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Abstract

In this paper we present a mathematical model of a generic urban scene, which can be used to answer a variety of
visibility questions. Aside from its theoretical merit, the mathematical model provides an important analysis tool to
optimize urban walkthrough algorithms. We formulate the probability for a given object to be visible from a given
viewcell as a function of distance from the viewcell. We address various issues related to the implementation of virtual
walkthrough, such as storage requirements, optimal viewcell size and cell-to-cell coherency, from which we derive
space-e!ective data structures. Quantitative simulations verify the validity of our analysis. We simulate visibility in scenes
with randomly distributed (Poisson) objects as well in pseudo-random ( jittered) scenes, and compare these simulation
results with our mathematical model. ( 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Typical urban scenes are densely occluded, in the sense
that from any given viewpoint only a small fraction of the
scene is visible [1]. As a result, occlusion culling is vital
for virtual walkthroughs in large urban scenes [1}4].
Most occlusion culling techniques are based on the as-
sumption that for any given viewpoint there is a small set
of objects which occludes most of the scene [3,5,6,13].
For example, nearby buildings are e!ective occluders in
a typical urban scene [4]. The assumption that nearby
objects cull the vast majority of remote objects seems to
be intuitive when the density of the scene is high. How-
ever, in the case of sparser scenes the e!ectiveness of
nearby objects decreases. This raises a variety of ques-
tions: What is the de"nition of &nearby' objects and how
does it depend on scene density? At what distance an
object can be expected to be occluded? How many ob-
jects are visible from a given viewcell? The answers to
these type of questions are less intuitive and require
quantitative analysis based on a mathematical model.

In this paper we present a mathematical model of
a generic urban scene which can be used to answer
di!erent visibility questions. Aside from its theoretical
merit, the mathematical model provides an important
analysis tool to optimize urban walkthrough algorithms.
For example, given an urban scene with given density,
one can quantitatively de"ne the meaning of `closea
versus `remotea regions. This quantitative de"nition is
most important for walkthrough techniques which re-
place remote regions by simpli"ed geometry or by impos-
ters [7]. In other instances, based on our analysis, one
can avoid rendering remote regions where the probabil-
ity of missing signi"cant objects is su$ciently low.

An important class of visibility problems concerns
viewspace partitioning [1,8], in which visibility is com-
puted for a small region or cell rather than for a point. It
was shown that cell visibility is a vital tool for remote
network-based walkthroughs [9]. In such applications
clients are required to have a visibility cache, which the
server updates with relevant cell visibility data. The ser-
ver can either compute the cell visibility on-the-#y on
demand, or precompute the cell visibility (or some of the
cells) o%ine. In both cases, both server and client are
required to maintain a data structure which stores the
visibility sets of nearby cells. Implementation of this type
of walkthrough raises various interesting problems. For
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example, since the visibility set of adjacent cells have
many entities in common, storing the visibility set for
each cell separately yields duplications of data. This
implies that a good data structure can exploit this cell-
to-cell visibility coherency by means of some di!erence
lists or some hierarchical structure (e.g. a quadtree). Our
mathematical model can estimate the size of the intersec-
tion of the visibility sets of adjacent cells or neighboring
cells, as a function of scene density and cell size (Section
5). This estimate is necessary (i) to determine the optimal
cell size and (ii) to design a space-e!ective data structure.

Generally speaking, exact visibility queries have a high
computational complexity [10,11]. Several authors have
developed approximate conservative visibility tech-
niques, that is, techniques that compute a superset of the
visibility set which includes all visible objects and per-
haps some occluded objects. The advantage of such con-
servative sets is that they can be computed much faster
than exact visibility sets [1,6]. The technique in [1] culls
only objects for which there is a single (strong) occluder
which by itself guarantees that the given object is not
visible from any viewpoint within a viewcell. It was
shown that for densely occluded scenes the majority of
occluded objects are strongly occluded.

In this study, we analyze the visibility of objects in
dense scenes by considering a two-dimensional space,
"lled with objects of the same size and shape. This is, of
course, an approximation of an actual urban scene. How-
ever, it is a reasonable one for a #at scene with objects
that are all about the same height and size, and for
a viewer who is always located not higher than any of the
objects. Nevertheless, since an urban scene is close to
a 2.5D model, we also compute the visibility as a function
of the object height with respect to the viewer (Section 3)
and show that the addition of the heights has a relatively
small e!ect on visibility probability.

Our mathematical model assumes that objects are
uniformly randomly located over the entire scene, with
constant density d. In practice, this is not the general
case, for two main reasons: (i) the density can vary be-
tween &neighborhoods', and (ii) objects may not be ran-
domly scattered, but rather located on a square grid with
their locations randomly perturbed. The mathematical
model can be extended for more general scenes, as we
have illustrated in the extension to the 2.5D case. While
this will result in more complex expressions, the main
results of the model would remain unchanged: (i) the
de"nition of &e!ective distance' dd/R and &e!ective view-
cell size' o/R, (ii) the exponential decay of visibility and
potential visibility with distance, (iii) the estimate (6),
and (iv) the total number of visible objects is propor-
tional to 1/d. The advantage of our modeling approach is
that it allows to classify visibility in real scenes as a func-
tion of a few parameters.

