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Abstract

We consider nonlinear bound states of the nonlinear Schrödinger equation

i∂zφ(z, x) = −∂2
xφ − (1 + m(N x))|φ|

p−1φ,

in the presence of a nonlinear periodic microstructure m(N x). This equation models the propagation of laser beams in a medium whose nonlinear
refractive index is modulated in the transverse direction, and also arises in the study of Bose–Einstein Condensation (BEC) in a medium with
a spatially dependent scattering length. In the nonlinear optics context, N = rbeam/rms denotes the ratio of beam width to microstructure
characteristic scale. We study the profiles of the nonlinear bound states using a multiple scale (homogenization) expansion for N � 1 (wide
beams), a perturbation analysis for N � 1 (narrow beams) and numerical simulations for N = O(1). In the subcritical case p < 5, beams
centered at local maxima of the microstructure are stable. Furthermore, beams centered at local minima of the microstructure are unstable to
general (asymmetric) perturbations but stable relative to symmetric perturbations. In the critical case p = 5, a nonlinear microstructure can only
stabilize narrow beams centered at a local maximum of the microstructure, provided that the microstructure also satisfies a certain local condition.
Even in this case, the stability region is very small so that small (O(10−2)) perturbations can destabilize the beam. Therefore, such beams are
“mathematically” stable but “physically” unstable.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction and overview

The propagation of linearly polarized, paraxial laser beams
in a homogeneous Kerr medium can be modeled by the
nonlinear Schrödinger equation (NLS)

i∂zφ(z, x) = −∆φ − |φ|
2φ, φ(0, x) = φ0(x). (1.1)

Here φ is the slowly varying envelope of the electric field, z
measures the distance in the direction of propagation, x =

(x1, . . . , xd) is the d-dimensional transverse vector and ∆ =
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∂2
x1

+ · · · + ∂2
xd

is the d-dimensional Laplacian (diffraction)
operator. The case d = 1 corresponds to propagation of beams
in a planar geometry (slab waveguide), d = 2 to propagation
in a bulk medium, and d = 3 to propagation of pulses in
a bulk medium with anomalous time dispersion (in this case,
time plays the role of a third “spatial” variable). The cubic
(Kerr) nonlinearity in (1.1) results from the dependence of the
refractive index on the electric field intensity

n = n0 + n2|φ|
2, (1.2)

where n0 and n2 are constants that denote the linear and
nonlinear refractive indices of the medium, respectively.

The NLS

i∂tψ(t, x) = −∆ψ + g|ψ |
2ψ, (1.3)
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also models the dynamics of Bose–Einstein Condensates
(BEC), which are the subject of numerous recent theoretical
and experimental investigations. In that context, the NLS is also
known as the Gross–Pitaevskii (GP) equation. In this equation,
typically x = (x, y, z), i.e., d = 3, but the cases d = 1
and d = 2 are also of physical interest. The parameter g
denotes the atomic scattering length. Negative scattering length
corresponds to focusing nonlinearity (n2 > 0).

In order to understand the relative effects of diffraction
(−∆) and nonlinearity (|φ|

2) in Eq. (1.1), it is useful to
consider the more general NLS

i∂zφ = −∆φ − |φ|
p−1φ, (1.4)

with a nonlinearity exponent p > 1. We delineate several cases
for the NLS (1.4):

p < 1 +
4
d
, the subcritical case,

p = 1 +
4
d
, the critical case,

p > 1 +
4
d
, the supercritical case. (1.5)

In the subcritical case we have global existence in z, i.e.
arbitrary H1 initial conditions give rise to solutions which
exist for all z. In contrast, in the critical and supercritical
cases NLS solutions can become singular after propagating a
finite distance Zc. The critical case is characterized by a sharp
L2 norm (power) threshold Pcr(d), such that for P ≥ Pcr
singularity formation can occur, while for P < Pcr solutions
diffract to zero with advancing z, where P =

∫
|φ0|

2dx is
the beam power1 [62,63]. The critical case p = 1 + 4/d is
distinguished by the property that in this case the power, P ,
is invariant under the natural dilation scaling of NLS (1.4),
φ(·, x) 7→ φλ(·, x) ≡ λ2/(p−1)φ(·, λx), i.e. P[φλ] = P[φ]. For
more information on NLS theory, see [58,60,62].

The NLS (1.4) is derived from Maxwell’s equations
and the constitutive law (1.2) for a homogeneous Kerr
nonlinear medium. Recent advances in fabrication methods
have made possible the fabrication of transparent media with
rapidly varying, high-contrast refractive properties (see e.g.
[36,37]) with potential light-processing applications ranging
from optical communication transmission media to quantum
information science. Thus there is considerable interest in
understanding the propagation of light in microstructure media.

Linear microstructures: Most studies have considered
linear microstructures, i.e., those for which n0 is modulated
while n2 remains uniform. Nonlinear bound states (stationary
self-trapped beams) in the presence of a periodic linear
microstructure in the direction of propagation, i.e.,

n = n0(z)+ n2|φ|
2,

have been studied both analytically and experimentally;
see, e.g., the review [10] and references therein. Such a

1 We call the L2 norm the power, since in the nonlinear optics context it
corresponds to physical beam power.
microstructure can support propagation of gap solitons [22,42]
and gives rise to phenomena such as slow light [19]. Trapping of
gap soliton pulses in periodic structures with localized defects
has been studied in [31,32]. This has potential applications
to optical buffering, high-density storage and optical gates.
Propagation of light in media with a linear microstructure
where n0 is modulated in the transverse plane, i.e.,

n = n0(x)+ n2|φ|
2,

was studied in [29,48,53]. Other studies considered transverse
periodic linear microstructures, also known as photonic
lattices. In particular, the limiting regimes of the discrete (“tight
binding”) and semi-discrete NLS can be used to demonstrate
the existence and stability of discrete solitons [6,7,11,18,24,
66,67]. In the context of quantum mechanics [28] there is
the related notion of quantum breathers. Further studies used
the continuous NLS model to study lattice solitons and their
relation to the detailed band-gap structure [27,47,59]. For a
recent review, see [12] and references therein.

In certain studies of BECs, condensates are studied on the
background of a periodic linear medium (n0(x) or equivalently
V (x) in the NLS/GP equation) or optical lattice, induced
by the interference of laser beams. As a result, dynamics
of condensates loaded on optical lattices are similar to the
dynamics of discrete solitons [17,57] or lattice solitons [23].
For a review of these BEC studies, see [2,41].

Nonlinear microstructures: Recent success in the fabrication
of media with a rapidly varying nonlinear refractive index [36]
has motivated the study of the NLS with a spatially varying
nonlinear coefficient, i.e., a nonlinear microstructure. This
corresponds to media where n2 is modulated and n0 is constant.
In the BEC context, the analogous situation is one where the
scattering length (controlled by the Feshbach resonance) varies
in space. The possibility of controlling the scattering length [25,
61] makes it possible to induce a spatially and temporally
dependent nonlinearity. The case of a periodic nonlinearity in
the direction of propagation, i.e.,

n = n0 + n2(z)|φ|
2,

was analyzed in [4,15,49,54] in the context of a nonlinear ana-
log of dispersion management, sometimes called nonlinearity
management, and in [4,45] in the context of BEC.

The case considered in this paper, of modulation of n2 in the
transverse direction, i.e.,

n = n0 + n2(x)|φ|
2, (1.6)

has received little attention thus far. Merle [43,44] studied the
properties of blowup solutions of

i∂zφ = −∆φ + g(x)|φ|
p−1φ, (1.7)

in the critical case p = 1 + 4/d for g(x) < 0. Fibich and
Wang found a condition for the stability of radially symmetric,
narrow bound states of Eq. (1.7) in the critical case [26]. Studies
of Eq. (1.7) in the context of BEC were done mainly for the case
d = 1 and p = 3 (subcritical case) using the moment method
and standard soliton perturbation techniques [1,4,55,61]. In [3],
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Fig. 1. Graphical illustration of a medium with a microstructure in the
transverse plane.

results of soliton motion and radiation were obtained. In [16],
specific conditions for stability were derived for the subcritical
case when d ≥ 3. Finally, Hajaiej and Stuart [35] proved the
stability of the constrained energy minimizers (ground states)
of Eq. (1.7) in the d-dimensional subcritical case.

In this paper we consider Eq. (1.7) in one transverse
dimension x , which corresponds to propagation in a planar
geometry (d = 1). Hence, p < 5 corresponds to subcritical
self-focusing, and p = 5 to critical self-focusing. Since both
cases, (d, p) = (1, 5) and (d, p) = (2, 3), are critical, the
case p = 5 with one transverse dimension is mathematically
analogous to the physical case of Kerr (cubic) nonlinearity
p = 3 in two transverse dimensions (i.e., propagation in a bulk
Kerr medium) [56].

We focus on the case of a periodic nonlinear microstructure
in the transverse direction, corresponding to the design of many
manufactured slab microstructure waveguides. In this case, the
propagation is governed by the one-dimensional NLS

i∂zφ = −∂2
xφ − (1 + m(N x))|φ|

p−1φ, (1.8)

where the periodic function m(N x) describes the nonlinear
microstructure variations in the transverse direction (see Fig. 1).

The paper is organized as follows. In Section 2, we derive
Eq. (1.8) from the Helmholtz equation with a nonlinear
microstructure refractive index. In this derivation it is useful
to introduce the parameter N , which measures the ratio of the
input beam width rbeam to the microstructure period rms,

N =
rbeam

rms
. (1.9)

Thus, N � 1 corresponds to narrow beams (beams which
are narrower than the microstructure period) and N � 1
corresponds to wide beams (beams which are wider than the
microstructure period). We find that the stability properties of
microstructure bound states are strongly dependent on N .

Bound states φ = eiνzu(N )(x; ν) of Eq. (1.8) satisfy the
equation

−∂2
x u(N ) − (1 + m(N x))(u(N ))p

+ νu(N ) = 0. (1.10)

In Section 3.1, we solve this equation in the case of wide (N �

1) bound states using a multiple scale expansion (Theorem 3).
The expansion shows that, to leading order in 1/N , u(N ) is
a nonlinear bound state of a homogeneous medium with an
average Kerr nonlinearity coefficient 〈n2〉. Here, 〈n2〉 is equal
to the arithmetic average of n2(x) over one microstructure
period. Corrections due to microstructure in the nonlinear
bound state profile arise only atO(N−2). Therefore, even when
the microstructure variations are O(1), the microstructure has
a small effect on the bound state profile. We also prove that
nonlinear microstructure always reduces the L2 norm (power)
of wide bound states (Theorem 7). Since our multiple scales
expansion remains valid for high-contrast microstructure and
even for maxx |m(N x)| > 1, our analysis covers situations
where the nonlinearity coefficient changes sign.

We note that standard homogenization theory [14] can
also be used in order to calculate the leading order solution
of Eq. (1.10). However, for N � 1, computation of the
O(N−2) correction due to microstructure is essential in the
case of critical nonlinearities (p = 5) since for N = ∞ the
solitary wave is only marginally unstable (algebraic growth
of the linearized evolution). Our study of the first nontrivial
corrections in 1/N shows that the highly degenerate (due to
criticality) zero mode of the linearized operator perturbs to
an exponential instability, a result which cannot be obtained
by leading order homogenization. Two other problems where
homogenization gives an incomplete picture are [30,40].

In Section 3.2, we use perturbation analysis to obtain an
expansion in powers of N for narrow bound states (N � 1).
As in the case of wide beams, the leading order term in the
expansion is a nonlinear bound state of the homogeneous NLS.
Here, the uniform Kerr coefficient is determined by the local
properties of the microstructure. As in the case of wide beams,
even when the microstructure variations are not small, the
microstructure has a small effect on the bound state profile. We
also show that the microstructure leads to an O(N 2) change in
the bound state power for p 6= 5, but only an O(N 4) change in
the critical case p = 5.

With asymptotic expansions of nonlinear bound states in
hand, in Section 4 we turn to the question of the dynamical
stability of the waveguide solutions φwg(x, z) = u(N )(x; ν)eiνz .
General conditions for stability and instability for equations
of nonlinear Schrödinger equations were given in [34,64,65].
These conditions, which ensure that the bound state, which is
a critical point of an appropriate energy functional, is in fact a
local minimizer, are as follows (see Theorem 10):

(S1) The linearized operator

L(N )+ ≡ −∂2
x + ν + p(1 + m(N x))(u(N )(x))p

has no more than one negative eigenvalue (the spectral
condition).

(S2) ∂ν ‖u(N )(x; ν)‖
2
2 > 0 (the slope condition).

We apply these two conditions to study the stability
and instability of wide (N � 1), O(1) and narrow
(N � 1) beams for subcritical (p < 5) and critical
(p = 5) cases. In the subcritical case, beams centered
at a local maximum of the microstructure are stable while
beams centered at a local minimum of the microstructure are
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Table 1
Stability of beams with various widths for the subcritical case p = 3

Symmetric problem General problem
Local maximum Local minimum Local maximum Local minimum

N � 1 Stable Stable Stable Probablya unstable
N = O(1) Stable Stable Stable Unstable
N � 1 Stable Stable Stable Unstable

Since the slope is always positive, stability is determined by the spectral condition (S1).
a See the discussion in Section 4.6.1.
Table 2
Stability of beams with various widths for the critical case p = 5

Symmetric problem General problem
Local maximum Local minimum Local maximum Local minimum

N � 1 Unstablea Unstablea Unstablea Unstablea

N = O(1) Unstablea Stable Unstablea Unstableb

N � 1 Determined by Eq. (4.14) Determined by Eq. (4.14) Unstableb

a Source for instability is a failure to satisfy the slope condition (S2).
b Source for instability is a failure to satisfy the spectral condition (S1).
stable relative to symmetric perturbations (symmetric problem)
but unstable under general, symmetry-breaking perturbations
(general problem), see Table 1. In the critical case, only narrow
beams centered at a local maximum of a microstructure that
satisfies the local condition (4.14) can be stable, while wide
and O(1) beams centered at a local maximum are unstable due
to a negative slope. Beams centered at a local minimum are
unstable due to a second negative eigenvalue (violation of (S1));
see Table 2.

