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CHEMICAL KINETICS ON SURFACES: A SINGULAR LIMIT OF A
REACTION-DIFFUSION SYSTEM∗
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Abstract. We show that chemical kinetics relations can be used to describe processes that
involve binding and dissociation reactions that take place on surfaces. From a mathematical per-
spective, the problem we study is a singular limit of a reaction-diffusion system in which one of the
variables concentrates on a lower-dimensional set in the limit, while the other continues to diffuse in
a fixed domain.
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1. Introduction. Numerous biological processes involve binding and dissocia-
tion reactions that take place on surfaces. For example, in antibody-antigen interac-
tions, antibodies immobilize and agglutinate infectious agents by binding to specific
receptors located on the surface of antigens [1, 19, 22]. Additional examples include
the binding of proteins to cell membranes either to initiate transduction of external
signals into the cell (signal transduction) or to open the ion channels of the membrane
(see, e.g., [18]); the binding of microbiological cultures to attachment sites on the in-
ner walls of flow reactors [12]; and the phenomenon of surface plasmon resonance,
which involves interactions of biopolymers with various ligands [13].

A natural way to model surface reactions is to adapt the standard chemical-
kinetics approach used for reactions occurring in volumes. This means that the bind-
ing rate for surface reactions is assumed to be proportional to the product of the
volumetric concentration of the reactant at the surface and the surface concentration
of the binding sites [18, 20]. There is a methodological problem with this approach,
however, since chemical-kinetics relations are usually derived under the assumption
that reactions take place in a volume, in which the two reactants are well mixed.

Our goal here is to justify the use of chemical-kinetics relations for reactions that
take place on surfaces. To do so, we will first construct a volumetric model in which
the binding sites, and hence also the binding and dissociation reactions, take place in
a narrow volumetric layer around the surface. We will then show that as the width
of the binding sites layer shrinks to zero, the volumetric model reduces to a surface
model, in which binding sites are located on the surface, and for which the reactions
are still described by chemical-kinetics relations.

From a mathematical perspective, the problem we study is a singular limit of a
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reaction-diffusion system. The problem here differs from the widely studied case of
thin domains (see, e.g., [10]) in that here only one of the variables concentrates on
a lower-dimensional set in the limit, while the other continues to diffuse in a fixed
domain.

In this study we analyze the problem of chemical kinetics on surfaces in the context
of a mathematical model for a novel in-vivo imaging technique for identifying and
locating cancerous tumors, which are sphere-like, isolated, three-dimensional objects,
with a smooth boundary.1 This model consists of a diffusion equation in the volume
surrounding the tumor, and binding and dissociation reactions that take place on
the tumor surface. We note, however, that the methodology developed in this study,
namely, the study of “surface models” as the limit of “volumetric models,” can be
applied to other models that involve binding and dissociation reactions on surfaces.
Moreover, our approach may also be relevant to problems in combustion (e.g., burning
of coal) in which the reactions take place between one or more species (e.g., coal) that
are confined to narrow regions near the reactor boundaries and other species that are
free to diffuse over larger domains (e.g., oxygen) [2].

The paper is organized as follows. In section 2 we construct two mathematical
models, a surface model and a volumetric model. In section 3 we present a heuristic
derivation of the surface model from the volumetric model. This is done by taking the
limit as the width of the volumetric layer tends to zero while assuming that the limits
of the concentrations exist in appropriate senses. For further clarity, we consider only
the radially symmetric case. In section 4 we rigorously prove that solutions of the
volumetric model converge to those of the surface model, without assuming radial
symmetry. Finally, in section 5 we comment briefly on the possibility of extending
our results to other models.

2. Mathematical models.

2.1. Fluorophore-antibody imaging. Our interest in this problem originated
from the need to model a novel in-vivo imaging technique for identifying and locating
cancerous tumors [11]. This method is based on one of the immune system responses
to tumors, which is the concentration of white blood cells, known as T cells, around
the tumor. These T cells have receptors which are specific to some antibodies of
the immune system. The imaging technique involves selecting an antibody with high
specificity to T cells [3], artificially conjugating it with a fluorescent marker compound,
and injecting the fluorescenated antibodies into the suspected tumor area [5, 6, 7, 8, 9].
After some time, the fluorescenated antibodies, hereinafter denoted markers, will
diffuse away from the tumor area, except for those that are bound to the T cell
receptors around the tumor. Hence, when an external laser excitation is applied, the
fluorescence of the markers indicates the location of the tumor.

The mathematical model that we use to describe the method of fluorophore-
antibody imaging involves diffusion of markers in the tissue, binding of markers to
T cells receptors (binding sites), and dissociation of markers that are already bound
to sites. The methodology developed in this study can, however, be extended to more
complex models that allow for diffusion of markers into the tissue area, advection
effects, etc.

To simplify the presentation, in this section we assume that the tumor is the
radially symmetric ball 0 ≤ r < rtumor, where r is the radial distance from the tumor

1This corresponds to the common solid tumors such as breast, lung, and sarcoma, at the early
stages of the tumor (i.e., before it develops a nonsmooth surface).
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Fig. 1. The surface model. Binding sites are located on the boundary of the tumor.

center. The assumption of radial symmetry is reasonable for young, small-size tumors.
Our results, however,are also valid for more advanced tumors, which are half-spheres
or isolated, three-dimensional lumps, so long that their boundary remains smooth
(see section 4). For simplicity we also assume that the initial markers distribution is
radially symmetric.

