘e
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We then have,

where we denote

r

)W(Rlé, R2,),
and
4d¥1 ,4/d+1
RYM — R = (Ry, — Ro)W(Ry,., Ro).

Since the positive solutioRg of (4.7)is unique[6], then, as ir,emma §b) Ry, R, — Rg uniformly. Therefore,

4/d
0

4
W(R1, R2,) — (E—l-l)R ase — 0.

As inLemma ¥c), we can show that is invertible andﬁ;“v@ > C|v|%, for e small enough. By4.15) this implies
R1. = Ry, for e small enough. O

5. Orbital stability

Lemma6. d(w) is differentiable and strictly increasing fas > 0.

Proof. Using(1.7), (1.8) and (3.2)we have that

1

d(w) = Elw(@ - 4/d——|—2K(¢)' (5.1)

Therefore, by(4.3)
1 w €r 4

dw = 5y ko = 50 [V () & 62
Differentiatingd (w) with respect tav and using4.8) gives that

oy 1 / jav2 4 _1/2 / ' hjd+2

d'@ =7 VRYT2 4 2@ % [ VRS . (5.3)

Therefore, from4.2) we have that

d (w) = O(Re) > 0. O (5.4)

Lemma?7. Let(1.6)hold. Thend”(w) > 0 for ¢ sufficiently small if and only if

d+2 [(r2Ry eyt 2Ry )
4/d+2
/Ry

v@»0) <6 [V"(0)].
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Proof. If we differentiate(5.3) with respect tav, use(4.8) and (4.11and expand’’(er//w) andV" (er//w) in
a Taylor series i, we get that

d d d (4
2+ d)d" () = gew—S/Zf v/ RY/4+2 _ gezw_zfrzv//Rf/d“Lz +2 (3 + 2) ew_l/Z/ rv/RY4+1p,

=d§ew_3/2/rV/R?/d+2_ dgeza)_zfrzv”Rf/”H‘Z

4 \d

d 2+d
=3 [2—4 / V@RI 21

d (2
L4 (_ " 1) 202 / rV RYAHL L (v gAY

4

x / 2V ORI L5 2V ORI + F (v, Re))} :

Here F(Ve, R.) is the remainder from the Taylor expansion. Uslrgmma %c) and (d), it is easy to show that
F(Ve, R;) — 0 ase — 0. Therefore, conditioil.9)implies thatd” (w) > 0 for e sufficiently small. O

Proof of Lemma 1. This follows fromLemma 7and the rescaling = V%/4(0)Ry. O

Lemma8. Letd”(w) > 0. Then there exist$ = §(w) > 0 such that for all® with | — w| < §,

d(@) > d(@) +d (@)@ — o) + 3d"(@)|6 — vl

Proof. Taylor expansion. O
Given a solutionp of (1.4), we can define the set
Uos = {u € Hgga(R). |u— |y < 5).
Sinced (w) is monotonic Lemma §, we can define the'! map
() Uys — RT
by

ww)=d ! (Z%ik(u)> . (5.5)

Lemma9. Letd”(w) > 0for somew > 0. Then there exists = §(w) > 0 such that for allu € U, s,

E@w) — E@) + o[Qw) — 0(¢)] = d"(@)|ow) — of?,
wherew (1) is defined in(5.5).

Proof. From(1.8) and (3.2)we have that

1
Ew) +oW)Qu) = Elw(u)(u) - K (u). (5.6)

1
4/d + 2
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In addition, from(5.2) and (5.5)we have thak (1) = (d + 2)d(w(u)) = K(¢ww))- Sincedy ) is a minimizer
of I, (1) subject to the constrairk (1) = K (¢pow)), We have thatll, ) (u) > I,w) (dww)). Therefore, using
Lemma 8and(5.1),

1
E(W) +o)Q) > Ela)(u)(d)w(u)) - K(¢w(u))

4/d 42
1
=d(wW)) > dw) +d (@) (ou) — ) + Zd”(w)lw(u) —wl’.
From(5.4), we have thatl’(w) = Q(¢). Therefore, usingl.7),

E@) + o) Q) > E(@) + w0(@) + Q(P)low) — o] + 1d" (@) |ow) — o?
=E(¢) + o) Q(¢) + 1d" (w)|o W) — v, O

Proof of Theorem 2. Assume that/ is‘ unstable. From the definition of stabili§ > 0 and initial datay (0)
Uy, (1/k) Such that sup o infg |y (1) — €961 > 8, whereys () is the solution of refeq13 with initial datgay (0).
Let #, be the first time at which

inf (1) — €7l 2 = . (5.7)
Let us denoted, (r) = Y (1x). SinceE (v (t)) and Q (¥ (¢)) are conserved inand continuous iny, then

|E(Pr) — E(@)| = |E(x(0)) — E(¢)| — 0,

1Q(Pk) — Q@) =10k (0) — Q(P)| - 0, ask — oo. (5.8)
Let s be small enough so thaemma 9applies. We then have that
E(Py) — E(¢) + aox[Q(Pr) — Q(P)] > %d//(w”wk — 0l o= o(®). (5.9)

From(5.7), we have thai®y|,1 < C uniformly. Sincew () is a continuous mapyy is uniformly bounded irk.
Therefore, by(5.8), ask — oo the left-hand side of5.9) goes to zero. Sincd” (w) > 0 (Lemma ), this implies
that limy_, cowx = w. Hence, using5.2) and (5.5)

klim K (&) = klim (d+ 2)d(w) = (d + 2)d(w) = K(¢). (5.10)
Using this and5.6) and (5.8)we have that
d
1o (Pr) = 2[E(Pr) + 0 Q(Pp)] + d—+2K(<1>k)

d
=2[E(¢) + 0 Q(P)] + d_JrzK@k) + 2[E(Pi) — E(@)] + 20[Q(Py) — Q(P)] — (d + 2)d(w).

Since(d + 2)d(w) = 1,(¢) (see(4.3) and (5.2), we see thal,(Pr) — 1,(¢).
Let vy = [K (@y)] V@4 @, ThenK (vx) = 1 and by(4.3)

() = [K(@0)] VD (@) — [K ()] YD, (¢) = M(w).

Hence,{v} is a minimizing sequence ¢B.1). By uniqueness of the minimizes. (Theorem J}, there exists a
sequencédy} such that lim_, oo |vx — €%uc |y, = 0. Using this and3.4), (4.5) and (5.10)we get that

|1 — €%l 2 = |[K @)Y W20y — XK (@)Y WD uc)ya — 0,

which is in contradiction with{5.7). O
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