An interesting case is that of O(1) beams centered at a local
minimum. Although the slope condition (S2) holds for both the
subcritical and the critical cases, the beam is still seen to be
unstable. Indeed, the linearized operator L(N )+ has two negative
eigenvalues, the larger of which corresponds to an asymmetric
eigenstate. Instability then follows from Theorem 10. Insight
into the nature of this instability can be obtained by an
Ehrenfest-type calculation: we show in Section 4.7 that the
acceleration of the center of mass of the beam is always in the
direction of the nearest local maximum of the microstructure.
In other words, the instability of beams centered at a local
minimum of the microstructure is due to the tendency of the
beam to move toward regions of higher nonlinear index of
refraction. This drift instability is related to an excitation of
the asymmetric second mode of L(N )+ . Due to the reflection
symmetry of the equation about local minima, stability can be
restored by constraining to initial data which are symmetric
about the local minimum.

In Section 4.5, we show that in the case of O(1) beams the
definition of a beam “centered” at a microstructure maximum
or minimum is more subtle. This is due to the fact that,
unlike narrow beams, an O(1) beam interacts with a more
extended spatial “landscape”. Therefore, in order to determine
the stability properties of an O(1) beam, one needs to average
out microstructure changes which are more rapid than the
O(1) beam scale. We observe that a coarse grained description,
in terms of a locally averaged but not globally averaged
description, may be most appropriate for defining whether the
beam is centered at a microstructure maximum or minimum.

In Section 5 we illustrate the stability and instability results
of Section 4 through numerical simulations. In the subcritical
case p = 3 (Section 5.1), bound states centered at a local
maximum of the microstructure are indeed stable, as well
as beams centered at a local minimum of the microstructure
that are perturbed by a symmetric perturbation. However,
asymmetric perturbations (e.g., a lateral shift of the beam
center) cause beams centered at a local minimum to drift
toward the nearest local maximum and to oscillate about
it. As noted earlier, this drift instability is related to the
existence of a second (asymmetric) negative eigenvalue. In the
critical case p = 5 (Section 5.2), our simulations show that
whenever the instability originates from a failure to satisfy
the slope condition (e.g., wide and O(1) beams centered
at a microstructure maximum), the beam undergoes either
blowup or total diffraction, depending on its initial power.
This blowup/diffraction instability is similar to the case of
a homogeneous NLS. As in the subcritical case, whenever
the instability originates from a second negative eigenvalue
(i.e., beams centered at a local minimum), the solution exhibits
a drift instability. However, unlike in the subcritical case,
these beams blow up as they drift rather than oscillate about
the microstructure maximum. Depending on the input beam
power, the blowup point can be before or after the nearest local
maximum. Finally, we confirm that narrow beams centered at
a local maximum of a microstructure that satisfies condition
(4.14) are stable. We expect, however, that this stability is more
of mathematical than physical interest since the magnitude of
the positive slope is only O(N 4) small. Indeed, we find that the
beam is stable under perturbations of sizeO(10−4) but becomes
unstable under perturbations O(10−2). Section 6 contains a
summary and concluding discussion.
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2. Theory of stationary beams in nonlinear microstructures

2.1. Derivation of the NLS

Consider the scalar nonlinear Helmholtz equation

∆E(z, x)+
ω2

0

c2 n2(x, |E |
2)E = 0, (2.1)

as a model for the propagation of linearly polarized,
monochromatic beams in a planar waveguide with a Kerr-type
nonlinearity. Here E denotes the electric field, z the direction
of propagation, x the transverse coordinate, ∆ = ∂2

z + ∂2
x , ω0

the carrier frequency, c the speed of light in vacuum and n the
refractive index. In this paper we analyze the case where the
linear index of refraction n0 is uniform, but the nonlinear index
of refraction n2 is periodically modulated in the transverse
direction x , i.e.,

n(x) = n0 + n2(x)|E |
2, n2(x) = n̄2 + δn2

(
x

rms

)
, (2.2)

where n0 and n̄2 are constants and δn2(
x

rms
) is periodic with

period rms. We introduce the standard nondimensional variables

z̃ ≡
z

2k0r2
beam

, x̃ ≡
x

rbeam
,

E = eik0z(2n0n̄2k2
0r2

beam)
−

1
2φ, (2.3)

where k0 = ω0n0/c denotes the wavenumber in the medium
and rbeam the width of the incident beam. Substituting
the rescaling (2.3) in Eq. (2.1), assuming that the Kerr
nonlinearity is small (i.e., n2|φ|

2
� n0) and using the paraxial

approximation (φzz � k0φz) we obtain for φ(z̃, x̃)

i∂z̃φ = −∂2
x̃φ − (1 + m(N x̃))|φ|

2φ,

where m(N x̃) = δn2(N x̃)/n̄2 and

N ≡ rbeam/rms.

Therefore, N � 1 describes the situation of a wide input
beam (rbeam � rms) and N � 1 describes a narrow beam
(rms � rbeam); but see also Remark 2.

In what follows, we consider a more general equation with
a general power nonlinearity p > 1, rather than only the cubic
case (p = 3). Thus, suppressing the tildes, we get

i∂zφ = −∂2
xφ − (1 + m(N x))|φ|

p−1φ, φ(0, x) = φ0(x).

(2.4)

When the nonlinear index of refraction is also uniform,
i.e., δn2(N x) ≡ 0, then m ≡ 0 and Eq. (2.4) reduces to the
homogeneous nonlinear Schrödinger equation

i∂zφ = −∂2
xφ − |φ|

p−1φ. (2.5)

The natural scaling of the spatial variable of the microstructure
variations is X ≡ N x . Indeed, under this definition, m = m(X)
is periodic with period 1.
Remark 1. Without loss of generality, we can assume that the
X -average of m is zero, i.e.,

〈m〉 ≡

∫ 1

0
m(X) dX = 0. (2.6)

Indeed, if the average of m is nonzero, we can define m ≡

m̃ + 〈m〉 and φ̃ = φ/(1 + 〈m〉)
1

p−1 so that φ̃ satisfies Eq. (2.4)
with a mean-zero periodic nonlinear microstructure.

We also assume that m is an even function. Thus, m satisfies
the following three requirements:

〈m〉 = 0, m(X) = m(−X), m(X) = m(X + 1). (2.7)

2.2. Bound states

We seek nonlinear bound states of Eq. (2.4) of the form

φ(z, x) = eiνzu(N )(x; ν),

where u(N ) is a real function. The equation for u(N ) becomes

d2

dx2 u(N ) + (1 + m(N x))(u(N ))p
− νu(N ) = 0,

u(N )(±∞) = 0. (2.8)

Recall that in a homogeneous medium (m ≡ 0), Eq. (2.8)
reduces to

d2

dx2U + U p
− ν U = 0, (2.9)

whose solution is given by

U(x, ν) =

(
p + 1

2
ν

) 1
p−1

sech
2

p−1

(
p − 1

2

√
νx

)
. (2.10)

Since the nonlinear microstructure is symmetric with respect
to x = 0, in what follows we will look for bound states that
are also symmetric with respect to x = 0. Therefore, we can
replace Eq. (2.8) with the following boundary value problem
on the positive real line:

d2

dx2 u(N ) + (1 + m(N x))(u(N ))p
− νu(N ) = 0,

d
dx

u(N )(0) = 0, u(N )(∞) = 0, (2.11)

for 0 < x < ∞. The solution on all R is obtained by reflection
about x = 0.

Remark 2. Under the transformation u(Ñ ) = ν
1

p−1 u(N )(
√
νx),

Eq. (2.11) becomes

−
d2

dx2 u(Ñ ) − (1 + m(Ñ x))(u(Ñ ))p
+ u(Ñ ) = 0, Ñ ≡

N
√
ν
.

(2.12)

Therefore, the parameter that determines whether the bound
state of (2.11) is wide or narrow is Ñ rather than N . However,
since the width of the bound state is ≈ ν−

1
2 (see Eq. (2.10)) and

since the rescaling (2.3) implies that the nondimensional width
is O(1), it follows that ν = O(1) in Eq. (2.11).
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3. Calculation of bound states

3.1. Calculation of wide bound states (N � 1) using multiple
scales analysis

We now adopt a multiple scale approach to calculate an
asymptotic approximation of wide bound states (N � 1),
i.e., bound states whose width is at least a few microstructure
periods long (rbeam � rms):

Theorem 3. Let m(X) satisfy Eq. (2.7) and let N � 1. Then,
the solution of Eq. (2.11) is given by

u(N )(x; ν) = U(x, ν)

−
1

N 2 (U
p

[∂−2
X m(X)] − pτm L−1

+ [U2p−1
])

+O(N−4), (3.1)

where U is given by Eq. (2.10), X = N x, ∂−2
X is given by (3.15)

with k = 2,

τm = −〈m ∂−2
X m〉 = 〈[∂−1

X m]
2
〉 > 0, (3.2)

the average 〈·〉 is given by Eq. (2.6), and

L+ = −d2
x + ν − pU p−1(x, ν). (3.3)

Since limN→∞ u(N ) = U , Theorem 3 shows that as N → ∞

the bound state only “feels” the average nonlinear refractive
index n̄2 =

1
rms

∫ x+rms
x n2(x) dx ; see (2.2). At large but finite

values of N , wide bound states differ from the bulk bound
state only by an O(N−2) term. Note that this holds even when
m undergoes O(1) changes, i.e., when δn2 is comparable in
magnitude to n̄2 (see, e.g., Fig. 7).

Proof. We view the solution u(N ) as a function of a slow scale
x and a fast scale X = N x , i.e., u(N ) = u(N )(x, X). In terms
of the independent variables x and X , d/dx is replaced by
∂x + N∂X so that Eq. (2.11) can be rewritten as

−(∂2
x + 2N∂x∂X + N 2∂2

X )u
(N )(x, X)

− (1 + m(X))(u(N ))p
+ νu(N ) = 0. (3.4)

We expand the solution of (3.4) in a power series in N−1,
i.e.,

u(N )(x, X) = u0(x, X)+
1
N

u1(x, X)+
1

N 2 u2(x, X)+ · · · .

(3.5)

Substituting expansion (3.5) into Eq. (3.4) and equating
powers of N yields the following hierarchy of equations:

O(N 2) : −∂2
X u0 = 0, (3.6)

O(N ) : −∂2
X u1 = 2∂x∂X u0, (3.7)

O(N 0) : −∂2
X u2 = 2∂x∂X u1

+ ∂2
x u0 + [1 + m(X)]u p

0 − νu0, (3.8)

O(N−1) : −∂2
X u3 = 2∂x∂X u2

+ ∂2
x u1 + [1 + m(X)]pu p−1

0 u1 − νu1,

(3.9)
O(N−2) : −∂2
X u4

= 2∂x∂X u3 + ∂2
x u2 + [1 + m(X)]pu p−1

0 u2

+ [1 + m(X)]
( p

2

)
u p−2

0 u2
1 − νu2. (3.10)

Similarly, substituting Eq. (3.5) into the boundary condition
d

dx u(N )(0) = 0, see Eq. (2.11), and equating powers of N gives
the following hierarchy of boundary conditions:

O(N ) : ∂X u0(x = 0, X = 0) = 0, (3.11)

O(N− j ) : ∂X u j+1(0, 0)+ ∂x u j (0, 0) = 0, j = 0, 1, . . . .

(3.12)

In addition, the condition u(N )(∞) = 0 translates into

u j (∞, X) = 0 j = 0, 1, . . . . (3.13)

Each equation in the hierarchy (3.6)–(3.10) is of the form

−∂2
X u j (X; x) = F j (x, X), (3.14)

where F j (x, X) depends on {un}n< j . Since m(X) has period 1,
we shall seek to construct an expansion where each u j , and
therefore each F j (x, X) has a period 1 in X . For this we use:

Lemma 4. Eq. (3.14), in which the forcing function F j (·, X) is
a periodic function of X with period 1, has a solution which is
periodic in X with period 1 if and only if 〈F j 〉 = 0. In this case,
the solution of Eq. (3.14) can be explicitly constructed using the
Fourier series of F j (·, X).

Proof. Since F j (·, X) is periodic it can be expanded in a
Fourier series:

F j (·, X) =

∑
n∈Z

fnei2πnX .

If 〈F j 〉 = 0, then we can define ∂−k
X , a mapping from the space

of mean-zero periodic functions to itself by

∂−k
X F j =

∑
n 6=0

(i2πn)−k fnei2πnX . (3.15)

Note that u j (X) = −∂−2
X F j (X) satisfies Eq. (3.14).

Conversely, if u j (X) is a periodic solution of Eq. (3.14), then
integration of Eq. (3.14) between 0 and 1 implies 〈F j 〉 = 0.

�

Remark 5. The general solution of Eq. (3.14) which satisfies
the periodicity requirement u j (·, X) = u j (·, X + 1) is

u j (X, x) = −∂−2
X F j (X, x)+ u j,h(x),

where u j,h(x) is an arbitrary function of x and ∂−2
X F j is defined

by (3.15).

We now turn to solving Eqs. (3.6)–(3.10). By Remark 5, the
solution of Eq. (3.6) is u0 = u0,h(x) which indeed satisfies
condition (3.11). Consequently, the solution of Eq. (3.7) is

u1 = u1,h(x). (3.16)
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By Lemma 4, solvability of Eq. (3.8) requires that the average
of its right-hand side would be equal to zero. Since, u0 = u0,h ,
this yields

∂2
x u0,h + u p

0,h − νu0,h = 0. (3.17)

Hence, by condition (3.12) and (3.13), u0 = u0,h = U(x, ν);
see Eq. (2.10). Since, in addition, u1 = u1,h(x), from Eq. (3.8)
it follows that u2(x, X) satisfies the simplified equation

−∂2
X u2 = m(X)U p(x, ν).