2.2. The surface model. We first develop a surface model in which the T cell
binding sites are located on the tumor surface (see Figure 1). In the tissue area, the
motion of the markers is governed by the diffusion equation

∂M(r, t)

∂t
= DΔM(r, t), 0 < t, rtumor < r < ∞,(1)

where M(r, t) is the volumetric concentration of the free (i.e., unbound) markers, and
D is the diffusion coefficient of markers in the tissue. The initial condition for (1) is

M(r, 0) = M0(r),(2)

where M0(r) is the initial concentration of markers.
Let us assume that chemical-kinetics relations can be used to model the reactions

that take place on a surface. Then the free sites concentration at the tumor surface
(r = rtumor) is governed by the equation

∂S(t)

∂t
= ksurd [Stot − S(t)] − ksurb M(rtumor, t)S(t),(3)

where S(t) denotes the free sites concentration, ksurb and ksurd are the binding and
dissociation rate constants, respectively, and Stot is the total concentration of sites,
both free and occupied. Equation (3) shows that the free sites concentration increases
as a result of dissociation of marker-site complexes and decreases as a result of binding
of free markers to binding sites. The dissociation rate is linearly proportional to the
bound sites concentration, [Stot − S(t)]. Under the assumption of chemical kinetics,
the binding rate is linearly proportional to the concentration of free binding sites,
S(t), and also linearly proportional to the concentration of free markers on the tumor
boundary, M(rtumor, t).

We assume that before the injection of markers (i.e., at t = 0), all binding sites
are unoccupied, so the initial condition for the sites equation is given by the total
sites concentration Stot, i.e.,

S(0) = Stot.(4)
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We now derive the boundary conditions for the markers at the tumor boundary.
Markers may be either free (i.e., in the tissue area) or bound (to T cell binding sites).
If we assume that a single marker binds to a single site, then the concentration of
bound markers on the surface equals Stot − S(t). In view of the fact that the total
area of the tumor surface is 4πr2

tumor, the total number of bound markers is then
4πr2

tumor [Stot − S(t)]. Thus, the global conservation of markers is given by

4πr2
tumor [Stot − S(t)]

bound markers

+ 4π

∫ ∞

rtumor

M(r, t) r2dr

free markers

= 4π

∫ ∞

rtumor

M0(r) r
2dr

total markers

.

Differentiating this equation with respect to t, and using (1) and the formula for
Δ in polar coordinates, shows that

r2
tumor

∂S(t)

∂t
=

∫ ∞

rtumor

∂M(r, t)

∂t
r2dr

= D

∫ ∞

rtumor

ΔM(r, t) r2dr = D

∫ ∞

rtumor

[
∂2M

∂r2
+

2

r

∂M

∂r

]
r2dr

= D

∫ ∞

rtumor

∂
[
r2 ∂M

∂r

]
∂r

dr = −Dr2
tumor

∂M

∂r
(rtumor, t),

(5)

provided that the concentration of markers decays sufficiently rapidly at large dis-

tances so that they have no flux at infinity. Upon substituting in the value of ∂S(t)
∂t

from (3) we find that the boundary condition at the tumor surface is given by

∂M

∂r
(rtumor, t) =

1

D
{ksurb M(rtumor, t)S(t) − ksurd [Stot − S(t)]}.(6)

2.3. The volumetric model. As mentioned in the introduction, there is a
methodological problem with the surface model since we used chemical-kinetics re-
lations to model surface reactions; see (3). In order to avoid this problem, we now
adopt a different approach and assume that the T cell binding sites are located in
a narrow volumetric layer around the tumor (see Figure 2). This approach also has
a physiological justification. Indeed, data collected in histological staining experi-
ments show that T cells are not located strictly on the tumor surface but rather in
a thin volumetric layer around the tumor (see Figure 3). The existence of a layer
of T-lymphocytes (CD3 positive cells) around the tumor was also reported in, e.g.,
[4, 25].

Let ε denote the width of the volumetric layer in which binding sites are located.
Then the volume density Sε

tot(r) of total binding sites vanishes identically for r >
rtumor + ε, i.e.,

Sε
tot(r) ≡ 0 for r > rtumor + ε.(7)

Of course this implies that the density Sε(t, r) of free binding sites also vanishes for
r > rtumor + ε.

The equation of evolution for the concentration Mε(t, r) of free markers now takes
the form

∂Mε(r, t)

∂t
= DΔMε(r, t) + kvold [Sε

tot(r) − Sε(r, t)] − kvolb Mε(r, t)Sε(r, t),

0 < t, rtumor < r < ∞,(8)
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Fig. 2. The volumetric model. Binding sites are located in a thin volumetric layer around the
tumor.

Fig. 3. Histological staining of a 5-day old tumor squamous cell carcinoma in the oral cavity
(mag. X200). Binding sites (stained in black) can be seen to the left of the solid line. Figure supplied
by Dr. Gallya Gannot, National Institutes of Health, Bethesda, MD.

where kvolb and kvold are the volumetric model binding and dissociation rate constants,
respectively. The first term on the right is the diffusion term, the second term de-
scribes the dissociation of marker-site complexes, and the third term describes the
creation of these complexes. Note that in contrast to (3), there is no problem with
using chemical-kinetics relations.

The rate of change of the free sites concentration is derived using chemical-kinetics
relations, as was done for (3) of the surface model, yielding

∂Sε(r, t)

∂t
= kvold [Sε

tot(r) − Sε(r, t)] − kvolb Mε(r, t)Sε(r, t).(9)

The only difference is that now these reactions take place in a volumetric layer rather
than on a surface as in the previous model.

As in the surface model, we assume that at time t = 0 all the binding sites are
unoccupied. Therefore, the initial condition for the free sites concentration is given
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by

Sε(r, 0) = Sε
tot(r).(10)

The initial distribution of markers will be assumed to be the same as for the surface
model:

Mε(r, 0) = M0(r),(11)

independently of ε. We also assume that markers cannot diffuse into the tumor.
Therefore, at the tumor surface we impose the no-flux boundary condition

∂Mε(r, t)

∂r
(rtumor, t) = 0.(12)

3. Heuristic justification of the surface model from the volumetric
model. We now show, under some scientifically natural assumptions, that as the
width ε of the binding sites layer goes to zero the volumetric model reduces to the
surface model.