The paper is organized as follows. In Section 2 we
de"ne a mathematical model of an urban scene. In

Section 3 we analyze the visibility as a function of scene
density and viewcell size. We give an explicit expression
for the distance beyond which the probability of an
object to be visible is less than a prescribed value. Section
4 is devoted to the estimation of visibility and potential-
visibility set size, and to the analysis of the e!ectiveness of
the potentially visible set. The cell-to-cell visibility coher-
ency is analyzed in Section 5, and in Section 6 we develop
a storage space analysis, and determine an optimal cell
size (space wise). Derived from this storage analysis, we
present a hierarchical data structure in Section 7 and we
show some quantitative results of its implementation. In
Section 8 we analyze the e!ect of the distribution func-
tion on the visibility, as an e!ort to model a more realistic
urban scenario.

2. Mathematical model of visibility in urban scenes

We consider a two-dimensional scene consisting of
a large number of equally sized circles (objects) with
radius R, randomly distributed in the plane. The scene is
also characterized by the parameter d, which is the aver-
age area fraction covered by the objects:

d"n(A)pR2/DAD,

where DAD is the total area of the scene and n(A) is the
number of objects in A. We assume that the objects' area
density is constant throughout space, i.e., that for any
su$ciently large region X (i.e. with area DXD<pR2), the
expected value of n(X) is dDXD/pR2.

We consider a circular viewcell Co with radius
o (o(R) located somewhere in the scene. An object S is
called visible if there is a straight line (ray of sight) which
connects Co and S that does not intersect with any of the
other objects. Following [1], we say that an object S is
strongly occluded from viewcell Co if there exists an object
¹ that completely occludes S from all viewpoints in Co.
An object which is not strongly occluded is called poten-
tially- visible. Fig. 1 shows a typical scene with a viewcell
at the center.

3. The probability of visibility and potential visibility

In the calculations of the probabilities for an object
S to be visible or potentially visible, we use the following
standard result from probability theory (e.g. [12]):

Let us consider a two-dimensional scene A with equally-
sized objects that are randomly uniformly distributed with
average object density per unit area

o"d/pR2"n(A)/DAD.
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Fig. 1. Model representation of a typical #at urban scene. From
the (red) viewcell Co, the green circle: (1) is strongly occluded,
the blue circle, (2) is visible and the magenta circle, (3) is poten-
tially visible (though not actually visible).

Fig. 2. Two viewers have eye contact if and only if the centers of all circles are outside the d]2R rectangle.

Then, the number of objects in a region XLA is approx-
imately a Poisson distributed random variable with mean
oDXD, i.e.,

Pr (n(X)"k)+ exp (!oDXD)
(oDXD)k

k!
, k"0, 1,2, (1)

where DXD is the area of X and n(X) is the number of objects
whose center is in X.

Eq. (1) is exact for k"0. For k'0, it is exact only
when objects can overlap each other. However, relation
(1) still serves as a good approximation for the distribu-
tion of n(X) in the case of non-overlapping objects when
DXD<pR2 and d;1.

In order to demonstrate the method which we use to
calculate visibility probabilities, let us consider the fol-
lowing basic question. Given two point viewers located
at a distance d apart, what is the probability that they
see each other? As shown in Fig. 2, this happens only
when there are no objects whose center resides inside
the d]2R rectangle. Therefore, according to (1) with
k"0,

Pr(viewers see each other)"exp (!2odR)

"exp A!
2dd

pRB.
We now calculate the probability of potential visibility.

Recall that an object is potentially visible if and only if it
is not strongly occluded. To compute the probability of
this event, we consider, without loss of generality, a view-
cell Co centered at the origin and an object S centered at
(d, 0) (Fig. 3). We denote by X

S
the &region of strong

occlusion' of the object S, which is de"ned as

X
S
"M(x, y)D an object ¹ centered at (x, y) strongly

occludes SN. (2)

Obviously, an object S is potentially visible if and only
if there are no objects whose center is inside X

S
. For

d<R and e(R, the region X
S

is approximately a tri-
angle with height d and base 2(R!o). Therefore, using
(1) with k"0 gives

Pr (S potentially visible)"exp (!dDX
S
D/pR2)

+exp A!
1

p

dd

R A1!
o
RBB. (3)

Result (3) was derived for o(R. Indeed, when o'R
all objects are potentially visible, and relation (3) does not
hold. The `discontinuitya of potential visibility probabil-
ity at o"R will appear also in subsequent calculations.
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Fig. 3. The strong occlusion area X
S
.

Fig. 4. The domain X"X
S
X X

1
X X

2
(approximated for d<R).

1Here we used the fact that o(R. In addition, we consider
only horizontal rays of sight, which is a valid approximation
when d<R.