By Remark 5,

u2 = −U p(x, ν) [∂−2
X m(X)] + u2,h(x), (3.18)

where the homogeneous solution, u2,h(x), is to be determined
at a later stage and ∂−2

X m(X) is defined by (3.15). Consequently,
condition (3.12) for j = 1 becomes

∂X u2(0, 0)+ ∂x u1(0, 0)

= −U p(0, ν) [∂−1
X m(X)]|x=0 + ∂x u1,h(0)

= ∂x u1,h(0) = 0. (3.19)

Solvability of Eq. (3.9) requires that the X -average of its
right-hand side would be equal to zero. Using Eq. (3.16) gives

L+u1,h = 0, (3.20)

where L+ is given by Eq. (3.3). Since L+ has the null space

Ker(L+) = span{∂xU(x, ν)}, (3.21)

and since ∂xU(x, ν) is an odd function of x , the solution of
Eq. (3.20) subject to the boundary conditions (3.19) and
(3.13) is u1,h ≡ 0. Therefore, by Eq. (3.16), u1 ≡ 0. Therefore,
by Remark 5 and Eq. (3.18), the solution of Eq. (3.9) is given
by

u3(x, X) = 2 (∂−3
X m(X))∂x (U p)+ u3,h(x), (3.22)

and condition (3.12) for j = 2 becomes

∂x u2(0, 0) = 0. (3.23)

Solvability of Eq. (3.10) requires that the X -average of the
terms on its right-hand side would be equal to zero. Calculating
the averages term by term gives

〈2∂x∂X u3〉 = 0, (3.24)

for the first term. Using Eq. (3.18), gives

∂2
x u2 − νu2 = −[∂−2

X m(X)](∂2
x − ν)U p(x, ν)

+ (∂2
x − ν)u2,h(x),

whose average is given by

〈∂2
x u2 − νu2〉 =

(
∂2

x − ν
)

u2,h(x). (3.25)

In the same manner, by Eq. (3.18)

〈(1 + m(X))pU p−1u2〉

= 〈(1 + m(X))pU p−1(−[∂−2
X m(X)]U p

+ u2,h(x))〉

= pU p−1u2,h(x)+ pτmU2p−1, (3.26)
where τm is given by Eq. (3.2). Substituting the aver-
ages (3.24)–(3.26) in the X -average of the right-hand side of
Eq. (3.10) gives the following equation for u2,h(x):

∂2
x u2,h − νu2,h + pU p−1(x, ν)u2,h + pτmU2p−1

= 0.

Therefore, by condition (3.23),

u2,h(x) = pτm L−1
+ [U2p−1

] ,

where L+ is defined by Eq. (3.3). Finally, by Eq. (3.18),

u2(x, X) = −[∂−2
X m(X)]U p(x, ν)+ pτm L−1

+ [U2p−1
]. (3.27)

This concludes the proof of Theorem 3. �

We can use the results of Theorem 3 to calculate the effect
of a periodic nonlinear microstructure on the power (L2 norm)

of the bound states ‖u(N )(ν)‖
2
2 =

∫
|u(N )(x, ν)|2dx :

Corollary 6. Let u(N ) be the solution of Eq. (2.11), let m(X)
satisfy Eq. (2.7) and let N � 1. Then,

‖u(N )(ν)‖
2
2 = ‖U(ν)‖2

2 −
Cwide

N 2 +O(N−4), (3.28)

where the constant Cwide is given by Cwide
= τm∂ν

∫
U2p(x, ν) dx and τm is given by Eq. (3.2).

Proof. See Appendix A.

Corollary 6 implies the following

Theorem 7. Let N � 1. Then, a mean-zero nonlinear
microstructure always decreases the L2 norm (power) of the

bound states of Eq. (2.4), i.e., ‖u(N )(ν)‖
2
2 < ‖U(ν)‖2

2.

Proof. Recall that U(x, ν) satisfies, see Eq. (2.10),

U(x, ν) = ν
1

p−1U(ν
1
2 x, 1). (3.29)

Hence,∫
U(x, ν)2k dx = ν

2k
p−1 −

1
2 ρ∗(k),

ρ∗(k) =

∫
U2k(x, 1) dx > 0, (3.30)

which for k = p reduces to ν
2p

p−1 −
1
2 ρ∗(p). Therefore, for all

p > 1 and ν > 0,

∂ν

∫
U(x, ν)2p dx =

(
2p

p − 1
−

1
2

)
ν

2p
p−1 −

3
2 ρ∗(p)

=

(
3p + 1

2(p − 1)

)
ν

2p
p−1 −

3
2 ρ∗(p) > 0. (3.31)

Hence, theO(N−2) term in Eq. (3.28) is strictly negative. �

3.1.1. Simulations
In this section, we solve the boundary value problem (2.11)

numerically using the Fourier transform iterative method (see
Appendix B). These simulations confirm the results of the
multiple scale analysis for N � 1. In fact, we observe that
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Fig. 2. Solutions of Eq. (2.11) with p = 3, ν = 1 and m = 0.5 cos(2πN x) for N = 2 (dotted line) and N = 4 (dashed line). Also shown is U =
√

2sech(x) (solid
line). (a) u(N ) and U as a function of x : the three lines are indistinguishable. (b) Magnification of region near x = 0. (c) u(N ) − U as a function of x . (d) Same as
(c). Also shown is u2/N 2 as given by Eq. (3.27) (solid line).

Fig. 3. (a) Difference between the power of U and u(N ) for p = 3 and α = ±0.5 (stars) and the least squares fit of log(‖U‖
2
2 − ‖u(N )‖

2
2) ≈ −2.0035 log N − 2.68

(solid line). (b) same data on a log–log scale.
even for N ≈ 2 there is a good agreement between the results
of the multiple scale expansion and the computed bound states.

In the simulations we use the nonlinear microstructure

m = α cos(2πN x) = α cos(2πX), (3.32)

which satisfies condition (2.7). In this case, α > 0 (α < 0)
describes a situation where the beam is centered at a local
maximum (minimum) of the nonlinear microstructure and |α|

expresses the relative magnitude of microstructure variations.
The solutions of Eq. (2.11) for ν = 1 and α = ±0.5

are shown in Fig. 2 for various values of N in the subcritical
case p = 3. Note that even for N = 2 and O(1) changes in
the nonlinear microstructure, u(N ) is nearly indistinguishable
from the homogeneous medium soliton U . Indeed, plotting the
difference u(N ) − U shows that the microstructure adds a small
modulation whose magnitude scales as N−2, and whose local
period is N , as predicted by Theorem 3. Moreover, u2/N 2, the
leading order correction to U , is in excellent agreement with the
numerical values of the difference of u(N ) − U .

Fig. 3 shows the difference between ‖U‖
2
2 = 4 and ‖u(N )‖

2
2

for ν = 1 and 2 ≤ N ≤ 15. The microstructure causes
the L2 norm of u(N ) to decrease, as predicted by Theorem 7.
In order to quantitatively assess the accuracy of the multiple
scales/homogenization expansion, we recall that according to
Corollary 6,

‖U‖
2
2 − ‖u(N )‖

2
2 ≈ Cwide N−2, (3.33)

where for p = 3,

Cwide ≡
α2

(2π)2

∫ 1

0
(sin 2πX)2 dX︸ ︷︷ ︸
τm

× ∂ν

∫
∞

−∞

U6(x, ν = 1) dx =
2

3π2 .

Therefore, log(‖U‖
2
2 −‖u(N )‖

2
2) ≈ log(Cwide)−β log(N )with

β = 2 and log(Cwide) ≈ −2.695. A least squares fit of the
numerical data gives β = 2.0035 and log(Cwide) = −2.684,
i.e., less than 1% difference. Since there is excellent agreement
between Corollary 6 and the numerical data up to N = 2, we
conclude that the results of the multiple scale expansion remain
valid for values of N that are only moderately above one.
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Fig. 4. Solutions of Eq. (2.11) with p = 3, ν = 1 and m = 0.5 cos(2πN x) for N = 2. (a) α = −0.3 (solid line) and α = −0.8 (dashed line). (b) α = −3 (solid
line) and α = −8 (dashed line).
Remark 8. We recall that N was defined as the ratio of the
beam radius rbeam to the microstructure period rms. Hence,
N = 2 corresponds to a beam that extends over 2N =

4 microstructure periods. Therefore, the agreement of the
multiple scales expansion with the numerics for values of N
as small as 2 is to be expected.

In Fig. 4 we show the solution of Eq. (2.11) for α <

0, i.e., bound states centered at a local minimum of the
microstructure. For α = −0.3 the bound state has a global
maximum at x = 0. However, for smaller values of α (e.g. α =

−0.8), bound states have a local minimum at x = 0 and two
adjacent global maxima. We note that Eq. (2.11) has solutions
also for α < −1, i.e., for the case of a medium which
consists of both focusing and defocusing regions. Indeed, the
multiple scales expansion shows that the effective nonlinearity
is determined only by the average nonlinear coefficient (which
is independent of α). Hence, the microstructure can support
bound states also for α < −1.

3.2. Calculation of narrow bound states (N � 1) using
perturbation analysis

We now consider the case of narrow beams, i.e., N � 1 or
rbeam � rms. In this case, the beam is influenced mainly by the
local changes of the microstructure near the beam center, and
not by the global periodic structure.

As before, we assume that m(X) satisfies condition (2.7).
Using a perturbation analysis similar to the one in [26], we
show in Appendix C that the solution of Eq. (2.11) is given
by

u(N )(x; ν) = [1 + m(0)]−
1

p−1

×

[
U(x, ν)+ N 2 m′′(0)

2
L−1

+ (x2U p)

]
+O(N 4),

(3.34)

where U is given by Eq. (2.10) and L+ is given by Eq. (3.3). By
Eq. (C.17), the power of u(N ) is given by

‖u(N )(ν)‖
2
2 = [1 + m(0)]−

2
p−1

×

(
‖U(ν)‖2

2 +
N 2

ν

(p − 5)m′′(0)
∫

x2U p+1

2[1 + m(0)](p2 − 1)

)
+O(N 4). (3.35)
Thus, for p 6= 5, the microstructure induces an O(N 2) change
in the bound state power, whose sign is given by sgn[(p −

5)m′′(0)]. In the critical case p = 5, the contribution of the
O(N 2) term vanishes and by Eq. (C.18),

‖u(N )(ν)‖
2
2 =

‖U(ν)‖2
2

[1 + m(0)]
1
2

−
N 4

ν

∫
x4U6(x, ν)

72[1 + m(0)]
5
2

×

[
[m′′(0)]2G5 − m(4)(0)[1 + m(0)]

]
+O(N 6), (3.36)

where

G5 = −18

∫
x2U5L−1

+ [x2U5
]∫

x4U6
∼= −0.3531, (3.37)

is a ν-independent constant. Thus, in the critical case, the
leading order effect of the nonlinear microstructure on the
bound state profile is O(N 2) but its effect on the power is only
O(N 4), as was first pointed out in [26]. In addition, unlike in
the subcritical (p < 5) and supercritical (p > 5) cases, the
sign of the O(N 4) correction does not depend only on the sign
of m′′(0), i.e., on whether m has a local maximum or minimum
at x = 0, but also on the magnitude of m′′(0) and on the values
of m(0) and m(4)(0).

3.2.1. Simulations
As in the wide beam case, we solve the boundary

value problem (2.11) numerically using the Fourier transform
iterative method (see Appendix B) and confirm the validity of
the perturbation analysis for N � 1. The solutions of Eq. (2.11)
with m(X) = α cos(2πX) and p = 5 are shown in Fig. 5
for N = 0.1, 0.2, and 0.4. As predicted by Eq. (3.34), the
difference between u(N ) and U scales as N 2. From Eqs. (3.30)
and (3.36) it follows that the power dependence on N is given
by

‖u(N )‖
2
2 −

‖U‖
2
2

[1 + m(0)]
1
2

≈ Cnarrow
N 4

ν2 , (3.38)

where

Cnarrow ≡

∫
∞

−∞
x4 U6(x, 1)

72[1 + m(0)]
5
2

×

(
[1 + m(0)] m(4)(0)− G5[m

′′(0)]2
)
, (3.39)
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Fig. 5. Solutions of Eq. (2.11) with p = 5, ν = 1 and m = 0.5 cos(2πN x) for N = 0.1 (dotted line), N = 0.2, (dash–dotted line) and N = 0.4 (dashed line). Also

shown is U = 3
1
4 sech

1
2 (2x) (solid line). (a) u(N ) and U as a function of x : the three lines are indistinguishable. (b) Magnification of the region near x = 0. (c)

u(N ) − U as a function of x .
Fig. 6. Power difference ‖u(N )‖
2
2 − ‖U(x, nu)‖2

2/(1 + α)1/2 for p = 5, ν = 1 and α = 0.5, α = −0.5 and α = −0.9. The solid line is the least squares fit of

Cnarrow Nβ .
and where U(x, 1) is given by Eq. (2.10). Since m(X) =

α cos(2πX), we can rewrite Cnarrow as

Cnarrow = C̃narrow
α

[1 + α]
5
2

(α + αc), (3.40)

where C̃narrow = (2π)4(1 − G5)
∫

∞

−∞
x4 U6(x, 1)/72 ∼= 3.39

and αc =
1

1−G5
∼= 0.7390. Therefore, Cnarrow is positive

if and only if 0 > α > −αc. Fig. 6 demonstrates the
change in the power of the bound states for α = 0.5 > 0,
0 > α = −0.5 > −αc and α = −0.9 < −αc. As
predicted by Eqs. (3.38)–(3.40), the power of the bound state
decreases with N in the second case and increases in the
first and third cases. Additionally, from Eq. (3.38) it follows

that log
(
‖u(N )‖

2
2 − ‖U(x, 1)‖2

2/(1 + α)
)

≈ log(Cnarrow) −

β log(N ) with β = 4 and Cnarrow is given by Eq. (3.40). A
least squares fit of the data of Fig. 6 yielded these values of β
and Cnarrow with 2%–4% accuracy.

4. Stability of bound states — analysis

4.1. Conditions for stability

We now analyze the stability of the waveguide solutions
φwg = eiνzu(N )(x; ν), where u(N ) is the solution of Eq. (2.11).
In the case of the NLS with a nonlinear microstructure (2.4),
the appropriate notion of stability, orbital stability, is as
follows2:

Definition 9. Let u(N )(x; ν) be a solution of Eq. (2.11). Then,
φwg(x, z) = u(N )(x; ν)eiνz is an orbitally stable solution of
Eq. (2.4) if ∀ε, ∃δ > 0 such that for any φ(x, 0) ∈

H1(R1) which satisfies infθ ‖φ(·, 0) − u(N )eiθ
‖H1 < δ, the

corresponding solution φ(x, z) of Eq. (2.4) satisfies

sup
z≥0

inf
θ

‖φ(·, z)− φwgeiθ
‖H1 < ε.