As already mentioned, we assume that both models have the same initial distri-
bution of markers, and that in both models all the sites are unoccupied at time t = 0.
We also assume that both models have the same total number of sites, i.e.,

4π

∫ ∞

rtumor

Sε
tot(r) r2 dr

total number of sites

for the volumetric model

= 4πr2
tumorStot.

total number of sites

for the surface model

(13)

Next, we assume that the solution Mε(r, t), Sε(r, t) of the volumetric model (7)–
(12) and the solution M(r, t), S(t) of the surface model (1)–(4), (6) exist for all
positive time and are unique.

Finally, we assume that as ε tends to zero both the concentration Mε(r, t) of
markers in the volumetric model and the radial integral of the concentration Sε(r, t)
of free sites in that model tend to definite values. In other words, we assume that

M0(r, t) := lim
ε→0

Mε(r, t) and S0(t) :=
1

r2
tumor

lim
ε→0

∫ ∞

rtumor

Sε(r, t) r2 dr(14)

exist. Furthermore, we assume that in the region r > rtumor those equations may be
differentiated and integrated as often as needed, and that the order of the resulting
derivatives, integrals, and limits may be freely interchanged.

Proposition 3.1. Under the above assumptions, the limits (14) of the volumetric
model are the solution of the surface model with the same binding and dissociation
constants. In other words,

M0(r, t) ≡ M(r, t),(15)

and

S0(t) ≡ S(t),(16)

the latter of which may also be expressed as

lim
ε→0

Sε(r, t) ≡ S(t) · δ(r − rtumor),
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where δ is the Dirac δ function.
Proof. Since Sε

tot(r) is nonnegative, (7) plus (13) implies that

lim
ε→0

Sε
tot(r) = Stot · δ(r − rtumor).(17)

Similarly, since

0 ≤ Sε(r, t ) ≤ Sε
tot(r),(18)

it follows from (7) plus (14) that

lim
ε→0

Sε(r, t) = S0(t) · δ(r − rtumor),(19)

and (17)–(19) imply further that

0 ≤ S0(t) ≤ Stot.

We now show that for r > rtumor and t ≥ 0, (15)–(16) hold, by showing that M0

and S0 satisfy the surface model equations (1)–(4), (6).
Integrating both sides of (9) and taking the limit as ε → 0 gives

1

r2
tumor

lim
ε→0

∫ ∞

rtumor

∂Sε(r, t)

∂t
r2 dr

=
1

r2
tumor

lim
ε→0

∫ ∞

rtumor

kvold [Sε
tot(r) − Sε(r, t)] r2 dr

− 1

r2
tumor

lim
ε→0

∫ ∞

rtumor

kvolb Mε(r, t)Sε(r, t) r2 dr.

Combining the above with (14), (17), and (19) gives

S0
t = kvold

[
Stot − S0

]
− kvolb M0(rtumor, t)S0,(20)

which corresponds to (3).
Similarly, in light of (14), (17), and (19) the limit ε → 0 of the volumetric markers

equation (8) yields

∂M0(r, t)

∂t
= DΔM0(r, t) for r > rtumor,(21)

which is the analogue of (1).
From (10), (13), and (14) it follows that

S0(0) = Stot.

More simply, (11) plus (14) implies

M0(r, 0) = M0(r).

These two equations correspond to (4) and (2).
Finally, we derive the boundary condition for M0 at r = rtumor. In contrast to

the assumed differentiability of the limits (14) for r > rtumor, on the boundary we
must expect that

∂M0

∂r
∣∣
rtumor

�= lim
ε→0

∂Mε

∂r
∣∣
rtumor

= 0.
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Indeed, although we assume, as in the surface model, that the markers cannot diffuse
into the tumor, the existence of binding sites on the boundary effectively results in
“disappearance” of markers at r = rtumor. Hence, in the surface model the boundary
r = rtumor is absorbing.

To derive the correct boundary condition there, we first note that the conservation
law for the total number of markers may be written as

d

dt

1

r2
tumor

∫ ∞

rtumor

{Mε(r, t) + [Sε
tot(r) − Sε(r, t)]} r2 dr = 0,

since Mε(r, t) and [Sε
tot(r) − Sε(r, t)] are the concentrations of free and bound markers,

respectively. Taking the limit as ε → 0 and using (14), (17), and (19) gives

d

dt

{
1

r2
tumor

∫ ∞

rtumor

M0(r, t) r2 dr +
[
Stot − S0

]}
= 0.

Therefore, by (14), (21), (20), and a calculation similar to (5) we get

∂M0(rtumor, t)

∂r
= − 1

D

∂S0

∂t

= − 1

D
kvold

[
Stot − S0(r, t)

]
+

1

D
kvolb M0(rtumor, t)S

0(r, t),

in accordance with (6).

4. Rigorous justification of the surface model from the volumetric
model. We now present a rigorous derivation of the surface model as the limit of
the volumetric model. Unlike in sections 2 and 3, we do not make the assumption of
radial symmetry.

4.1. Equations and results. When radial symmetry is not assumed we may
write the equations governing the concentrations of unbound markers Mε and unoc-
cupied sites Sε in the volumetric model in the form

Mε
t (t, x) = DΔMε + kd (Sε

tot(x) − Sε) − kbS
εMε,(22)

Sε
t (t, x) = kd (Sε

tot(x) − Sε) − kbS
εMε.(23)

Here x is a vector in R
d for some d > 1 and Sε

tot(x) is the total concentration of
sites, which depends only on x since the sites are still assumed to remain stationary.
Equations (22)–(23) are to hold in a smooth domain Ω in R

d whose inner surface ∂iΩ
is the boundary of the region occupied by the tumor. In order to reduce the technical
complications we will assume that Ω is bounded, and its outer boundary, far from the
tumor, will be denoted ∂oΩ. See Figure 4. However, the case when Ω is the entire
exterior of the tumor surface ∂iΩ could also be treated; in particular, the theorem on
invariant regions (Theorem 3 below) is still valid in that case.

