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Abstract

In this Letter we introduce a systematic perturbation method for analyzing the effect of small perturbations on critical
self-focusing by reducing the perturbed critical nonlinear Schrodinger equation (PNLS) to a simpler system of modulation
equations that do not depend on the transverse variables. The modulation equations can be further simplified depending on
whether PNLS is power conserving or not. An important and somewhat surprising result is that various small defocusing
perturbations lead to a canonical form for the modulation equations, whose solutions have slowly decaying focusing—

defocusing oscillations. © 1998 Elsevier Science B.V.

PACS: 42.65.)
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1. Introduction

The perturbed critical nonlinear Schrédinger equa-
tion (PNLS)

i, + D1+ Y + eF (¢, V1, ..) =0,

#(0,x,y) =o(x,y) (n
3% E
=—4-—, 0 1,

N (9X2+c9y2 < €K

arises in various physical models in nonlinear optics? ,
plasma physics and fluid dynamics (see, e.g., Table 1).
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* The amplitude ¢ may depend on additional variables, such as
1 in the case of time dispersion.

When € = 0, Eq. (1) reduces to the critical nonlinear
Schrédinger equation (CNLS)

i, + AL+ )Py =0. (2)

We recall that for the nonlinear Schrédinger equation
with a general nonlinearity o and transverse dimension
Da

i +("2 +.. 4+ o o+ Yy =0,
¢ axz T axd, S

we distinguish between three different cases.

(1) When oD < 2, the subcritical case, diffraction
always dominates and focusing singularities do not
form.

(ii) In the supercritical case, oD > 2, there is a
large class of smooth initial amplitudes for which a fo-
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cusing singularity forms with finite distance z. Since
in supercritical self-focusing the nonlinearity domi-
nates over diffraction, addition of small perturbations
to the equation has a small effect.

(ii1) In the critical case, oD =2 (as in the case
of Eq. (2)), solutions can also become singular with
a finite z. However, in this borderline case between
subcritical and supercritical self-focusing, singularity
formation is characterized by a near-balance between
the focusing nonlinearity and diffraction. As a result,
critical self-focusing is extremely sensitive to small
perturbations, which can have a large effect and can
even lead to the arrest of collapse.

Self-focusing is a genuinely nonlinear phenomenon
and standard linearization methods cannot be used to
analyze singularity formation in Egs. (1) and (2).In
addition, methods such as the inverse scattering trans-
form (IST), which is so successful in the 1D cubic
subcritical case, cannot be applied to Eq. (2), because
Eq. (2) is not integrable. Self-focusing in Eq. (1) or
(2) is, moreover, a local phenomenon which cannot
be accurately captured by global estimates. For these
reasons, despite considerable progress the present the-
ory of critical self-focusing in the presence of small
perturbations is still far from complete.

In this Letter we present a general method for an-
alyzing the effect of a any deterministic or random
perturbation on critical self-focusing. In this method
PNLS (1) is reduced to a simpler system of modula-
tion equations which do not depend on the transverse
variables. The reduced system is much easier to ana-
lyze and to simulate, and it provides insights that are
hard to get directly from PNLS.

2. Review of critical self-focusing

CNLS (2) has two important conserved quantities:
the power

— 1 2
N = 27,/|z/f| dxdy,

and the Hamiltonian
1 2 1 4

H) == [ |VipPdxdy - 5 [ wl*dxdy ),
2 2

é 4
()

A sufficient condition for singularity formation in
Eq. (2) is

H(o) <0,

while a necessary condition is

N(o) > Ne =~ 1.86.

CNLS has waveguide solutions of the form

Y =exp(i)R(r), r=(x2+yH'/2,

where R(r) satisfies

3 14
— +-—|R—R+R=0.
(6r2+r¢9r> +

R'(0)=0, lim R(r) =0. (3)
The solution of Eq. (3) with the lowest power
(*“ground state’”), sometimes called the Townes soli-
ton, has an important role in self-focusing theory.
This positive, monotonically decreasing solution has
exactly the critical power for self-focusing

o0
/Rzrdr = N,, (4)
0

and its Hamiltonian is equal to zero
H(R)=0. (5)

The analysis of blow-up in CNLS is based on the as-
sumption (which is supported by numerical and ana-
lytical evidence) that near the singularity the solution
is roughly a modulated Townes soliton,

l//Nl)va (6)

Yr = - R(p) exp(iS),

2
S=¢+ 2l (7)

_r
p= L4

Z 3
and

= (8)
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Table 1
Perturbations of critical NLS and their corresponding modulation equations. Here /¢ = f()w ROrdr. A t means that f) is given by Eq. (16).
The last column indicates where the derivation can be found