The following result on nonlinear stability and instability was
proved in [34,64,65]:

Theorem 10. Let u(N ) be a positive solution of Eq. (2.11) and
let n−(L

(N )
+ ) be the number of negative eigenvalues of the

operator

L(N )+ = −∂2
x + ν − p(1 + m(N x))(u(N )(x))p−1. (4.1)

Then, φwg = u(N )(x; ν)eiνz is a nonlinearly orbitally stable
solution of Eq. (2.4) if and only if

2 Under the definition of orbital stability, the solution remains close to
the family of all the transformations of the solitary wave which leaves the
equation invariant. In the presence of nonlinear microstructure, the only such
transformation is a phase shift.
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(S1) n−(L
(N )
+ ) ≤ 1 (the spectral condition).

(S2) ∂ν‖u(N )(x; ν)‖
2
2 > 0 (the slope condition).

Furthermore, the failure of either (S1) or (S2) implies the
existence of an exponentially growing solution of the linearized
NLS dynamics [33,38].

Remark 11. The spectral condition in [34,64,65] is

n−(L
(N )
+ )− n−(L

(N )
− ) ≤ 1, (4.2)

where n−(L
(N )
− ) is the number of negative eigenvalues of the

operator

L(N )− = −∂2
x + ν − (1 + m(N x))

(
u(N )(x)

)p−1
. (4.3)

Since L(N )− u(N ) = 0, and since the smallest eigenvalue of L(N )−

is attained by a positive function, we conclude that n−(L
(N )
− ) =

0 if and only if u(N ) > 0. In that case, the spectral condition
reduces to (S1).

Remark 12. In Section 2, we showed that u(N ) = U +

o(1) for N � 1 and N � 1. Since U >

0, we conclude that u(N ) > 0 for N � 1 and
N � 1. In addition, in all our numerical simulations
for N = O(1) beams, we also observe that u(N ) > 0.
Therefore, it is reasonable to assume in Theorem 10 that u(N )

is positive. Clearly, if Eq. (2.11) admits solutions which are not
positive (i.e., solutions for which U is not the leading order term
in the solution) the correct spectral condition is (4.2) rather than
(S1).

We now remark on the idea behind the proof. Conditions
(S1) and (S2) stem from a variational characterization of bound
states. The variational approach is based on the observation that
bound states of the microstructure NLS are critical points of the
energy functional

Eν[ f ] ≡ H[ f ] + νP[ f ]. (4.4)

Here,

H =

∫ (
|∂x f (x)|2 −

2
p + 1

(1 + m(N x))| f (x)|p+1
)

dx

and

P =
∫

| f (x)|2 dx (4.5)

are conserved integrals of the NLS.3 Note that if U is a
stationary point of H subject to fixed P , then U is a critical
point of Eν for some Lagrange multiplier ν, and moreover U
satisfies Eq. (2.11). In [34,64,65] it is shown that for a bound
state to be nonlinearly orbitally stable it is essentially necessary
and sufficient for it to be a local minimizer ofH subject to fixed
P .

At the heart of Theorem 10 is a study of whether Q(U ),
the second variation (Hessian) of the functional Eν about U ,

3 The idea is motivated by the seminal article of T.B. Benjamin on the
stability of the KdV soliton [13].
constrained to the subspace C, which is defined in terms of
orthogonality conditions related to the conserved integrals of
NLS, is positive. Q is defined as

Q(U ) = 〈L(N )+ f, f 〉 + 〈L(N )− g, g〉,U = f + ig, (4.6)

where L(N )+ and L(N )− are second-order Schrödinger operators
associated with the real and imaginary parts of the operators.

In [64,65] it was shown that positivity of Q on C (and
therefore orbital stability) holds if and only if (S1) and (S2)
hold. In [33,38] general results were derived for the number of
exponentially growing (in z) modes of the linearized dynamics
for NLS in terms of the number of negative eigenvalues of
L(N )+ and L(N )− . In particular, the failure of either (S1) or (S2)
implies the existence of an exponentially growing solution of
the linearized dynamics.

4.2. Stability in a homogeneous medium

In the case of a homogeneous medium (i.e., m(x) ≡ 0), u(N )

reduces to U , see Eq. (2.10), and the operator L(N )+ reduces to
L+ as given in Eq. (3.3). The associated eigenvalue problem of
the linearized operators L+ is

L+ f = λ f, −∞ < x < ∞, f (x = ±∞) = 0. (4.7)

The spectrum of L+ is composed of (see, e.g., [64])

(1) A simple negative eigenvalue, denoted by λmin, with an
even eigenfunction fmin(x).

(2) A simple eigenvalue λ0 = 0, with the corresponding odd
eigenfunction f0(x) = ∂xU .

(3) A strictly positive continuous spectrum [ν,∞).

Thus, n−(L+) = 1, and stability is determined by the slope
condition. By Eq. (3.30),
∂ν‖U(ν)‖2

2 > 0, p < 5,

∂ν‖U(ν)‖2
2 = 0, p = 5,

∂ν‖U(ν)‖2
2 < 0, p > 5.

(4.8)

Thus, by Theorem 10, φwg = eiνzU is stable for p < 5 and
unstable for p ≥ 5.

4.3. Spectral condition (S1)

We now use Theorem 10 to determine the stability of
waveguide solutions of Eq. (2.4). We first state two Propositions
which are consequences of basic ODE theory; see, for
example, [20].

Proposition 13. The eigenvalues of the self-adjoint operator
L(N )+ are real and simple.

Proposition 14. The eigenvalues and eigenfunctions of L(N )+

vary analytically with N.

We now prove the following result:

Proposition 15. The eigenfunctions of L(N )+ are either even or
odd.
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Proof. Let f (N ) be the eigenfunction of the operator L(N )+ , i.e.,

L(N )+ f (N )(x) = λ(N ) f (N )(x).

Then, since L(N )+ is even,

L(N )+ f (−x) = λ(N ) f (N )(−x).

Hence,

L(N )+ [ f (N )(x)± f (N )(−x)] = λ(N )[ f (N )(x)± f (N )(−x)].

Thus, by Proposition 13 it follows that either [ f (N )(x) +

f (N )(−x)] ≡ 0 or [ f (N )(x)− f (N )(−x)] ≡ 0. Hence, f must
be either odd or even. �

Using these properties, we now study the spectrum of L(N )+ .

We note that the coefficients of L(N )+ converge to those of

L(0)+ as N → 0, where L(0)+ is the linearized operator that
corresponds to

i∂zφ = −∂2
xφ − (1 + m(0))|φ|

p−1φ.

Since this equation reduces to Eq. (2.5) through a simple
scaling, the properties of the eigenfunctions and eigenvalues of
L(0)+ are similar to those of L+. In addition, by Propositions 13

and 14, it follows that the structure of the spectrum of L(N )+ is

similar to that of the spectrum of L(0)+ , i.e., two simple discrete

eigenvalues (denoted by λ
(N )
min and λ

(N )
0 , respectively) and a

continuous spectrum [ν(N ),∞). In the following theorem we
determine the signs of λ(N )min and the continuous spectrum:

Proposition 16. Let L(N )+ be given by Eq. (4.1) and let m(N x)

satisfy Eq. (2.7). Then, λ(N )min < 0 and ν(N ) > 0.

Proof. Let f∗ = u(N )/‖u(N )‖2. Since u(N ) is the solution of
Eq. (2.11), the Rayleigh quotient of f∗ is

〈L(N )+ f∗, f∗〉 =
1

‖u(N )‖2
2

× 〈(−∂2
x − p(1 + m(N x))u(N )

p−1
+ ν)u(N ), u(N )〉

= −
p − 1

‖u(N )‖2
2

〈(1 + m(N x))u(N )
p
, u(N )〉 < 0.

Hence, from the variational characterization of the principal
eigenvalue of L(N )+ [20,52],

λ
(N )
min ≡ inf

f ∈H1

〈L(N )+ f, f 〉

〈 f, f 〉
< 0.

As regards the continuous spectrum, note that L(N )+ is a
Schrödinger operator of the form

−∂2
x + ν + V (x), V (x) = −p(1 + m(N x))(u(N )

p−1
(x)).

Since V (x) decays to zero rapidly at infinity, it follows by
Weyl’s theorem on the stability of the essential spectrum,
which here equals the continuous spectrum, that the continuous
spectrum of L(N )+ is equal to that of the “operator at infinity”
−∂2

x + ν [52]. The latter is given by the semi-infinite interval
[ν,∞). �
We thus see that the discrete eigenvalue λ(N )0 to which the
simple eigenvalue λ0 = 0 perturbs determines whether n− = 1
or n− = 2. We recall that λ0 is related to the translation
invariance of solutions of Eq. (2.10). Indeed, since U(x +δ) is a
solution of Eq. (2.10) for all δ, differentiation of Eq. (2.10) with
respect to δ implies L+Ux = 0, i.e. ∂xU is an eigenfunction
of L+ with eigenvalue λ0 = 0. However, in the presence of
microstructure (m(x) 6≡ 0), the bound state Eq. (2.11) is no
longer translation invariant. Thus, we expect L(N )+ not to have a
zero eigenvalue.

Since f0 is odd, it follows from Propositions 14 and 15
that f (N )0 is odd for all N . Similarly, since f (N )min is even, the

eigenfunction that corresponds to the negative eigenvalue, λ(N )min ,
is even. Hence, it is useful to distinguish between the

(1) Symmetric problem, i.e., when the solution of Eq. (2.4)
satisfies φ(z, x) = φ(z,−x).

(2) General, asymmetric problem.

The eigenvalue problem of the linear stability operator L(N )+

of the NLS with nonlinear microstructure (2.4) in the symmetric
problem is

L(N )+ f (N )(x) = λ f (N ), 0 < x < ∞,

f (N )x (0) = 0, f (N )(∞) = 0, (4.9)

and in the asymmetric problem is

L(N )+ f (N )(x) = λ f (N ), −∞ < x < ∞,

f (N )(±∞) = 0. (4.10)

In both cases, L(N )+ is given by Eq. (4.1). It follows

from Proposition 15 that the eigenvalues of L(N )+ in the
symmetric problem (4.9) consist only of the eigenvalues of
L(N )+ in the general (asymmetric) problem (4.10), for which
the corresponding eigenfunctions are even. Specifically, the
eigenvalue λ

(N )
0 of the general problem (4.10) is not an

eigenvalue of the symmetric problem (4.9). Therefore, we have
the following result:

Corollary 17. Let L(N )+ be given by Eq. (4.1), let m(N x) satisfy

Eq. (2.7). Then, in the symmetric problem (4.9), n−(L
(N )
+ ) = 1.

In the general (asymmetric) problem, we have to determine
the sign of λ(N )0 . For N � 1, we show in Appendix D that

λ
(N )
0 = −C pm′′(0)N 2

+O(N 4), (4.11)

where C p is a positive constant for p > 1. Hence, sgn(λ(N )0 ) =

−sgn(m′′(0)) and we have the following result:

Corollary 18. Let L(N )+ be given by Eq. (4.1), let N � 1, let
m′′(0) 6= 0. Then, in the asymmetric problem (4.10),

(1) n−(L
(N )
+ ) = 1 for a beam centered at a local maximum of

the microstructure (m′′(0) < 0).
(2) n−(L

(N )
+ ) = 2 for a beam centered at a local minimum of

the microstructure (m′′(0) > 0).
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Table 3

Eigenvalue λ(N )0 for N = 1, p = 3 and 5 and α = ±0.5 for four different
nonlinear microstructures

m(X) α = 0.5 α = −0.5
(Local maximum) (Local minimum)
p = 3 p = 5 p = 3 p = 5

α cos(2πX) 0.22 0.91 −0.23 −1.93

α(e−(X/0.1)2
− 0.1772) 0.07 0.47 −0.06 −0.57

α(e−(X/0.2)4
− 0.3626) 0.12 0.68 −0.12 −1.01

Step function 0.13 0.72 −0.13 −1.16

The parameter region which is not covered by theory
is N = O(1), i.e., beams whose width is of the order
of the microstructure period. In the absence of theory, we
calculate n−(L

(N )
+ ) numerically through direct discretization

of L(N )+ . We repeat the calculation for four different nonlinear
microstructures that range from a very smooth microstructure to
the discontinuous step function; see Fig. 7. In Table 3 we show
λ
(N )
0 for N = 1, p = 3 and 5, and α = ±0.5. As in the case

of narrow beams, λ(N )0 is positive (negative) for a bound state
centered at a local maximum (minimum) of the microstructure.
Therefore, we conjecture that Corollary 18 holds also for O(1)
beams (but see Section 4.5).

For N � 1 and p > 1, a multiple scales expansion shows
that if we expand

λ
(N )
0 =

λ1

N
+
λ2

N 2 + · · · ,

then λ1 = λ2 = 0 (see Appendix E). Therefore we conclude
that λ(N )0 = o(N−2) but at present the sign of λ(N )0 remains
undetermined analytically.

In order to demonstrate the dependence of λ(N )0 on N , we

set m = α cos(2πN x) and calculate λ(N )0 numerically for the
general eigenvalue problem (4.10), with no assumptions on
symmetry, for values of N as large as our numerical solver
permits. The results are shown in Fig. 8 for the critical case
(p = 5). Results for the subcritical case are similar (data not
shown). For N � 1, λ(N )0 > 0 (< 0) for α = 0.5 (−0.5)
and scales as N 2, see Fig. 8(b, e), as predicted by Eq. (4.11).
When N = O(1), λ(N )0 attains its maximal absolute value and
decreases to zero as N increases. A numerical fit shows that
λ
(N )
0 decays at an exponential rate, see Fig. 8(c, f), consistent

with the analytical result λ(N )0 = o(N−2) of Appendix E.
Hence, the numerical simulations suggest that when the beam is
centered at a maximum (minimum) of the microstructure, λ(N )0
remains positive (negative) also for N � 1. Our results for
various beam widths are summarized in Table 4.