The total concentration of sites is clearly nonnegative, i.e.,

Sε
tot(x) ≥ 0.(24)

Also, since the sites are located near the surface of the tumor,

Sε
tot(x) = 0 for d(x, ∂iΩ) > ε,(25)
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Ω

∂iΩ

∂oΩ

Fig. 4. The domain Ω and its inner and outer boundaries ∂iΩ and ∂oΩ.

where d(x, ∂iΩ) is the distance from a point x to the interior region Ωi occupied by
the tumor. We shall also assume that

Sε,0
tot(y) :=

∫ ε

0

Sε
tot(y + τν) dτ converges uniformly to some S0

tot(y) as ε → 0,(26)

where ν denotes the unit normal on ∂iΩ pointing into Ω. Note that conditions (24)–
(26) are satisfied when Sε

tot(y + τν) = 1
εφ(y)ψ( τε ), where φ and ψ are nonnegative

continuous functions and ψ(s) vanishes for s > 1.
The boundary condition for Mε is

ν · ∇Mε = 0 on ∂Ω,(27)

which means that markers do not leave the region Ω. The initial conditions are

Sε(0, x) = Sε
tot(x),(28)

which means that all sites are originally unoccupied, and

Mε(0, x) = M0(x) ≥ 0.(29)

Furthermore, we will assume that

Sε
tot(x)M0(x) ≡ 0,(30)

i.e., that initial locations of the markers and sites do not overlap. Physically this is
another expression of the assumption that time zero occurs before the sites start to
become occupied, since if the marker and site locations overlapped at time zero, then
some sites would have become occupied before then. Mathematically it avoids having
an initial layer in which the site-occupation reaction would quickly reduce the size of
the reaction term down to order one.

The local-in-time existence of a unique solution to (22)–(23), (27)–(29) can be
obtained via the method of [23], by substituting the Green’s function for the Neumann
boundary value problem for ut = DΔu in place of the whole-space Green’s function
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in [23, eq. (2.7)]. Furthermore, the uniform bounds on the solution obtained in the
next subsection imply that solution exists for all positive time.

The equations for the surface model are

Mt = DΔM(31)

in Ω,

ν · ∇M =
kd

(
S0

tot(x) − S
)
− kbSM

D
(32)

on the inner boundary ∂iΩ bounding the tumor region, (27) on the outer boundary
∂oΩ, and

St = kd
(
S0

tot(y) − S
)
− kbSM(33)

on the inner boundary ∂iΩ. Although the existence of solutions to the surface model
could be obtained by an appropriate adaptation of the method used for the volumetric
model, we will obtain existence here as a by-product of our convergence result.

Our main result is that solutions of the volumetric model converge to those of the
boundary model as the parameter ε tends to zero.

Theorem 1. Assume that Sε
tot satisfies (24)–(26). Let (Mε, Sε) be the solution

of (22)–(23) and (27) having initial data of the form (28)–(29) belonging to C2(Ω)
and satisfying (30). Then as ε → 0, Mε and

Sε(y, t) :=

∫ ε

0

Sε(y + τν, t) dτ(34)

converge to the unique solution (M,S) of (31) and (33) satisfying (32) on ∂iΩ and
(27) on ∂oΩ and having initial data (29) and S(0, y) = S0

tot(y).
In the next subsection we will prove some uniform bounds that will be used in the

subsequent subsection to take the limit as ε → 0. Those uniform bounds also imply
an upper bound for the fraction of sites that are occupied at any time.

Theorem 2. The ratio ∫
Ω

[Sε
tot(x) − Sε(x, t)] dx∫

Ω
Sε

tot(x) dx

of occupied sites to total sites is never more than

kb maxx∈Ω M0(x)

kd + kb maxx∈Ω M0(x)
.(35)

4.2. Uniform estimates.

4.2.1. Invariant regions. In order to be able to take the limit of the solutions
as ε → 0, we need certain uniform bounds on those solutions. Some of the required
bounds follow from the theory of invariant domains. See [24, Chap. 14] for an intro-
duction and references. The version we will apply, in which the hypotheses have been
weakened somewhat, is the following special case of [21, Thm. 3].

Theorem 3. Assume that the following hold:
1. Domain: Ω is either a smooth bounded domain or the exterior of a smooth

bounded domain.
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2. Smoothness: u := (u1, . . . , up) is continuous on [0, T ] × Ω, and ut, uxj
, and

uxjxk
are continuous on (0, T ) × Ω.

3. PDE: u satisfies the system

∂tuj − djΔuj = fj(t, x, u)(36)

for 0 < t < T ≤ ∞ and x ∈ Ω, where dj ≥ 0 and fj ∈ C1.
4. Region: The region R := {u | aj ≤ uj ≤ bj} is invariant for the system of

ODEs obtained by setting every dj in (36) to zero, i.e., fj ≤ 0 when uj = bj
and ak ≤ u ≤ bk for each k �= j, and fj ≥ 0 when uj = aj and ak ≤ u ≤ bk
for each k �= j.

5. Initial condition: u(0, x) = u0(x) for x ∈ Ω, where u0(x) ∈ R for all such x.
6. Boundary condition: ∂νu = 0 for 0 < t < T and x ∈ ∂Ω, where ν denotes the

exterior normal on the boundary ∂Ω.
7. Behavior at infinity: If Ω is unbounded, then u(t, x) = o(|x|2) as x → ∞.