Perturbed CNLS Application Reduced equation Conservative Ref.
; 2 2 4Hy
i + DL+ 1P fiber arrays (y2)? = ‘—M—yz(}’M_}')(Y_)'m)()“‘.Vl) yes (6]

+EYxxix + %ezﬁﬁuuu =0

. + AL+ [¢|* — €|lg)*d =0 quintic nonlinearity (17) with C; = %16 yest 141

i, + D¢ saturating nonlinearity (17) with C, %16 yesf [6]
| 3
+—[1 —exp(—2elp|Hg =0
2e

2
i, + D Y+ —I—-—l—‘p—'lﬁw =0 Saturating nonlinearity (17) with C| = %16 yest [6}
€
W + O+ |02y — edrp = 0, Davey-Stewartson (M, (10) yes 6}
adxx + Py = —(le)x
W + DL+ W+ e =0 nonparaxiality (17) with C) = 4N, no (7]
W + D0+ Yy # random — L3, = By +4€l*h(z) yes (61
+e(x* + y)h(z)y =0
. 2 2 2 o . . 1 4 2516 1
i, + D Y|P + € (x* + ¥*) Quintic nonlinearity —L'L, =By +4eL%h(z) — M L2 yes 6]
xh(z) )¢ — eld|*y =0 + h random
. 2 . . . 2eN;
W, + AL+ 0P — ey =0 time dispersion B = —M—{n, (8), (10) no 18}
Cp L
W, + A1 ¢+ Ny =0, Debye relaxation L3 =B+ fz-ﬁb —Z’, yes [61
eN; + N = |yf? Cp=[(VLR)Hrdr~643
2¢1 N, 1
W, + A1+ WP + €1y time dispersion B =—- EI:/I £ (ﬁ) no 9]
N,
te ( ""Cg(wx]z(//), - wz,) + nonparaxiality 2(6.,A? - 2) ‘2M° ( Zli)(
—exy = 0 +ﬁ—5;,., (8), (10)
More precisely, near the singularity, ¢, the inner part ical, collapses towards the singularity in a quasi-self-
of the solution*, whose power is slightly above crit- sirnilar fashion,

A A possxble definition is 5 = ¢ for 0 < p < pe, with 1| K p¢ 1 )
constant. s~ ZV({, p) exp(iS),
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where

V>R asz— Z,

and Z; is the location of the singularity. Based on this
modulation ansatz, it was shown that near the singu-
larity self-focusing can be described by the reduced
system [1-3]

(B
,Bz—_ L2 ’ (9)
B
L"Z:_Z?’ (10)
where

v(B) ~ cexp (E'W/_?> c~45.1.

In order to motivate the system (9), (10), we note
that the modulation variable L is the radial width
as well as 1/amplitude of the focusing part i, and
that B is proportional to the excess power above crit-
ical of ¢ [4]. Therefore, at the point of blow-up
L(Z.) = B(Z.) =0.The () term arises from radia-
tion effects (power losses of ¢) during self-focusing.
Since near the singularity

0By 1,

v(B) is exponentially small and self-focusing is es-
sentially adiabatic.

2.1. Adiabatic approach

Originally, the reduced system (9), (10) was ana-
lyzed by solving Eq. (9) to leading order near Z. and
then using Eq. (10). This leads to the log—log law for
the rate of critical blow-up [1-3]. However, it turns
out that the log-log law does not become valid even
after amplification of the peak amplitude by a fac-
tor of a billion or more, which is long after the non-
linear Schrodinger equation ceases to be physically
relevant. Fortunately, this can be “fixed” by solving
Egs. (9) and (10) using an adiabatic approach. Since
changes in B (i.e. the power of ) are exponentially
small compared with the focusing rate, we first solve
Eq. (10) with B constant, and only then add the nona-
diabatic effects (9) as the next-order correction. Ap-
plication of this approach leads to an adiabatic law
for critical self-focusing, which is valid almost from
the onset of self-focusing [5].

3. Modulation theory for self-focusing in the
perturbed CNLS

The adiabatic law, which provides an accurate de-
scription of critical self-focusing in the domain of
physical interest, is obtained in two stages: (1) deriva-
tion of the reduced modulation equations (9) and
(10), which do not depend on the transverse vari-
ables and (ii) solving these equations with the radia-
tion term »( B) neglected to leading order (adiabatic
approach). In this section we extend this approach
to self-focusing in PNLS: (1) The modulation ansatz
(6) is used in Proposition 3.1 to reduce Eq. (1) to
the system (11), and (ii) the reduced system is an-
alyzed with the adiabatic approach (Propositions 3.2
and 3.3). More details, as well as the proof of the re-
sults are published elsewhere [6].