4.4. Sign and magnitude of ∂ν‖u(N )(ν)‖
2
2

In order to determine the stability of u(N )ν by Theorem 10,

we need also to calculate the sign ∂ν‖u(N )(ν)‖
2
2. Numerical

studies suggest that, in addition to the sign of ∂ν‖u(N )(ν)‖
2
2,

the magnitude of ∂ν‖u(N )(ν)‖
2
2 plays an important role in that

it determines the size of the stability region. Therefore, in
what follows we determine both the sign and magnitude of

∂ν‖u(N )(ν)‖
2
2.

4.4.1. Wide bound states (N � 1)
In the case of wide beams, the sign and magnitude of

∂ν‖u(N )(x, ν)‖
2
2 follow from the multiple scales analysis of

Section 3.1:

Theorem 19. Let u(N ) be the solution of Eq. (2.11), let m(X)
satisfy (2.7) and let N � 1. Then,

(1) ∂ν‖u(N )(ν)‖
2
2 is positive for p < 5 and negative for p ≥ 5.

(2) The magnitude of ∂ν‖u(N )(ν)‖
2
2 isO(1) when p 6= 5 and is

O(N−2) when p = 5.

Proof. From Corollary 6 it follows that ∂ν‖u(N )(ν)‖
2
2 =

∂ν‖U(ν)‖2
2 + O(N−2). Thus, according to Eq. (4.8) it follows

that for p 6= 5 the magnitude of the slope isO(1) and the sign of

∂ν‖u(N )(ν)‖
2
2 is the same as in a homogeneous medium. When

p = 5, ∂ν‖U(ν)‖2
2 = 0 and

∂ν‖u(N )‖
2
2 = −

τm

N 2 ∂
2
ν

∫
U10(ν) dx +O(N−4). (4.12)

Therefore, ∂ν‖u(N )(ν)‖
2
2 = O(N−2). Differentiating Eq. (3.31)

yields

∂2
ν

∫
U10(ν) dx = 2ρ∗(5) > 0. (4.13)

Substitution in Eq. (4.12) shows that ∂ν‖u(N )(ν)‖
2
2 < 0. �

4.4.2. Narrow bound states (N � 1)
In the case of narrow beams, the sign and magnitude

of ∂ν‖u(N )(x, ν)‖
2
2 follow from the perturbation analysis of

Section 3.2:
Table 4

n−(L
(N )
+

), the number of negative eigenvalues of L(N )
+

, in both the subcritical (p = 3) and critical (p = 5) cases

Symmetric data General data
Local maximum Local minimum Local maximum Local minimum

N � 1 1 1 Probably 1a Probably 2
N = O(1) 1 1 1 2
N � 1 1 1 1 2

Results for N � 1 in the asymmetric case are based on extrapolation of the numerical observations shown in Fig. 8.
a If p = 3 and x = 0 is a global maximum of m(N x) then n− = 1, see Section 4.6.1.
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Fig. 7. One period of the mean-zero microstructures used in the simulations when N = O(1). (a) m = α cos(2πX); (b) m = α(e−(X/0.1)2
− 0.1772); (c)

m = α(e−(X/0.2)4
− 0.3626); (d) step function. In all plots α = 1.

Fig. 8. Eigenvalue λ(N )0 of L(N )
+

for p = 5 as a function of N . The microstructure is m = α cos(2πN x) with α = 0.5 (local maximum; (a)–(c)) and α = −0.5

(local minimum; (d)–(f)). ((b), (e)) Zoom-in on data of narrow beams (N � 1). |λ
(N )
0 | is shown on a log–log scale. Solid lines are (b) 6.42N 1.99, (c) 49.4e−3.0N ,

(e) 19.7N 2.00, (f) 179.4e−3.4N .
Theorem 20. Let u(N ) be the solution of Eq. (2.11), let
m(N x) = m(−N x), let 1 + m(0) > 0 and let N � 1. Then,

(1) ∂ν‖u(N )(x, ν)‖
2
2 is positive for p < 5 and negative for

p > 5. When p = 5, ∂ν‖u(N )(x; ν)‖
2
2 > 0 if and only if

Cnarrow < 0 (see Eq. (3.39), i.e., if

(1 + m(0)) m(4)(0) < G5[m
′′(0)]2, (4.14)

where G5 ∼= −0.3531 is given by Eq. (3.37).

(2) The magnitude of ∂ν‖u(N )(x, ν)‖
2
2 isO(1) when p 6= 5 and

is O(N 4) when p = 5.

Proof. From Eq. (3.35) it follows that for p 6= 5,

∂ν‖u(N )(x, ν)‖
2
2 = [1 + m(0)]

2
p−1 ∂ν‖U(x, ν)‖2

2 + O(N 2).
Therefore, as in the wide beam case, when p 6= 5,
the microstructure does not alter the sign and changes the

magnitude of ∂ν‖u(N )(x, ν)‖
2
2 only slightly. When p = 5,

∂ν‖U(x; ν)‖2
2 = 0. Therefore, by Eq. (3.38)

‖u(N )(x, ν)‖
2
2 ≈ Cnarrow

N 4

ν2 . (4.15)

Therefore, condition (4.14) follows by direct differentiation and
the power slope is O(N 4) small. �
Remark 21. Since 1 + m(0) > 0 and since G5 < 0, condition
(4.14) implies that a necessary condition for a positive slope is
m(4)(0) < 0.

4.4.3. Bound states with N = O(1) width
In order to complete the picture, we use numerical

simulations to calculate ∂ν‖u(N )(x, ν)‖
2
2 for the four different

nonlinear microstructures shown in Fig. 7. Figs. 9 and 10 show

‖u(N )(x, ν)‖
2
2 for p = 3, 5 and N = 1, as a function of ν.

We let ν vary from 0.25 to 4 which, according to Remark 2,
correspond to 2 ≥ Ñ ≥ 0.5, i.e., beams whose width is 1/2 to
2 microstructure periods long. In the subcritical case, the power
slope is positive for beams centered at either a local maximum
or local minimum. In the critical case, the power slope has
O(1) magnitude and is negative (positive) when centered at
a local maximum (minimum) of the microstructure (but see
Section 4.5.

4.4.4. Slope condition (S2) — summary
We have seen that in the subcritical case p = 3,

∂ν‖u(N )(x, ν)‖
2
2 is positive and O(1) for all beam widths. In

Table 5 we summarize the results of Sections 4.4.1–4.4.3 for
the critical case (p = 5) by showing the sign and magnitude of
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Fig. 9. Power of bound states for the subcritical case p = 3 with α = ±0.5
and N = 1 as a function of ν for the microstructures of Fig. 7.

Fig. 10. Same as Fig. 9 for the critical case p = 5.

Table 5

Sign and magnitude of ∂ν‖u(N )‖
2
2 for wide, O(1) and narrow bound states

centered at a local maximum and minimum of the nonlinear microstructure for
the critical case (p = 5)

Local maximum Local minimum

N � 1 O(N−2), negative
N = O(1) O(1), negative O(1), positive
N � 1 O(N 4), sign determined by Eq. (4.14)

∂ν‖u(N )‖
2
2 for wide, O(1) and narrow beams centered at either

a local maximum or a local minimum of the microstructure. As
we have seen, for wide beams (N � 1) ∂ν‖u(N )‖

2
2 is always

negative and is O(N−2). When the beams have N = O(1)
width, ∂ν‖u(N )‖

2
2 = O(1) and its sign is positive for a local

minimum and negative for a local maximum. For narrow beams

(N � 1), ∂ν‖u(N )‖
2
2 = O(N 4) and its sign can be either

positive or negative, depending on the values of m′′(0) and
m(4)(0).

In order to illustrate the results of Table 5, we set m =

±0.5 cos(2πN x) and calculate the power of the bound states
for N = 1 as ν varies between 0.01 and 30 for the critical
case (see Fig. 11). According to Remark 2, these values of ν
correspond to 10 = Ñ (ν = 0.01) ≥ Ñ ≥ Ñ (ν = 30) =

0.18, i.e. to wide, O(1), and narrow beams. When ν � 1
(Ñ � 1, wide beams) the slope is negative and of O(N−2)

magnitude for both curves. The slope is negative (positive)
and has O(1) magnitude for O(1) beams centered at a local
Fig. 11. Power of the bound states as a function of ν for m = ±0.5 cos(2πx).
The positive slope branch is shown by a solid line and the negative slope
branches are shown by a dashed line.

Fig. 12. The microstructure m(N x) = −0.6 cos(2πN x)+ 0.3 cos(4πN x) for
N = 1.

maximum (minimum). For narrow beams, i.e. ν � 1 or Ñ � 1,
it can be verified that for m = ±0.5 cos(2πN x), condition
(4.14) is satisfied only for beams centered at a local minimum
so that the slope is negative (positive) for beams centered at a
local maximum (minimum). In both cases, the magnitude of the
slope is O(N 4).

Remark 22. When ν � 1 (narrow beams), the local Kerr
coefficient at the beam center, 1 + m(0) = 1 + α, affects
the dominant term of the power (see Eq. (3.36)) so the power
of the bound state strongly depends on α. However, when
ν � 1, the dependence on α is only through the O(N−2)

correction term (see Eq. (3.1)), and hence the two curves are
nearly indistinguishable.

4.5. Definition of bound states centered at a local maxi-
mum/minimum revisited

We have seen that the stability properties of bound states
depend on whether the beam is centered at a local maximum
or minimum of the microstructure. The criterion we used for
the maximum or minimum was the sign of m′′(0). In this
Section we show that for O(1) beams the criterion can be more
complex.

We consider the microstructure m(N x) = −0.6 cos(2πN x)+
0.3 cos(4πN x) (see Fig. 12). This microstructure has a shallow
local maximum at x = 0 with two adjacent global minima. Nar-
row beams centered at x = 0 show the characteristics of beams
centered at a local maximum, i.e., that λ(N )0 > 0; see Fig. 13(a).
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Fig. 13. (a) Eigenvalue λ(N )0 of L(N )
+

with ν = 1 for the microstructure of Fig. 12. (b) Power of solutions of Eq. (2.11) for the microstructure of Fig. 12 with N = 1.
Note that ν � 1 corresponds to narrow beams and ν = O(1) corresponds toO(1) beams.
However, O(1) beams have the characteristics of O(1) bound
states centered at a local minimum, namely, that λ(N )0 < 0 (see
Fig. 13(a)) and a positive slope (see Fig. 13(b)).

The reason for that is that although the O(1) beam is
centered at a local maximum of the microstructure, the region
over which the “bulk of the beam” is centered is of low
nonlinear refractive index. Thus, we see that for O(1) beams,
it is not only the local value of the microstructure at the beam
center that affects the stability but rather the area where the
beam is centered (unlike the case for narrow beams which
are affected only by the local changes of the microstructure).
Henceforth, in order to determine the stability properties of
O(1) beams, one needs to consider the local average of the
microstructure over the width of the beam. This coarse grained
description arises only for microstructures having extrema
points which are not global extrema. Hence we did not observe
this phenomenon so far when we used the microstructures
shown in Fig. 7.

4.6. Stability results

At this stage we can combine the results of Theorem 10
concerning the spectral condition (S1) on the number of
negative eigenvalues of L+ (Section 4.3), with our calculations
of the slope condition (S2) (Section 4.4). By Theorem 10 these
determine the stability or instability of the nonlinear bound state
(waveguide) solutions φwg = eiνzu(N ).

4.6.1. Subcritical case p = 3
Stability in this case is summarized in Table 1. Since the

slope is positive for all beam widths, stability is determined
by n−. As summarized in Table 4, in the symmetric problem
n− = 1, and hence beams of all widths centered at either a
local maximum or minimum of the microstructure are stable.
In the asymmetric problem, n− = 1 (n− = 2) for narrow
and O(1) beams centered at a local maximum (minimum) of
the microstructure. Thus, narrow and O(1) beams are stable if
centered at a local maximum and unstable if centered at a local
minimum.

Since we did not determine the sign of λ(N )0 for wide
beams, stability of wide beams in the asymmetric case was not
determined analytically in this study. In [35], Hajaiej and Stuart
proved the stability of the ground state4 in the asymmetric,
subcritical case. Clearly, the ground state is centered at a global
maximum of the microstructure. Hence, the results of [35] agree
with our results for N � 1 and N = O(1), and show that wide
beams centered at a global maximum are stable. Consequently,
we can conclude that in the general problem, n− = 1 for wide
beams centered at a global maximum. We note that unlike those
of [35], our stability results apply to bound states centered at
any extrema of the microstructure, e.g., at a local minimum
or even at a local maximum which is not a global one. More
importantly, they also apply in the critical case.

4.6.2. Critical case p = 5

Stability in this case is summarized in Table 2. In the
symmetric case n−(L

(N )
+ ) = 1 (see Corollary 17) so that

according to Theorem 10, the stability is determined by the
slope condition. Therefore, when N � 1 all bound states are
unstable. Beams of O(1) width which are centered at a local
minimum (maximum) are stable (unstable) and narrow beams
are stable if and only if condition (4.14) is satisfied.5 We recall
that the slope magnitude for narrow beams is much smaller
(O(N 4)) than for O(1) beams (O(1) slope). Thus, stability of
narrow beams is expected to be much weaker than for O(1)
beams.

In the asymmetric problem, when N � 1, the negative

slope of ‖u(N )(ν)‖
2
2 implies that these solutions are unstable

regardless of the (unknown) sign of λ(N )0 . O(1) beams satisfy

n−(L
(N )
+ ) = 1 only when centered at a local maximum. In

this case the slope is negative so that these beams are unstable.
Therefore, in the general problem, beams can be stable only if
they have N � 1 width and if centered at a local maximum
of a microstructure that satisfies condition (4.14). Even then,
since the slope magnitude isO(N 4), we expect the stabilization
induced by the microstructure to be extremely weak.