Then the solution u(t, x) remains in R for 0 ≤ t ≤ T and x ∈ Ω.
The region that we wish to show to be invariant for (22)–(23) depends on x, as

will be apparent below, so Theorem 3 does not apply directly. That theorem could
be extended to the case of x-dependent invariant regions either by using the fact that
the S-component does not diffuse or via the approach of [15]. However, it will in any
case be convenient to transform our system via

Nε = 1 +
kbM

ε

kd
, Rε =

Sε

Sε
tot(x)

,(37)

which yields equations whose invariant sets will not depend on x. Although Sε
tot(x)

vanishes in much of the domain Ω, which makes Rε(0, x) undefined, the initial con-
dition (28) implies that Rε(0, x) ≡ 1 where Sε

tot(x) is nonzero, so the initial data for
Rε extend naturally to

Rε(0, x) = 1.(38)

The initial data

Nε(0, x) = 1 +
kbM0(x)

kd
(39)

for Nε are obtained directly from those of M via the transformation (37).
In terms of the new variables Nε and Rε, system (22)–(23) becomes

Nε
t = DΔNε + kbS

ε
tot(x) [1 −NεRε] ,(40)

Rε
t = kd [1 −NεRε] .(41)

The boundary condition (27) becomes

ν · ∇Nε = 0 on ∂Ω.(42)

Lemma 4. Suppose that Nε and Rε satisfy the system (40)–(41) plus the boundary
condition (42) and have initial data (38)–(39). Define Nmax := maxNε(0, x). Then

1 ≤ Nε ≤ Nmax ,
1

Nmax
≤ Rε ≤ 1.(43)

Proof. The vector field (kbS
ε
tot(x)(1−NεRε), kd(1−NεRε)) points left and down

at points above the curve Rε = 1
Nε , and up and to the right below that curve. For
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any k, that curve intersects the rectangle 1 ≤ Nε ≤ k, 1
k ≤ Rε ≤ 1 at the upper left

and lower right corners, and so points inwards everywhere on the boundary of that
rectangle, except at those corners, where it vanishes. Since M0(x) ≥ 0, the initial
data (39) for Nε satisfy Nε(0, x) ≥ 1, while the initial data for Rε are identically one.
Thus, the initial data lie in the rectangle (43). Now apply Theorem 3.

Translating the bounds (43) back into the original variables (Mε, Sε) yields The-
orem 2.

In order to obtain convergence of solutions as ε → 0 it is necessary to obtain
estimates for derivatives as well. However, since Sε

tot(x) and its derivatives are not
uniformly bounded, it is not convenient to estimate the evolution of spatial derivatives
of Nε. But Sε

tot(x) is independent of time, so we can obtain estimates for time
derivatives; a spatial estimate will then be obtained by using the theory of elliptic
PDEs.

Lemma 5. Let Nε and Rε satisfy the conditions of Lemma 4. Suppose in addition
that condition (30) holds and that for some b̃±,

b̃− ≤ DΔN0(x) ≤ b̃+.(44)

Then for some b−, b+, B−, and B+

b− ≤ Nε
t ≤ b+, B− ≤ Rε

t ≤ B+.(45)

Proof. Since the equation for Rε is an ODE, a uniform bound on its time derivative
follows from the bounds for Nε and Rε; i.e., the second half of (45) holds. Taking
the time derivative of (40) for Nε and substituting for the time derivative of Rε from
(41) yields

(Nε
t )t = DΔ(Nε

t ) − kbR
εSε

tot(x)

[
(Nε

t ) +
kdN

ε(1 −NεRε)

Rε

]
.(46)

The bounds (43) imply both a lower bound b̂− and an upper bound b̂+ for the ex-

pression kdN
ε(1−NεRε)

Rε appearing in (46). Condition (30) implies that Nε
t (0, x) =

DΔNε(0, x), so the bounds (44) imply the same bounds for Nε
t (0, x). Define b− :=

min{b̂−, b̃−} and b+ := max{b̂+, b̃+}. Since differentiating (42) with respect to time
shows that ν ·∇(Nε

t ) also vanishes on the boundary, another application of Theorem 3
shows that the first half of (45) holds.

4.2.2. Elliptic estimate. Solving (40) for ΔNε yields

ΔNε =
Nε

t − kbS
ε
tot(x) [1 −NεRε]

D
.(47)

Although the right side of (47) is not known to be uniformly bounded, it is a uniformly
bounded function times the known expression Sε

tot(x) plus a bounded function. This
will allow us to obtain uniform estimates for Nε and Rε in an appropriate Hölder
space, and also to determine the behavior of ν · ∇Nε near the boundary.

Definition 6. Let Ω be a domain in R
d, let Br(x0) denote the ball of radius r

centered at x0, and suppose that 1 ≤ p ≤ ∞. A measurable function f belongs to the
Morrey space Mp(Ω) if

‖f‖Mp := sup
x0∈Ω

sup
r>0

∫
Br(x0)∩Ω

|f(x)| dx
rd(1−1/p)

< ∞.(48)
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An easy calculation shows that Lp(Ω) ⊂ Mp(Ω) [9, sect. 7.9]. However, the
reverse is not true. In particular, although Sε

tot is uniformly bounded in Lp only for
p = 1, its structural properties (24)–(26) ensure that Sε

tot, and hence also g(x)Sε
tot for

any bounded g, belong to Md(Ω).
Lemma 7. Suppose that Sε

tot satisfies (24)–(26) and that gε(x) is uniformly
bounded. Then for some fixed constant c,

‖gε(x)Sε
tot(x)‖Md ≤ c.(49)

Proof. Since gε is bounded it suffices to prove estimate (49) for gε ≡ 1. Since
assumptions (24)–(26) imply that the total number of sites

∫
Ω
Sε(x) dx is uniformly

bounded, for any positive δ

sup
x0∈Ω

sup
r≥δ

∫
Br(x0)

|Sε
tot(x)| dx

rd(1−1/p)

is uniformly bounded. By picking δ small enough so that the map

(y, τ) �→ y + τν(y)(50)

is one to one ∂iΩ× [0, δ] and satisfies |[y1 + τ1ν(y1)]− [y2 + τ2ν(y2)]| ≥ c|y1 −y2| there
for some fixed positive c, we obtain that the intersection of the support of Sε

tot with
any ball Br(x0) of radius at most δ is contained in a set of the form {y + τν(y) | y ∈
∂iΩ∩Bkr(y0), τ ∈ [0, δ]}. Assumption (26) implies that the integral of Sε

tot over such
a set is bounded by a constant times the volume of a ball of radius kr in dimension
d−1, which is a constant times rd−1. Combining this with the bound for r ≥ δ yields
(49).