For modulation theory to be valid, the following
three conditions must hold.

(i) The focusing part of the solution is close to the
asymptotic profile (6).

(i1) The power of the focusing part is close 1o crit-
ical,

1
E/ltﬁs(z,x,y)Idedy—Nc <1,
or equivalently,

IB(z)| < 1.

(ii1) The perturbation is small:

leF| < |ALyl.|eF| < ||

In general, at the onset of self-focusing only condi-
tion (iii) holds. As the solution approaches Z. (the
blow-up point in the absence of the perturbation), con-
ditions (1) and (i1) are also satisfied and modulation
theory becomes valid.

The main result of modulation theory is the follow-

ing.

Proposition 3.1. If conditions (i)-(iii) hold and if
F is an even function in x and y, self-focusing in PNLS
(1) is given to leading order by the reduced system

v(B) € 2e
B.(z) + B “W(fl)z‘ﬁf%
Lzz(z)z_B (11)

F.
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The auxiliary functions f| and f, are given by

1 )
fi(z) =2L(z)Re[~m2 /F(wm exp(—iS)
a

X [R(p) + pVLR(p)] dxd)’], (12)
1
fa(2) =Im|:'27r‘/‘/’;F(‘//R)dXd)’:|’ (13)
where

1
M=g

o0
/r3R(r) dr ~ 0.55.
0

We note that assuming that we can carry out the
transverse integration, f; and f, are known functions
of the modulation variables L, B, { and their deriva-
tives.

3.1. Conservative and nonconservative perturbations
A considerable simplification is achieved if we dis-

tinguish between conservative perturbations, i.e. those
for which the power remains conserved,

d
a:/lw(z,x,yw)lzdxd.v =0
in Eq. (1), and nonconservative perturbations.

Proposition 3.2. Let conditions (i)—(iii) hold.
(1) If F is a conservative perturbation, i.e.

Im{/t{;*F(tﬂ)dxdy] =0,
then f, = 0, and to leading order Eq. (11) reduces to
LLy, =Bo+ — f
7z = P20 M 1»
€
= e , 14
Bo = B(0) 2Mf1(0) (14)

where By is independent of z.
(1) If F is a nonconservative perturbation, i.c.

Im[/¢*F(¢>dxdy] 0,

1 M
L L / ,
L A B C

L 0
z z z

Fig. 1. The leading-order effect of the canonical conservative per-
turbation (16). (a) Defocusing perturbation and Hy < 0 (Propo-
sition 3.3ia); (b) defocusing perturbation, Hy > 0 and L. (0) < 0
(Proposition 3.3ibl); (c) focusing perturbation and L.(0) < 0
(Proposition 3.3ii). In all cases By > 0 (i.e. power above critical).

then to leading order Eq. (11) reduces to

B

—73 (15)

2e
B = "'Mst L, =

Note that in both cases, nonadiabatic effects disap-
pear from the leading-order behavior of Eq. (11).

3.2. Canonical effect of conservative perturbations

It has been observed that various seemingly differ-
ent small perturbations have the same effect: arrest
of collapse, followed by focusing-defocusing cycles
(see Fig. 1a). In the next Proposition we use modu-
lation theory to explain this observation, by showing
that all conservative perturbations for which f| is of
the form3

C

17 C, = const, (16)

fi~—
have the same qualitative effect on self-focusing.
Proposition 3.3. When self-focusing is given by

Eq. (14) and f is given by Eq. (16), then y := L?
satisfies the canonical oscillator equation

4H, 1
(:V:)2=_7();()’M_y)(y“,)’m), (17)

where

_ VB + €CiHy /M + By

M = 2Ho/M
MpBo €H, )
=R Lo £
Hy [ - (B%)] (18)

3 For example, those marked in Table 1 with a .
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€C1

1
™= 2M B 1 €CiHo/ME + o
€C| EH[)
- 1 +of 0], 19
4M,80[Jr (B%)] 4

6C1
EC] 1
Hy ~ H(0) + -—4—[44(0).

Let us define L, := yrln/z, Ly = .Vllxl/z-

(1) If the perturbation is defocusing, i.e.

eC; >0, (20)

then it will arrest blow-up in Eq. (14), i.e. L (and y)
will remain positive for all z.