4 That is, the bound state with minimal power.
5 In [26] Fibich and Wang used a rigorous variational approach to study

ground states of (2.4) for the d-dimensional symmetric problem with N � 1
and d ≥ 2. They derive a condition for stability which is a generalization of
condition (4.14) to multi-dimensions.
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4.7. The spectral condition (S1) revisited

In Section 4.3, we have seen that n− = 2 in the general
problem (4.10) when the beam is centered at a local minimum
of the microstructure. Hence, this bound state is always
unstable. However, n− = 1 (and hence, beams can be stable)
when the bound state is centered at a local maximum. In order
to motivate this finding, we look at the transverse velocity and
acceleration of the beam center of mass, defined as

〈x〉 =

∫
x |φ|

2∫
|φ|2

=

∫
x |φ|

2∫
|φ0|

2 . (4.16)

Proposition 23. Let φ be a solution of Eq. (2.4). Then,

d
dz

∫
x |φ|

2 dx = 2 Im
∫
φxφ

∗ dx, (4.17)

and

d2

dz2

∫
x |φ|

2 dx =
4N

p + 1

∫
m′(N x)|φ|

p+1 dx . (4.18)

Proof. Differentiate the right-hand sides with respect to z, use
Eq. (2.4) and integrate by parts.

Let us perturb the beam center by considering the initial
condition φ0 = u(N )(x − δc) where u(N ) is the solution of
Eq. (2.11). From Proposition 23 it follows that

d〈x〉

dz

∣∣∣∣
z=0

= 0,

i.e., the initial lateral velocity of the beam center is zero for
φ0 = u(N )(x − δ). Calculation of the initial lateral acceleration
leads to the following result:

Corollary 24. Narrow bound states that are centered slightly
off a local extremum of the microstructure have an initial
acceleration towards the nearest local maximum of the
microstructure.

Proof. See Appendix F.

Thus, the instability of beams centered at a local minimum
of the microstructure stems from their attraction to regions with
higher Kerr nonlinearity. This explains why such beams can be
stable in the symmetric problem (which does not allow lateral
perturbations), and also why in the asymmetric case, for both
the subcritical and critical cases, beams centered at a local
minimum of the microstructure are unstable.

The instability of bound states centered at a local minimum
of the microstructure under asymmetric perturbations was
observed also in discrete [21] and continuous [50] linear
microstructures. In the discrete model, instability of bound
states centered between the waveguides (i.e., at a local
minimum of the linear microstructure) is attributed to the
Peierls–Nabarro potential [46], an effective potential that
increases the Hamiltonian of beams centered at a local
minimum of the linear microstructure with respect to beams
centered at a local maximum with the same power. In that sense,
the cases of linear and nonlinear microstructures are similar
since for a fixed state, centering it about a local maximum
(minimum) of m(N x) appears to be the best choice for
minimizing (maximizing) the energy functional Eν , see (4.4), as
it would make the second term in H most negative (positive),
while the first term inH andP are independent of the centering.
Hence, one expects instability of states centered at a local
minimum of m(N x), and provided H is bounded below for
fixed P , stability of states with their maximum centered about
a local maximum of m(N x).

5. Stability of bound states — simulations

In this section we consider the stability of the nonlinear
bound state φwg = eizu(N )(x; ν = 1). We show the
dynamics of bound states and especially the different types
of instabilities that can develop in various cases. We solve
Eq. (2.4) numerically using a fourth-order implicit finite-
difference scheme with the initial condition

φ(x, 0) = (1 + δp)u
(N )(x − δc; ν = 1).

Thus, δp perturbs the power of the bound state but preserves its
symmetry with respect to x = 0, and δc shifts the beam center
from x = 0 to x = δc but preserves its power. The values
of dz and dx were chosen to ensure grid convergence. In the
symmetric case, we solved Eq. (2.4) only for 0 < x < ∞

and used the boundary condition ∂x u(N )(0) = 0. The full
solution was obtained by reflection about x = 0. In the general
asymmetric case, we solved Eq. (2.4) for −∞ < x < ∞.

Instead of presenting the H1 difference between the solution
φ and the waveguide solution φwg, we plot the maximal
amplitude of the solution after verifying that the dynamics of
the difference between the maximal amplitude and the initial
maximal amplitude is qualitatively similar to the dynamics
of the H1 difference. The advantage of this approach is that
in addition to stability, the maximal amplitude also provides
information on the character of the dynamics in the stable
and unstable cases, e.g. blowup, diffraction). We also present
the dynamics of the center of mass of the beam (defined
in Eq. (4.16)). Together, these two quantities give a fairly
comprehensive description of the dynamics.

5.1. Subcritical case p = 3

We first consider N = O(1) beams centered at a local
maximum of the microstructure. In these simulations and
those that follow, the microstructure is given by m(N x) =

α cos(2πN x). In the symmetric case (δc = 0, Fig. 14(a)),
a perturbation of the power induces only small oscillations
of the maximal amplitude. Similarly, a small lateral shift of
the incident beam (δc 6= 0 and δp = 0) results in small
oscillations of the beam center about the local maximum
of the microstructure while hardly affecting the maximal
amplitude (Fig. 14(b)). Combining the two perturbations results
in simultaneous small oscillations of the maximal amplitude
and beam center (Fig. 14(c)). Thus, we see that O(1) beams
centered at a local maximum are stable under arbitrary
(symmetric and asymmetric) perturbations; see Table 1.
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Fig. 14. Maximal amplitude of solutions of Eq. (2.4) for p = 3, N = 1, α = 0.5. (a) δp = 0.02 and δc = 0. (b) δp = 0 and δc = 0.02. The inset shows the position
of the beam center of mass (solid line) with respect to the local maximum (dashed line) and local minima (dotted line) of the microstructure. (c) Similar to (b) with
δc = 0.02 and δp = 0.02.
Fig. 15. Maximal amplitude of solutions of Eq. (2.4) for p = 3, N = 1, α = −0.5. (a) δp = 0.02 and δc = 0. (b) δp = 0 and δc = 0.02 (solid line) and δc = 0.05
(dashed line). The inset shows the position of the beam center of mass (solid line) with respect to the local maximum (dashed line) and local minima (dotted line)
of the microstructure. (c) Similar to (b) with δc = 0.02 and δp = 0.02.
The dynamics of O(1) beams centered at a local minimum
of the microstructure is qualitatively similar to that of beams
centered at a local maximum as long as the symmetry is
maintained (Fig. 15(a)). However, a lateral shift of the incident
beam results in a large drift of the beam center towards the
nearest maximum of the microstructure and oscillations about
it together with O(1) oscillation of the maximal amplitude
(Fig. 15(b)). Unlike the case for the stable beams centered at
a local maximum, the drift increases rather than decreases as
δc → 0. This is to be expected, because smaller δc with respect
to a local minimum is, in effect, a larger perturbation with
respect to the nearest local maximum. Adding a perturbation to
the power (Fig. 14(c)) does not alter the dynamics significantly.
Thus, we conclude that beams centered at a local minimum
are stable in the symmetric case but unstable in the general
problem, in agreement with Table 1. The dynamics of wide and
narrow beams are qualitatively similar (data not shown).

5.2. Critical case p = 5

We first consider O(1) beams centered at a local maximum
of the microstructure. A slight increase in the beam power
(δp > 0) results in a finite-distance collapse; see Fig. 16(a).
In addition, when the beam center is shifted from the local
maximum it no longer has enough power for blowup and
thus, it diffracts; see Fig. 16(b). The dynamics of wide beams
centered at a local maximum is qualitatively similar (data not
shown). Thus, as summarized in Table 2, wide andO(1) beams
centered at a local maximum are unstable. We also note that this
instability is similar to one in a homogeneous Kerr medium, i.e.,
the beam either develops a self-focusing singularity (blows up)
or diffracts to zero [62].

In Fig. 17 we show the dynamics of O(1) beams centered
at a local minimum of the microstructure. In Table 2, in the
Fig. 16. Maximal amplitude of solutions of Eq. (2.4) for p = 5, N = 1,
α = 0.5. (a) δp = 0.02 and δc = 0. (b) δp = 0 and δc = 0.02.

symmetric problem, these beams are stable since as δp → 0,
the oscillations become smaller (Fig. 17(a)). In contrast, a small
shift of the initial beam center causes it to drift toward the
nearest maximum and, consequently, to blow up; see Fig. 17(b).
Perturbing both the power and beam center only accelerates the
blowup; see Fig. 17(c). We note that the generic location of the
singularity is not at the local maximum of the microstructure.
Indeed, in Fig. 18 we show that the blowup point (which
is different from the center of mass) of the beam shown in
Fig. 17(b) is beyond the nearest local maximum. Note that an
input beam with the same lateral shift but with higher input
power blows up before the local maximum. These simulations
show that O(1) beams are stable in the symmetric case but
unstable in the asymmetric case, in agreement with Table 2.

In Fig. 19(a) we show that in the symmetric case, wide
beams centered at a local minimum whose power is slightly
above the power of the bound state (δp > 0) undergo
self-focusing but do not blow up. The reason for that is
that after the initial focusing, the beams reach an O(1)
width where they become stable; see Fig. 17(a). Despite the
arrest of collapse, these wide beams are unstable as smaller
perturbation only delays the self-focusing and does not reduce
its magnitude. We note that this instability is different from
the typical blowup/diffraction instability of the homogeneous
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Fig. 17. Maximal amplitude of solutions of Eq. (2.4) for p = 5, N = 1, α = −0.5. (a) δp = 0.02 (dashed line), δp = 0.05 (solid line) and δc = 0. (b) δp = 0 and
δc = 0.02. The inset shows the position of the beam center of mass (solid line) with respect to the local maximum (dashed line) and local minimum (dotted line) of
the microstructure. (c) Similar to (b) with δc = 0.02 and δp = 0.02.
Fig. 18. Location of maximal amplitude (xmax(z)) as a function of focusing
level for solutions of Eq. (2.4) for p = 5, N = 1, α = −0.5, δc = 0.02,
δp = 0 (solid line) and δp = 0.5 (dashed–dotted line). The local maximum and
minimum of the microstructure are shown by a dashed line and a dotted line,
respectively.

Fig. 19. Maximal amplitude of solutions of Eq. (2.4) for p = 5, N = 4,
α = −0.5, δc = 0 and δp = 0.02 (solid line), δp = 0.05 (dashed line).

NLS. Of course, any symmetry breaking in the initial condition
(e.g., δc 6= 0 or even random noise) would result in a
drift instability, i.e., a shift to the nearest maximum of the
microstructure and to collapse, similar to that of Fig. 17(b, c).

In the general, asymmetric critical case, the only stable
bound states are narrow beams centered at a local maximum
of microstructures that satisfy condition (4.14); see Table 2.
Since the microstructure m = α cos(2πN x) satisfies condition
(4.14) only for beams centered at a local minimum, we use
the microstructure m = 0.48 cos(2πN x)− 0.1 cos(4πN x) for
which beams centered at a local maximum do satisfy condition
(4.14). In the symmetric problem, narrow beams of this
microstructure are indeed stable under O(10−4) perturbations,
as can be seen in Fig. 20(a). However, since perturbations as
small as δp = 0.01 result in blowup, the stability region is
extremely small (compare, for instance, with Fig. 17(a)). The
smallness of the stability region is attributed to theO(N 4) small
slope of the power curve; see Eq. (3.36). Fig. 20(b) shows that
the beam is also stable under asymmetric perturbations (which
do not have to be as small). The stability with respect to such
perturbations is attributed to the O(N 2) positive value of the
eigenvalue λ(N )0 (see Eq. (4.11)). Finally, stability is maintained
if we simultaneously perturb the power and lateral position (see
Fig. 20(c)).

The dependence of stability on the properties of the
microstructure through condition (4.14) is further demonstrated
in Fig. 21, where we solve Eq. (2.4) for the one-parameter
family of microstructures m(N x) = 0.48 cos(2πN x) −

γ cos(4πN x) for which the ∂ν
∫
[u(N )]2 is positive (negative)

for γ > γc (γ < γc) where γc ∼= 0.032. Indeed, for the
given perturbation δp = 10−4, δc = 0, the solution blows
up for γ = 0.03 and is stable for γ = 0.1 and γ = 0.075.
The “unexpected” blowup at γ = 0.05 is due to the very small
slope (∂ν

∫
(u(N ))2 ∼= 0.0025 at γ = 0.05) that implies a very

small stability region. Indeed, we confirmed that the beam is
“mathematically stable” at γ = 0.05, i.e., that under a smaller
perturbation δp = 4×10−5 the beam is stable (data not shown).

6. Summary and discussion

In this paper we have used a combination of rigorous
analysis, asymptotic analysis, and numerical simulations to
study the structure and dynamic stability properties of bound
states of the scalar one-dimensional NLS with a transverse
periodic nonlinear microstructure and general pth-power
Fig. 20. Maximal amplitude of solutions of Eq. (2.4) with the microstructure m = 0.48 cos(2πN x) − 0.1 cos(4πN x) for p = 5 and N = 0.2. (a) δc = 0 and
δp = 4 × 10−5 (solid line), δp = 10−4 (dashed line) and δp = 0.01 (dash–dotted line). (b) δp = 0 and δc = 0.2. The inset shows the position of the beam center
of mass with respect to the local maximum (dashed line) and local minimum (dotted line) of the microstructure. (c) Similar to (b) with δc = 0.2 and δp = 10−4.
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Fig. 21. Maximal amplitude of solutions of Eq. (2.4) with the microstructure
m = 0.48 cos(2πN x) − γ cos(4πN x) for p = 5, δp = 10−4, δc = 0, and
N = 0.2. γ = 0.1 (solid line), γ = 0.075 (dashed line), γ = 0.05 (dash–dotted
line), γ = 0.03 (dotted line).

nonlinearity, Eq. (1.8). We chose the one-dimensional model
to simplify the presentation; the general multi-dimensional
problem can be treated by a natural extension of the methods
presented herein. In particular, the critical case p = 5
is mathematically analogous to the important case of Kerr
nonlinearity p = 3 in spatial dimension d = 2 [56].

Some of the results obtained in this paper can be obtained
using Evans function methods; see, for example, [39]. These
methods are particularly well suited to one-space-dimensional
problems. Note, however, that the methods we use in this
paper (multiple scale/homogenization expansions, perturbation
theory of spectra and variational methods) are not specific to
one-dimensional analysis, and can naturally be extended to
multi-dimensional cases.