Although integration against the Green’s function for the Laplacian does not map
L1 into C0 since functions in L1 can tend weakly to a delta function, it does map Mp

for p sufficiently large into the space C0,α of Hölder-continuous functions for some
appropriate positive α. We begin with a general result.

Lemma 8. Suppose that f ∈ Mp with p > 1. Then for μ > 1
p , Tf(x) :=∫

Ω
f(y)

|x−y|d(1−μ) dy belongs to C0,α for α < min{1, d(μ − 1
p )}, where d is the spatial

dimension. Furthermore, the C0,α seminorm of Tf is bounded by a constant times
the Mp norm of f .

Proof. By interpolating between the elementary inequalities∣∣∣∣ 1

|x1 − y|β − 1

|x2 − y|β

∣∣∣∣ ≤
[

1

|x1 − y|β +
1

|x2 − y|β

]

and ∣∣∣∣ 1

|x1 − y|β − 1

|x2 − y|β

∣∣∣∣ ≤ c|x1 − x2|
[

1

|x1 − y|β+1
+

1

|x2 − y|β+1

]
,

we obtain that for any γ ∈ [0, 1],∣∣∣∣ 1

|x1 − y|β − 1

|x2 − y|β

∣∣∣∣ ≤ c(γ)|x1 − x2|γ
[

1

|x1 − y|β+γ
+

1

|x2 − y|β+γ

]
.(51)

Pick α ∈ (0, 1) such that α < d(μ− 1
p ). Applying (51) with γ = α and β = d(1 − μ)

yields

|[Tf ](x1) − [Tf ](x2)| ≤ c(α)|x1 − x2|α
2∑

j=1

∫
Ω

1

|xj − y|d(1−[μ−α
d ])

f(y) dy.(52)
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Since μ− α
d > 1

p by construction, the integrals on the right side of (52) are bounded

by [9, Lem. 7.18].
Using Lemma 8 we can show that Nε and Rε are uniformly bounded in some

Hölder space.
Lemma 9. Under the conditions of Lemma 5, for bounded times the solutions Nε

and Rε are uniformly bounded in C0,α for α < 1.
Proof. Let G be the Neumann Green’s function for the Laplacian in Ω, so that

for any f having mean zero, the solutions to Δu = f in Ω, ∂u
∂ν = 0 on ∂Ω, are

u(x) =
∫
Ω
G(x, y)f(y) dy + c. The singularity of G when x = y is of the same

order as the Newtonian potential, i.e., 1
|x−y|d−2 , or log(|x − y|) when d = 2. Since

the smooth part of G makes a smooth contribution to u, it suffices to show that∫
Ω

1
|x−y|d(1−μ) ΔNε(y) dy belongs to C0,α for α < 1, where μ = 2

d for d > 2 and is

arbitrarily close to one for d = 2.
Now any bounded function belongs to M∞ and hence also to Mp for any p < ∞.

Hence (47) plus the bounds for Nε, Rε, and Nε
t and Lemma 7 implies that ΔNε

belongs to Md.
Lemma 8 therefore shows that

∫
Ω

1
|x−y|d(1−μ) ΔNε(y) dy belongs to C0,α for α <

d( 2
d − 1

d ) = 1, and that its C0,α seminorm is uniformly bounded.

4.3. Taking the limit. By Ascoli’s theorem, the uniform bounds obtained in
the previous subsection imply the convergence along subsequences as ε → 0.

Corollary 10. Under the conditions of Lemma 5, for every sequence of values
of ε there is a subsequence for which Nε and Rε converge uniformly in Ω for bounded
times. The limits N and R satisfy the same bounds (43) as Nε and Rε.

We first consider the limit in terms of the variables (N,R).
Lemma 11. The limits (N,R) satisfy

Nt = DΔN(53)

in Ω,

ν · ∇N =
kbS

0
tot(y)(1 −NR)

D
(54)

on the inner boundary ∂iΩ bounding the tumor region, (42) on the outer boundary
∂oΩ, and

Rt = kd(1 −NR)(55)

in Ω, including in particular, on the inner boundary ∂iΩ. The initial values of N and
R are the same as for the original system.

Proof. Taking the weak limit of the PDE (40) yields (53) within the domain Ω,
since Nε

t converges weakly to Nt and the reaction term tends to zero in every compact
subset of Ω. Since Rε satisfies an ODE, the convergence of Nε and Rε implies that
the limits satisfy (55). Since the convergence of Nε and Rε is uniform in time as well
as space, their limits have the same initial values.

Finally, in order to obtain (54), let Ωδ denote the subset of Ω whose distance to
the inner boundary ∂iΩ is less than δ. For sufficiently small δ, Ωδ = {y + τν | y ∈
∂iΩ, 0 < τ < δ}. The boundary of Ωδ is then the disjoint union of ∂iΩ, and the set
∂δΩ of points in Ω whose distance to ∂iΩ is exactly δ. Since (53) implies that N is
smooth in Ω, the derivative ∂N

∂ν of N with respect to the outer normal on ∂δΩ is well
defined. As before, let y(x) denote the mapping sending x = y + τν to y.
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By Green’s formula, for any smooth function ψ

∫
∂δΩ

ψ(y(x))
∂Nε

∂ν
=

∫
Ωδ

ψΔNε −NεΔψ +

∫
∂δΩ

Nε ∂ψ(y(x))

∂ν
(56)

since both ∂Nε

∂ν and ∂ψ(y(x))
∂ν vanish on ∂iΩ.