(ia) If, in addition to Eq. (20), 8o > 0and Hp < 0,
then 0 < Ly, < Lm, and L will go through periodic
oscillations between Ly, and Ly (Fig. 1a). The period
of the oscillations is

Az=2,/~MyME(1—y—"‘), (21)
Hy ™M

where E(m) = 0"/2(1 — msin® #)'/2d6 is the com-
plete elliptic integral of the second kind.

(ib) If in addition to Eq. (20), Bo > 0 and Hy > 0,
then

(ib1) If L, (0) < 0, self-focusing is arrested when
L =Ly >0, after which L will increase monotoni-
cally to infinity (Fig. 1b).

(ib2) If L, (0) > 0, L will increase monotonically
to infinity.

(ii) If the perturbation is focusing, i.e. €C; < 0,
and if in addition By > 0 and one of the following two
conditions holds, (1) Hy > 0 and L,(0) < Oor (2)
Hy < 0, then the solution of Eq. (14) will blow up at
a finite distance (Fig. 1c), 1.e.

3Z, suchthat0 < Z, < oo and L(Z,) =0.
3.3. Non-adiabatic effects

The results of the previous section show that the
exponentially small radiation term » () disappears
from the leading-order behavior of perturbed CNLS.
In the nonconservative case the effect of v(3) is even

smaller than the ( f)), term, which is also ignored.
However, in the conservative case when By > 0 and
Hy < 0, a defocusing perturbation can lead to pe-
riodic oscillations (as in Proposition 3.3ia). In this
case, the nonadiabatic radiation effect »(8) provides
the only mechanism for decay of the oscillations. It
can be shown that if € is moderately small, the to-
tal power loss during one oscillation is small and the
focusing—defocusing oscillations are slowly decreas-
ing, but that for sufficiently small € the quasi-periodic
picture breaks down and focusing is completely ar-
rested after a few oscillations [7]. Further analysis
of nonadiabatic effects in Eq. (17) can be found in
Ref. [4].

3.4. Modulation theory for multiple perturbations

In some cases, one is interested in the combined
effect of several small perturbations, e.g. randomness
and quintic nonlinearity or time dispersion and non-
paraxiality (see Table 1). Modulation theory can cas-
ily handle these cases, since the modulation equations
are linear in F. Therefore, one simply adds the con-
tribution of each perturbation to the modulation equa-
tions.

4. Applications

The modulation approach was used by Malkin to
study the effect of a small defocusing fifth power non-
linearity [4]. In Ref. [8], Fibich et al. analyzed the
effect of small normal time dispersion, using for the
first time a systematic approach that is generalized in
this Letter. A similar approach was also used by Fibich
to analyze the effect of beam nonparaxiality [7] and
the unperturbed CNLS [5] and by Fibich and Papan-
icolaou to analyze the combined effect of time disper-
sion and nonparaxiality [9]. Additional applications,
listed in Table 1, are derived in Ref. [6].

Direct numerical confirmation of the validity of the
modulation equations and the adiabatic approach was
carried out in the case of the unperturbed NLS [5]
and in the case of small normal time dispersion [8].
In many other cases, there is qualitative agreement
between the predictions of the modulation equations
and the results of numerical simulations of the cor-
responding PNLS. For example, the behavior of de-
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caying focusing—defocusing oscillations was observed
numerically for fiber arrays [10], saturating nonlin-
earities [ 11,12] and nonparaxiality [13].

5. Conclusion

In this Letter we have introduced a modulation the-
ory for analyzing the leading-order effects of small
perturbations on critical self-focusing. This theory is
able to capture the delicate balance between nonlinear-
ity and diffraction in critical self-focusing, because it
is based on perturbations of the solution around mod-
ulated Townes solitons (¢z). We note that the valid-
ity of other studies of PNLS in which the derivation
of reduced equations is based on modulated Gaus-
sians is questionable, because modulated Gaussians
cannot capture the delicate balance in critical self-
focusing (e.g. Gaussians cannot simultaneously sat-
isfy Egs. (4) and (5)). Moreover, the derivation of
reduced equations with our ¢ g-based modulation the-
ory is just as easy as with modulated Gaussians. In
fact, all that is needed is to carry out the transverse
integration in evaluating f; and f.

We have already remarked that modulation theory
becomes valid near the blow-up point Z;. For some
perturbations (e.g. nonparaxiality, saturating nonlin-
earities) one can show that the modulation equations
remain valid for all z [6,7]. However, in other cases
(e.g. small normal time dispersion) it is not clear
for how long modulation theory remains valid, and

further analysis may be needed for the advanced stages
of self-focusing.
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