We introduce and emphasize the importance of the
dimensionless parameter N = rbeam/rms, the ratio of beam
width to the microstructure period. Our study appears to be the
first wherein the three regimes: wide (N � 1), narrow (N �

1) and intermediate (N = O(1)) beams, are systematically
considered. Moreover, to the best of our knowledge, this is
the first analytic study of wide beams in a microstructured
medium. The problems of stability at different beam width
regimes are, in fact, interconnected; the width of an unstable
beam can change significantly with propagation. For example,
we observe that in the symmetric case, a bound state centered
at a microstructure minimum is unstable if the beam is wide but
stable if the bound state is O(1). Therefore, when an unstable
wide bound state self-focuses to one of O(1) width, it becomes
stabilized.

Theorem 10 asserts that a nonlinear bound state is orbitally
stable if and only if the spectral condition, (S1), (n−(L+) ≤

1) and the slope condition, (S2), (∂ν‖u‖
2
2 > 0) hold. These

conditions together imply that a state u(N ) is a local minimizer
of H subject to fixed P . Very roughly speaking, if the slope
condition, (S2), is violated then either nonlinearity dominates
diffraction or vice versa. Hence, the bound state becomes
unstable either by collapsing or by diffractively spreading and
approaching zero. This blowup/diffraction instability scenario,
studied in the homogeneous case for the NLS at criticality
(p = 1 + 4/d) [62], is supported by our numerical studies. We
have also numerically studied the situation where the spectral
condition (S1) does not hold, but the slope condition, (S2),
holds. This results in a drift instability, as exhibited by the
formal Ehrenfest-type computation in Section 4.7, which is
excited only by asymmetric perturbations. The importance of
the spectral condition is demonstrated by the occurrence of a
drift instability even when the power slope is positive. Although
previous studies have already demonstrated instability when the
slope condition is satisfied (but the spectral condition is not),
see e.g., [48], in numerous other studies the importance of the
spectral condition was overlooked and only the slope condition
was tested for determining stability.

We have shown analytically that in the critical case p = 5, a
nonlinear microstructure can stabilize the beam only in the case
of a narrow beam which is centered at a local maximum of a
microstructure that satisfies condition (4.14). Our simulations
revealed that these bound states are indeed stable, but only
relative to extremely small perturbations. Therefore, it seems
likely that nonlinear microstructure by itself cannot stabilize a
laser beam since typically, in actual physical set-ups, the profile
of the incident beam can be controlled up to a few per cent
accuracy. Thus, it may be that the bound state of Fig. 20 is
mathematically stable but physically unstable. As noted, the
extreme smallness of the basin of stability about that bound
state appears related to the O(N 4) small slope of the curve

ν 7→ ∂ν‖u(N )‖
2
2. Further research is needed to establish the

relation between the magnitude of the (positive) slope and the
size of the basin of stability.

Finally, we believe that some of the analytical contributions
of this study, namely,

(1) the identification of the importance of the beam width
parameter,

(2) the multiple scales analysis for calculation of wide beams,
(3) the perturbation analysis for calculation of narrow beams

(which was first done in [26]),
(4) the realization that in the case of “physical stability” there is

a “third condition” that involves the magnitude of the slope,
which determines the size of the stability region,

may prove useful in other settings where equations of nonlinear
Schrödinger equation type with spatially varying coefficients
arise.
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Appendix A. Proof of Corollary 6

By Theorem 3,

‖u(N )‖
2
2 = ‖U‖

2
2 +

2p

N 2 τm

∫
U L−1

+ [U2p−1
] + O(N−4)

= ‖U‖
2
2 +

1

N 2 τm

∫
2pU2p−1 L−1

+ [U] +O(N−4).

(A.1)
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We note that there is a O(N−2) “cross-term” in Eq. (A.1)

−
2

N 2

∫
U(x, ν)p+1 ∂−2

X m(N x) dx,

which we have neglected. We claim that if m(X) is at least
piecewise continuous, this term is of order N−2 exp(−κN ).
Since m(X) is periodic, it has the Fourier expansion

m(X) =

∑
|k|≥1

mke2π ik X .

In the worst case where m has jump discontinuities, mk =

O(|k|
−1) for large k. Also,

∂−2
X m(N x) =

∑
|k|≥1

(2π ik)−2 mke2π ik N x ,

The cross-term (A.1) is then controlled by

1

N 2

∑
|k|≥1

1

k2 mk

∫
U(x, ν)p+1 e2π ik N x dx .

Since U is analytic in a strip about the real axis, the previous
expression is bounded by

C

N 2

∑
|k|≥1

1

k3 e−κ|k|N
≤

C

N 2 e−κN , κ > 0.

In order to proceed, we use the following Lemma:

Proposition 25. Let U and L+ be given by Eqs. (2.10) and
(3.3). Then, ∂νU = −L−1

+ U .

Proof. Differentiating Eq. (2.9) with respect to ν gives

0 = ∂ν (∂
2
xU)+ ∂ν U p

− ∂ν (νU)
= ∂2

x (∂νU)+ pU p−1 (∂νU)− U − ν∂νU
= −L+∂νU − U . �

Using Proposition 25 in Eq. (A.1) gives

‖u(N )‖
2
2 = ‖U‖

2
2 −

1

N 2 τm

∫
∂νU 2pU2p−1

+ O(N−4)

= ‖U‖
2
2 −

1

N 2 τm∂ν

∫
U2p dx +O(N−4),

which proves Corollary 6.

Appendix B. Numerical computation of bound states by the
spectral renormalization method

The numerical method that we use to calculate bound states
was first introduced by Petviashvili [51] and more recently by
Ablowitz, Musslimani and co-workers in a series of papers [5,
7,9,47]; for a recent review, see [8]. Here, we derive the
method using a different approach which, we believe, makes
it somewhat more intuitive.

Let uV be the nontrivial solution of

−∂2
x u(x)− V (x)|u|

p−1u + νu = 0, (B.1)
and let F(u) =
∫

∞

−∞
u(x)e−ikx dx be the Fourier transform of

u. Taking the Fourier transform of Eq. (B.1) and rearranging
yields

F(u) =
1

k2 + ν
F(V (x)|u|

p−1u).

This equation can be solved with the fixed point iterations

F(um+1) =
1

k2 + ν
F(V (x)|um |

p−1um), m = 0, 1, . . .

(B.2)

so that um+1 = F−1
(

1
k2+ν

F(V (x)|um |
p−1um)

)
. Unfortu-

nately, numerical simulations show that the iterations (B.2) usu-
ally converge to the fixed points u∞ ≡ 0 or u∞ ≡ ∞, rather
than to uV . This divergence can be understood in the following
way. Suppose, for example, that at some stage in the iterations
we have um = CuV where C is a complex constant. In this
case,

F(um+1) =
1

k2 + ν
F(V (x)C p−1

|uV |
p−1

CuV ) ≡ C pF(uV ),

i.e., um+1 = C puV . Therefore, the iterations will diverge to
u∞ ≡ 0 if |C | < 1 and to u∞ ≡ ∞ if |C | > 1.

The argument above shows that in order to make sure that
the iterations converge to uV , we need somehow to prevent the
L2 norm of um from going to zero or to infinity. To do that, we
multiply Eq. (B.2) by [F(u)]∗ and integrate over k, resulting in
the integral identity∫

|F(u)|2 dk =

∫
1

k2 + ν
F(V (x)|u|

p−1u)[F(u)]∗ dk. (B.3)

In general, um does not satisfy condition (B.3). Therefore, we
define um+

1
2

= Cmum where the real constant Cm is chosen so
that um+

1
2

will satisfy identity (B.3). Specifically, let

SLm ≡

∫
|F(um)|

2 dk,

SRm ≡

∫
1

k2 + ν
F(V (x)|um |

p−1um)[F(um)]
∗ dk.

Therefore, the real constant Cm is chosen so that C2
m SLm =

C p+1
m SRm . This equation has three solutions: Cm = 0

(corresponding to u∞ = 0), Cm = ∞ (corresponding to
u∞ = ∞) and the nontrivial solution

Cm =

(
SLm

SRm

) 1
p−1

, (B.4)

corresponding to u∞ = uV . Therefore, we can avoid the
divergence to u∞ = ∞ or u∞ = 0 by applying the
iterations (B.2) to um+

1
2

instead of um , i.e.,

F(um+1) =

(
SLm

SRm

) p
p−1 1

k2 + ν
F(V (x)|um |

p−1um). (B.5)

The idea that the iterations (B.2) can be made to converge
by adding the multiplication by the (SL/SR)p/p−1 term was
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derived in [8] from a “homogenization”6 argument. We believe
that our derivation is more intuitive since it shows that by
choosing Cm as in (B.4), we restrict the iterations to the family
of solutions {u|u satisfies (B.3), u 6≡ 0, u 6≡ ∞}.

In this paper we are interested in solutions of Eq. (B.1)
with V (x) = 1 + m(N x) where m is a periodic function,
e.g., m = α cos(2πN x). These solutions are centered at x = 0,
which is a local maximum (minimum) of the microstructure
for α > 0 (α < 0). Since if u(x) is even and real then
F(u) is also even and real, if we choose the initial guess u0
to be even and real, then um should remain even and real for
all m. However, in our simulations we found out that in some
cases, numerical roundoff errors lead to the accumulation of
an imaginary component of um that eventually shift the center
of the solution away from x = 0. For example, an initial
guess centered at a local minimum might converge to a solution
centered at a local maximum. In order to avoid this undesirable
effect due to the accumulation of the imaginary component, we
added the stage um → |um |, i.e.,

um+1 =

∣∣∣∣∣F−1

((
SLm

SRm

) p
p−1 1

k2 + ν
F(V (x)|um |

p−1um)

)∣∣∣∣∣ .
We note that the trick um → |um | works because the ground
state of a second-order elliptic problem is of one sign.

Appendix C. Perturbation analysis for N � 1

In this Appendix, we use a perturbation analysis to solve
Eq. (2.11) for narrow beams. The derivation follows the same

lines as [26]. We define u(N )(x) =

(
1

1+m(0)

) 1
p−1

S(x). Then,

the equation for S is

−∂2
x S −

1 + m(N x)

1 + m(0)
S p

+ νS = 0. (C.1)

Taylor expansion of the microstructure gives

1 + m(N x)

1 + m(0)
= 1 + aN 2x2

+ bN 4x4
+O(N 6), (C.2)

where a = m′′(0)/2[1 + m(0)] and b = m(4)(0)/24[1 + m(0)].
We look for a solution of Eq. (C.1) of the form

S = U + N 2g(x)+ N 4h(x)+O(N 6), (C.3)

where U is given by Eq. (2.10). Therefore,

Sm
= Um

+ N 2mUm−1g

+ N 4
(

mUm−1h +

(m

2

)
Um−2g2

)
+O(N 6),

and the equations for g and h are

−L+g = −ax2U p, (C.4)

−L+h = −

( p

2

)
U p−2g2

− bx4U p
− apx2U p−1g,

6 The meaning of the term “homogenization” in [8] is obviously different
from the one we use in the main body of this paper.
where L+ is defined in (3.3). We multiply Eq. (2.9) by S, use the
ansatz (C.3) and integrate. Collecting the O(N 2) and O(N 4)

terms gives∫
Ux gx + ν

∫
Ug −

∫
U pg = 0, (C.5)

and∫
Ux hx + ν

∫
Uh −

∫
U ph = 0, (C.6)

respectively. We multiply Eq. (C.1) by U , use ansatz (C.3) and
integrate. Collecting the O(N 2) and O(N 4) terms gives∫
Ux gx + ν

∫
Ug − p

∫
U pg = a

∫
x2U p+1, (C.7)∫

Ux hx + ν

∫
Uh − p

∫
U ph −

( p

2

) ∫
U p−1g2

− ap
∫

x2U pg = b
∫

x4U p+1. (C.8)

Next we derive the Pohozaev integral identities:

Lemma 26. Let S be a solution of Eq. (C.1). Then,

ν‖S‖
2
2 + ‖Sx‖

2
2 −

1
1 + m(0)

‖[1 + m(N x)]
1

p+1 S‖

p+1

p+1 = 0,

(C.9)

−
ν

2
‖S‖

2
2 +

1
2
‖Sx‖

2
2 +

‖(xmx )
1

p+1 S‖

p+1

p+1

[1 + m(0)](p + 1)

+
‖[1 + m(N x)]

1
p+1 S‖

p+1

p+1

[1 + m(0)](p + 1)
= 0. (C.10)

Proof. Multiplying (C.1) by S and integrating gives (C.9).
Multiplying (C.1) by (x · ∂x S) and integrating gives∫
(x Sx )

(
−Sxx + νS −

1 + m(N x)

1 + m(0)
S p
)

=

∫
(x Sx )x Sx +

ν

2

∫
x(S2)x

+
1

[1 + m(0)](p + 1)

∫
S p+1 ([1 + m(N x)]x)x

=

∫
(Sx )

2
+

∫
(x∂x )

(Sx )
2

2
−
ν

2

∫
S2

+
1

[1 + m(0)](p + 1)

∫
S p+1xmx

+
1

[1 + m(0)](p + 1)

∫
S p+1

[1 + m(N x)],

from which Eq. (C.10) follows after some algebra. �

Multiplying (C.9) by 1
2 and subtracting it from (C.10) gives

−ν

∫
S2

+
p + 3

2[1 + m(0)](p + 1)

∫
[1 + m(N x)]S p+1

+

∫
(xmx )S p+1

[1 + m(0)](p + 1)
= 0.
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Substituting ansatz (C.3) for S and separating powers of N
gives

−2ν
∫
Ug +

p + 3
2(p + 1)

∫ (
ax2U p+1

+ (p + 1)U pg
)

+
2a

p + 1

∫
x2U p+1

= 0, (C.11)

and

−2ν
∫
Uh − ν

∫
g2

+
1

p + 1

∫
2a(p + 1)x2U pg

+ 4bx4U p+1
+

p + 3
2(p + 1)

×

∫ [
(p + 1)U ph +

(
p + 1

2

)
U p−1g2

+ ax2(p + 1)U pg + bx4U p+1
]

= 0. (C.12)

Subtracting (C.5) from (C.7) gives −(p − 1)
∫
U pg =

a
∫

x2U p+1. Substituting into (C.11) gives

−2ν
∫
Ug + a

(
p + 3

2(p + 1)
+

2
p + 1

)∫
x2U p+1

+
p + 3

2(p + 1)
(p + 1)