Since ∂ψ(y(x))
∂ν vanishes on ∂iΩ, it is O(δ) on ∂δΩ. Also, since Nε is uniformly

bounded and the volume of Ωδ is O(δ),
∫
Ωδ

NεΔψ = O(δ). Similarly, upon substitut-

ing (47) into (56), the term involving Nε
t contributes O(δ). Hence

∫
∂δΩ

ψ(y(x))
∂Nε

∂ν
= −

∫
Ωδ

ψ(y(x))
kbS

ε
tot(x) [1 −NεRε]

D
+ O(δ).(57)

Now take the limit as first ε → 0 and then δ → 0. The left side of (57) tends to∫
∂iΩ

ψ(y)∂N∂ν . Since the term O(δ) on the right side is uniform in ε, it contributes
nothing to the combined limit. Hence

∫
∂iΩ

ψ(y)
∂N

∂ν
dσ(y) = − lim

δ→0
lim
ε→0

∫
Ωδ

ψ(y(x))
kbS

ε
tot(x) [1 −NεRε]

D
dx

= − lim
δ→0

lim
ε→0

∫
Ωε

ψ(y(x))
kbS

ε
tot(x) [1 −NεRε]

D
dx

= − lim
δ→0

lim
ε→0

∫
∂iΩ

ψ(y)

∫ ε

0

kbS
ε
tot(y + τν) [1 −Nε(y + τν)Rε(y + τν)]

D
dτ dσ(y),

(58)

where we have used the fact that the difference between dx and dτ dσ(y) tends to
zero with the distance from the boundary. Since the total integral of Sε

tot is uniformly
bounded, and NεRε converge uniformly, we may replace that expression in (58) with
its limit NR. In addition, N(y + τν)R(y + τν) = N(y)R(y) + o(1), so in fact

∫
∂iΩ

ψ(y)
∂N

∂ν
dσ(y)

= −
∫
∂iΩ

ψ(y)
kb [1 −N(y)R(y)]

D

[
lim
ε→0

∫ ε

0

Sε
tot(y + τν) dτ

]
dσ(y)

= −
∫
∂iΩ

ψ(y)
kb [1 −N(y)R(y)]

D
Sε,0

tot(y) dσ(y)

= −
∫
∂iΩ

ψ(y)
kb [1 −N(y)R(y)]

D
S0

tot(y) dσ(y)

(59)

by assumption (26). Since ψ is an arbitrary smooth function, (59) implies (54).
In order to obtain convergence of the full sequence (Nε, Rε) without restrict-

ing to some subsequence, it suffices to show that the limit obtained along different
subsequences is unique.

Lemma 12. A bounded solution of (53) in Ω, (54) and (55) on the inner boundary
∂iΩ, and (42) on the outer boundary, with given initial data, is unique.

Proof. Suppose that (Nj , Rj), j = 1, 2, are solutions having the same initial data.
Define N := N1 − N2 and R := R1 − R2. Multiplying the difference of (53) for N1

and N2 by N , integrating over Ω, and adding the integral over ∂iΩ of R times the
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difference of (55) for R1 and R2 yields

d

dt

1

2

[∫
Ω

N2 dx +

∫
∂iΩ

R2 dσ(y)

]

= −D

∫
Ω

∇N2 −
∫
∂iΩ

[
kbS

0(y)

D
N + kdR

]
[R1N + N2R] dσ(y).

(60)

Since both R1 and N2 are bounded and strictly positive, the elementary inequality
−c1x

2 + c2xy − c3y
2 ≤ c4y

2 allows us to reduce (60) to

d

dt

1

2

[∫
Ω

N2 dx +

∫
∂iΩ

R2 dσ(y)

]
≤ c

∫
∂iΩ

R2 dσ(y)

≤ c · 1

2

[∫
Ω

N2 dx +

∫
∂iΩ

R2 dσ(y)

]
.

(61)

Since N ≡ 0 and R ≡ 0 initially, (61) shows that they remain zero for all time.
We are finally ready to prove the main result in terms of the original variables

Mε and Sε.
Proof of Theorem 1. Lemma 12 implies the convergence of Nε and Rε to N and

R holds without restricting to a subsequence. Upon transforming back to the variable
M , (53) becomes (31). In view of the uniform convergence of Rε, (26) implies the
convergence of (34) to S0

totR, so (54)–(55) yield (32)–(33). The convergence of the
initial data is obtained similarly.

5. Possible extensions. In this study we have aimed to give both heuristic
and rigorous justifications for using the laws of chemical kinetics to describe binding
and dissociation reactions that take place on surfaces. Our results were obtained,
however, for a specific model involving a single reaction taking place on the bound-
ary, with purely diffusive dynamics away from the boundary. Furthermore, a more
realistic model of the fluorophore-antibody–based imaging studied here should also
include advection effects to account for the continuous drainage of the interstitial
fluid. Other chemical and biological systems involve more complicated interactions,
possibly including several reactions on the boundary. To what extent can our methods
be applied in these more general situations?

Since both our heuristic and rigorous analyses implicitly or explicitly require
uniform bounds on reaction concentrations or ratios, our methods seem to require
the presence of an invariant region for the reaction dynamics. Models of a variety
of chemical and biological systems for which the existence of such regions have been
deduced or assumed have been studied [14, 16, 17].

Additional restrictions must be placed on reactants that concentrate at the bound-
ary surface. First, the reaction terms must be at most linear in those reactants. In
terms of our heuristic analysis, this condition arises because the volumetric concen-
trations of those reactants tend to Dirac delta functions, which makes superlinear
functions of those concentrations diverge to infinity even when considered in the sense
of distributions. In our rigorous analysis linearity is needed in order for the second
change of variables in (37) to be helpful.