(
−

a

p − 1

∫
x2U p+1

)
= −2ν

∫
Ug + a

(
p + 3

2(p + 1)
+

2
p + 1

−
p + 3

2(p + 1)
p + 1
p − 1

)
×

∫
x2U p+1,

so that

2ν
∫
Ug = a

p − 5

p2 − 1

∫
x2U p+1. (C.13)

Reorganizing Eq. (C.12)

−ν

(
2
∫
Uh +

∫
g2
)

+
p + 3

2

∫
U ph

+
p(p + 3)

4

∫
U p−1g2

+ a
p + 3

2

∫
x2U pg

+ b
p + 3

2(p + 1)

∫
x4U4

+ 2a
∫

x2U pg + b
∫

x4U4

= ν

(
−2

∫
Uh −

∫
g2
)

+
p + 3

2

∫
U ph

+
p(p + 3)

4

∫
U p−1g2

+ a
p + 7

4

∫
x2U pg

+ b
3p + 5

2(p + 1)

∫
x4U p+1

= 0. (C.14)

Subtracting (C.6) from (C.8) gives

−(p − 1)
∫
U ph −

p(p − 1)
2

∫
U p−1g2

= ap
∫

x2U pg + b
∫

x4U p+1.
Multiplying by −
p+3

2(p−1) and substituting into (C.14) gives after
some algebra

ν

(
2
∫
Uh +

∫
g2
)

= a
6p − 14
4(p − 1)

∫
x2U pg

+ b
p2

− p − 4
(p + 1)(p − 1)

∫
x4U p+1. (C.15)

Therefore, combining∫
S2

=

∫
U2

+ 2N 2
∫
Ug

+ N 4
[

2
∫
Uh +

∫
g2
]

+O(N 6),

with (C.13) and (C.15) gives

[1 + m(0)]
2

p−1

∫ [
u(N )

]2

=

∫
S2

=

∫
U2

+ N 2 a

ν

p − 5

p2 − 1

∫
x2U p+1

+ N 4
[

a

ν

6p − 14
4(p − 1)

∫
x2U pg

+
b

ν

p2
− p − 4

(p + 1)(p − 1)

∫
x4U p+1

]
+O(N 6). (C.16)

Therefore, when p 6= 5

‖u(N )‖
2
2 = [1 + m(0)]−

2
p−1

×

(
‖U‖

2
2 + N 2 a

ν

p − 5

p2 − 1

∫
x2U p+1

)
+O(N 4).

(C.17)

When p = 5, the O(N 2) term vanishes so by Eqs. (C.16) and
(C.4), the O(N 4) correction is

‖u(N )‖
2
2 = [1 + m(0)]−

1
2

×

(
‖U‖

2
2 + N 4

[
a2

ν

∫
x2U5 L−1

+ [x2U5
] +

2
3

b

ν

∫
x4U6

])
+O(N 6)

=
‖U‖

2
2

[1 + m(0)]
1
2

+ N 4

×
18[m′′(0)]2

∫
x2U5 L−1

+ [x2U5
] + m(4)(0)[1 + m(0)]

∫
x4U6

72ν[1 + m(0)]
5
2

+O(N 6)

=
‖U‖

2
2

[1 + m(0)]
1
2

−
N 4

ν

∫
x4U6

72[1 + m(0)]
5
2

×

[
[m′′(0)]2G5 − m(4)(0)[1 + m(0)]

]
+O(N 6). (C.18)

where G5 = −18
∫

x2U5 L−1
+ [x2U5

]∫
x4U6

∼= −0.3531.

Remark 27. In [26], Fibich and Wang derived relation (C.18)
for the critical case for arbitrary dimension. However, the
expression that appears in [26] (Eq. (1.12)) has a typographical
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error. The correct expression is

‖φω‖
2
2 =

1

V
d
2 (0)

[
‖R‖

2
2 − ε̂4 d

∫
r4 R4/d+2

24(d + 2)V 2(0)

×

[
[V ′′(0)]2Gd − V (4)(0)V (0)

]
+O(ε̂6)

]
. (C.19)

Appendix D. Perturbation analysis of λ
(N)
0 for N � 1

In this Appendix we solve the eigenvalue problem (4.10) for
N � 1 and show that it leads to Eq. (4.11). Let

f (N )0 = f (0)0 (x)+ N 2 f (2)0 (x)+O(N 4), (D.1)

λ
(N )
0 = N 2λ2 + N 4λ4 +O(N 6). (D.2)

By Appendix C, L(N )+ , defined in (4.1), is

L(N )+ = −∂2
x + ν − p

(
1 + m(0)+ N 2x2 m′′(0)

2

)

×

(
U + N 2 m′′(0)

2 L−1
+ (x2U p)

)p−1

[1 + m(0)]
+O(N 4).

Hence, the leading order of the eigenvalue problem (4.10) is

−∂2
x f (0)0 + ν f (0)0 − pU p−1 f (0)0 = 0,

where U is given by Eq. (2.10). By Eq. (3.21) we get that
f (0)0 (x) = Ux which is the eigenfunction of the zero eigenvalue,
λ0. The next order is

−∂2
x f (2)0 + ν f (2)0 − pU p−1 f (2)0 = L+ f (2)0 = λ2Ux

+ p

(
m′′(0)

2[1 + m(0)]

)
x2U p−1Ux

+ p

(
m′′(0)

2[1 + m(0)]

)(
L−1

+

[
x2U p

])
(p − 1)U p−2Ux .

(D.3)

Solvability of Eq. (D.3) is ensured by requiring that the right-
hand side of Eq. (D.3) is perpendicular to the null space of L+

which is spanned by Ux . Therefore,

λ2

∫
U2

x + p
m′′(0)

2[1 + m(0)]

∫
x2U p−1U2

x

+ p(p − 1)
m′′(0)

2[1 + m(0)]

∫ (
L−1

+

[
x2U p

])
U p−2 U2

x = 0.

Eliminating λ2 and using Lemma 28 we get that

λ2

∫
U2

x = −p
m′′(0)

2[1 + m(0)]

∫
x2U p−1U2

x

−
m′′(0)

2[1 + m(0)]

∫
x2U p(U − U p) = 0.

Using

Ux = −U tanh
(

p − 1
2

x

)
,

Fig. D.1. Numerical evaluation of
∫

x2
(
U p+1

−
1

p+1U
2p
)

as a function of
p.

tanh2
(

p − 1
2

x

)
= 1 − sech2

(
p − 1

2
x

)
= 1 −

2
p + 1

U p−1, (D.4)

we get that

λ2

∫
U2

x = −
m′′(0)

2[1 + m(0)]

×

(
p
∫

x2U p−1U2
(

1 −
2

p + 1
U p−1

)
−

∫
x2(U p+1

− U2p)

)
= −

m′′(0)
2[1 + m(0)]

×

∫
x2
(

pU p+1
−

2p

p + 1
U2p

− U p+1
+ U2p

)
= −

m′′(0)
2[1 + m(0)]

×

∫
x2
(
(p − 1)U p+1

+

(
1 −

2p

p + 1

)
U2p

)
= −(p − 1)

m′′(0)
2[1 + m(0)]

×

∫
x2
(
U p+1

−
1

p + 1
U2p

)
.

Numerical evaluation of
∫

x2
(
U p+1

−
1

p+1U
2p
)
> 0 shows

that it is positive for all p > 1 (see Fig. D.1). Thus, Eq. (4.11)
follows immediately.

Appendix E. Multiple scales expansion of λ
(N)
0 for N � 1

The eigenvalue problem (4.10) for λ(N )0 , the analytical
continuation of λ0 = 0, is

[−d2
x + ν − p(1 + m(N x))u(N )

p−1
(x, ν)]

× f (N )(x; ν) = λ
(N )
0 f (N ). (E.1)

In the case of wide beams, by Theorem 3, u(N ) = U(x, ν) −
1

N 2 [∂−2
X m(X)]U p

+
pτm
N 2 L−1

+ [U2p−1
] + O(N−4). Since the

solution f (N ) is a function of a slow scale x and a fast scale
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X = N x , we can expand f (N ) and λ(N )0 in a series of powers of
N−1 so that

f (N )(x, X) = f0(x, X)+
1
N

f1(x, X)+
1

N 2 f2(x, X)+ · · · ,

λ
(N )
0 =

λ1

N
+
λ2

N 2 + · · · .

As in Section 3.1, we replace dx → ∂x + N∂X so that Eq. (E.1)
can be rewritten as

[−(∂2
x + 2N∂x∂X + N 2∂2

X )

− p(1 + m)(u(N ))p−1
+ ν] f (N ) = λ

(N )
0 f (N ). (E.2)

Substituting the expansion for f (N ) into (E.2) and equating
powers of N yields the following hierarchy of equations:

O(N 2) : −∂2
X f0 = 0, (E.3)

O(N ) : −∂2
X f1 = 2∂X∂x f0, (E.4)

O(N 0) : −∂2
X f2 = 2∂X∂x f1

+ ∂2
x f0 + (1 + m)pU p−1 f0 − ν f0, (E.5)

O(N−1) : −∂2
X f3 = 2∂X∂x f2

+ ∂2
x f1 + (1 + m)pU p−1 f1 − ν f1 + λ1 f0, (E.6)

O(N−2) : −∂2
X f4 = 2∂X∂x f3

+ ∂2
x f2 + (1 + m)pU p−1 f2 − ν f2 + λ1 f1

+ λ2 f0 − (1 + m)p(p − 1)U p−2

×

(
[∂−2

X m]U p
− pτm L−1

+ U2p−1
)

f0, (E.7)

where τm was defined in Eq. (3.2). We proceed by requiring that
the f j are periodic in X . Since the right-hand side of Eq. (E.3) is
zero, by Remark 5, its solution is f0 = f0,h(x). Consequently,
the solution of Eq. (E.4) is f1 = f1,h(x). Solvability of (E.5)
is ensured by setting the average of the right-hand side of (E.5)
equal to zero. This yields

L+ f0,h = 0,

so that f0 = f0,h = Ux (x, ν). Therefore, f2(x, X) satisfies the
simplified equation −∂2

X f2 = m(X) p U p−1Ux whose solution
is

f2 = −p[∂−2
X m]U p−1Ux + f2h(x)

= −[∂−2
X m]∂x (U p)+ f2,h(x).

Solvability of (E.6) is ensured by setting the X -average of its
right-hand side equal to zero. This yields

−L+ f1,h = λ1 f0,h = λ1Ux .

Hence, for the right-hand side to be perpendicular to the null
space of L+, λ1 = 0 and f1,h = Ux .

Solvability of (E.7) is ensured by setting the X -average of its
right-hand side equal to zero. Calculating the averages term by
term gives

〈∂2
x f2 − ν f2 + λ2Ux 〉 = ∂2

x f2,h − ν f2,h + λ2Ux ,

pU p−1
〈(1 + m) f2〉

= pU p−1
〈(1 + m)( f2,h(x)− p[∂−2

X m]U p−1Ux )〉
= pU p−1
(

f2,h + τm pU p−1Ux

)
,

− p(p − 1)U p−2Ux 〈(1 + m)([∂−2
X m]U p

− pτm L−1
+ U2p−1)〉

= −p(p − 1)U p−2Ux (−τmU p
+ pτm L−1

+ U2p−1).

Combining all the above gives

L+ f2,h = pU p−1(τm pU p−1Ux )− p(p − 1)U p−2Ux

× (−τmU p
+ pτm L−1

+ [U2p−1)] + λ2Ux

= p2τm U2p−2Ux + p(p − 1)τmU2p−2Ux

+ p2(p − 1)U p−2Uxτm L−1
+ [U2p−1

] + λ2Ux

= p(2p − 1)τmU2p−2Ux

+ p2(p − 1)U p−2Uxτm L−1
+ [U2p−1

] + λ2Ux . (E.8)

Solvability is ensured only if the right-hand side of Eq. (E.8) is
perpendicular to the null space of L+. Eliminating λ2 gives

λ2 = −pτm

∫
U2

xU p−2
[p(p − 1)L−1

+ [U2p−1
] + (2p − 1)U p

]∫
U2

x
.

(E.9)

In order to proceed we use the following Lemma:

Lemma 28. Let U be given by (2.10) and let L+ = − d2
x +

ν − pU p−1(x, ν). Then, p(p − 1)U p−2U2
x = L+U − L+U p.

Proof. Apply L+ on U and on U p. Then eliminate p(p −

1)U p−2U2
x . �

Substituting for the first term on the right-hand side of (E.9)
and using the fact the L+ is self-adjoint gives

λ2 = −pτm

∫
U2p

− U3p−1
+ (2p − 1)U2

xU2p−2∫
U2

x
.

Using relations (D.4) gives

λ2 = −pτm

∫
2pU2p

−
5p−1
p+1 U

3p−1∫
U2

x

= −pτm

∫
U2p

[
2p −

5p−1
p+1 U

p−1
]

∫
U2

x
= 0, (E.10)

where the integral was evaluated analytically (using Maple)
for p = 3, 5 and numerically for other values of p. Thus we
conclude that λ(N )0 = o(N−2).

Appendix F. Proof of Corollary 24

From Eq. (4.18) it follows that the acceleration of the center
of mass of the initial condition φ0 = u(N )(x − δc) is given by

d2
〈x〉

dz2

∣∣∣∣
z=0

=
4N

p + 1
1∫

|φ0|
2 A(δc),

where

A(δc) ≡

∫
m′(N x) u(N )

p+1
(x − δc) dx

=

∫
m′(N (y + δc)) u(N )

p+1
(y) dy.
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Therefore,

A(δc) ∼= A(0)+ δc
d

dδc
A(δc)|δc=0

= δc N
∫

m′′(N x)u(N )
p+1
(x) dx . (F.1)

If the width of the input beam is much smaller than the
microstructure period (N � 1), then m′′ can be replaced with
its value at x = 0. Hence,

sign(A(δ)) = sign(δc · m′′(0)). (F.2)

Therefore, a beam close to a local minimum of the
microstructure (m′′(0) > 0) will accelerate away from it
(i.e., towards the nearest maximum) and a beam close to a
local maximum of the microstructure (m′′(0) < 0) will move
towards it.
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