That reaction terms be at most linear in “surface” reactants seems to be a neces-
sary condition for our results to hold, rather than a technical limitation. The presence
of a superlinear growth term would make the reaction blow up as the reactant concen-
trates at the boundary, while superlinear decay terms would make reactions disappear
in the limit.
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Our methods can accommodate advection terms involving the “volumetric” re-
actants that do not concentrate at the boundary (e.g., advection of markers). Note,
however, that our analysis does not apply to models that allow for advection or even
diffusion of the “surface” reactants. Indeed, such advection or diffusion terms would
change the model substantially, since they would cause the “surface” reactants to
leave the region near the boundary.

REFERENCES

[1] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular Biology
of the Cell, 3rd ed., Garland Publishing, New York, 1994.

[2] D. A. Frank-Kamenetsky, Diffusion and Heat Transfer in Chemical Kinetics, Plenum, New
York, 1969.

[3] G. Gannot, I. Gannot, A. Buchner, H. Vered, and Y. Keisari, Increase in immune cell
infiltration with progression of oral epithelium from hyperkeratosis to dysplasia and carci-
noma, British Journal of Cancer, 86 (2002), pp. 1444–1448.

[4] G. Gannot, A. Buchner, and Y. Keisari, Interaction between the immune system and tongue
squamous cell carcinoma induced by 4-nitroquinoline N-oxide in mice, Oral Oncol., 40
(2004), pp. 287–297.

[5] I. Gannot, A. H. Gandjbakhche, G. Gannot, P. C. Fox, and R. F. Bonner, Optical
simulations experiments for development of a noninvasive technique for the diagnosis of
diseased salivary glands in situ, J. Med. Phy., 27 (1998), pp. 1139–1144.

[6] I. Gannot, G. Gannot, A. Garashi, A. Gandjbakhche, A. Buchner, and Y. Keisari,
Laser activated fluorescence measurements and morphological features—an in vivo study
of clearance time of FITC tagged cell markers, J. Biomed. Opt., 7 (2002), pp. 14–19.

[7] I. Gannot, A. Garashi, G. Gannot, V. Chernomordik, and A. Gandjbakhche, Quantita-
tive 3-D imaging of tumor labeled with exogenous specific fluorescence markers, J. Appl.
Opt., 42 (2003), pp. 3073–3080.

[8] I. Gannot, A. Garashi, V. Chernomordik, and A. Gandjbakhche, Quantitative optical
imaging of pharmacokinetics of specific fluorescent tumor markers through turbid media
such as tissue, Opt. Lett., 29 (2004), pp. 742–744.

[9] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,
Springer-Verlag, Berlin, 1977.

[10] J. Hale and G. Raugel, Reaction-diffusion equation on thin domains, J. Math. Pures Appl.,
71 (1992), pp. 33–95.

[11] A. Hammer, Modeling, Analysis, and Optimization of Fluorescenated Antibody Based Imaging,
M.Sc. thesis, Tel Aviv University, Tel Aviv, 2003.

[12] D. Jones, H. V. Kojouharov, D. Le, and H. Smith, Bacterial wall attachment in a flow
reactor, SIAM J. Appl. Math,, 62 (2002), pp. 1728–1771.

[13] L. S. Jung, J. S. Shumaker-Parry, C. T. Campbell, S. S. Yee, and M. H. Gelb, Quantifi-
cation of tight binding to surface-immobilized phospholipid vesicles using surface plasmon
resonance: Binding constant of phospholipase A(2), J. Amer. Chem. Soc., 122 (2000), pp.
4177–4184.

[14] I. C. Kim, Singular limits of chematoxis-growth model, Nonlinear Anal. Ser. A: Theory Meth-
ods, 466 (2001), pp. 817–834.

[15] H. J. Kuiper, Invariant sets for nonlinear elliptic and parabolic systems, SIAM J. Math. Anal.,
11 (1980), pp. 1075–1103.

[16] J. S. McGough and K. L. Riley, A priori bounds for reaction-diffusion systems arising in
chemical and biological dynamics, Appl. Math. Comput., 163 (2005), pp. 1–16.

[17] M. Mincheva and D. Siegel, Stability of mass action reaction-diffusion systems, Nonlinear
Anal., 56 (2004), pp. 1105–1131.

[18] P. F. Morrison, P. M. Bungay, J. K. Hsiao, B. A. Ball, I. N. Mefford, and R. L. Dedrick,
Quantitative microdialysis: Analysis of transients and application to pharmacokinetics in
brain, J. Neurochem., 57 (1991), pp. 103–119.

[19] H. Nygren, Kinetics of antibody binding to surface-immobilized antigen. Analysis of data and
an empiric model, Biophys. Chem., 52 (1994), pp. 45–50.

[20] M. Praxmarer, C. Sung, P. M. Bungay, and W. W. van Osdol, Computational models of
antibody-based tumor imaging and treatment protocols, Ann. Biomed. Eng., 29 (2001), pp.
340–358.

[21] R. Redlinger, Invariant sets for strongly coupled reaction-diffusion systems under general
boundary conditions, Arch. Rational Mech. Anal., 108 (1989), pp. 281–291.



1388 G. FIBICH, I. GANNOT, A. HAMMER, AND S. SCHOCHET

[22] A. R. Goldsby, T. J. Kindt, J. Kuby, and B. A. Osborne, Immunology, 4th ed., W. H.
Freeman, San Francisco, 1997.

[23] J. Rauch and J. Smoller, Qualitative theory of the FitzHugh-Nagumo equations, Adv. in
Math., 27 (1978), pp. 12–44.

[24] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Grundlehren Math. Wiss. 258,
Springer, Berlin, 1983.

[25] W. Z. Wei, S. Ratner, A. M. Fulton, and G. H. Heppner, Inflammatory infiltrates of
experimental mammary cancers, Biochim. Biophys. Acta, 865 (1986), pp. 13–26.