To compute the probability that an object S is visible,
we denote by X the &region of partial occlusion' of S,

X"M(x, y)D an object¹ centered at (x, y) (partially)

occludes SN. (4)

In other words, an object whose center is inside X
intersects with some rays connecting S and Co. When
d<R, X is approximately given by a trapezoid with
height d and bases 2R#2o and 4R (Fig. 4).

The computation of the visibility probability was "rst
done in [1], by replacing X with a rectangle with the
same area and placing in this rectangle at random loca-
tions the expected number of objects inside X. Here, we
perform a more accurate calculation, since we do not
replace X with a rectangle, and we do not work with the
expected number of objects inside X, but rather sum over
all possible number of objects, multiplied by their re-
spective probabilities.

The sketch of the calculation is as follows: We divide
X into three disjoint regions X

S
, X

1
and X

2
, where X

S
is de"ned by Eq. (2), X

1
"(X!X

S
)WMy(0N and X

2
"

(X!X
S
)WMy'0N (see Fig. 4). For S to be occluded,

either X
S
is not empty, or the bottom of the &lowest' circle

in X
2
is below1 the top of the &highest' circle in X

1
. Details

of the calculations are presented in Appendix A, and their
result is that

Pr(S visible)"C1#
dd

pR A1#
o
RBD exp A!

2

p

dd

RB . (5)

The above calculation was done for the case of o(R,
as in the calculation of potential visibility. However,
unlike potential visibility, visibility does decrease expo-
nentially with distance when o'R, albeit at a di!erent
rate than the one given in (5).

We note that a priori, visibility probabilities can be
expected to depend on the four parameters d, d, o and R.
However, our analysis shows that the visibility probabil-
ities (3) and (5) depend only on two non-dimensional
parameters: dd/R, and o/R. In addition to reducing the
dimension of the parameter space, we see that the de"ni-
tion of a &distant' object depends not only on the distance
itself, but rather on the non-dimensional parameter dd/R.
Thus, an object in considered far from a visibility point of
view when dd/R<1. Furthermore, the e!ect of viewcell
size on the visibility depends only on the ratio o/R. This
parameter plays an important role for potential visibility,
as it a!ects the rate of the exponential decay.

Results (3) and (5) prove that visibility and potentially
visibility decay exponentially fast with distance. Moreover,
they provide the rate of decay, thus enabling a quantitat-
ive de"nition of a far object. For example, assuming that
an object is de"ned as far when the probability that it is
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Fig. 5. Probability of visibility and potential visibility as function of non-dimensional distance dd/R, for a scene with d"0.1, and R"1.
On the left, comparison of theoretical prediction, Eq. (3) with average of 100 simulations, for a viewcell size o"0.2R. On the right,
comparison of Eq. (5) with simulations for two di!erent viewcell sizes: o"0.2R (bottom) and o"R (top).

visible is less than a prescribed threshold value p
5)
, then

according to (5) all objects located at a distance

d'
pR

2d
ln p

5)
(6)

are far. Eq. (6) is important for techniques that replace far
away objects by imposters or simpli"ed geometry [7]. In
addition, it can be used to control the expected error in
cases one simply culls objects which are beyond a dis-
tance d.

As objects (houses) in a generic urban scene have di!er-
ent heights, we now consider the potential visibility in
a 2.5D model. We assume that the viewcell is located on
the ground at height zero, and that the height of all objects
is uniformly distributed between h

1
and h

2
, (h

1
(h

2
). We

hence compute the probability that an object S with height
h at a distance d is potentially visible from a viewcell of
radius o. In this case, the region X

S
remains the same, but

the density of occluding objects is not constant, and de-
pends on the distance m from the viewcell:

o(m)"G
o for 0(m(

h
1
h

d,

o
hm/d!h

1
h
2
!h

1

for
h
1
h

d(m(d.

Therefore, instead of Eq. (3), the probability of poten-
tial visibility is now given by

Pr (S potentially visible)"expA!PX
S

o(y) dyB.
Evaluation of the integral yields

PX
S

o(y) dy"P
d

0

2(R!o)
d!m

d
o(m) dm

"o(R!o)d A1!
1

3

(h!h
1
)3

h2(h
2
!h

1
)B.

Note that for h"h
1

we recover Eq. (3), since in this
case height is irrelevant. As in the 2D case, visibility
decays exponentially fast with distance but at a slower
rate, since the &top' of some buildings, whose &ground
#oor' is occluded, can be seen.

To check the validity of the assumptions in our analysis
(approximation of X

S
by triangle, overlapping assumption,

horizontal line of sight, etc.), we perform the following
simulation. A large number of circles are randomly distrib-
uted in a square scene, and both visibility and potential
visibility of all objects with respect to a viewcell at the
scene's center are computed. The results are averaged over
100 simulations with di!erent randomly chosen object's
locations. As seen in Fig. 5, up to a statistical error, the
averaged simulation results are in very good agreement
with those predicted by the mathematical model (Eqs. (3)
and (5)). Note that for exact visibility, prediction (5) is an
underestimate for closer objects, due to the horizontal
lines of sight approximation. However, at large distances,
the horizontal lines approximation is valid, but due to the
Poisson approximation where circles can overlap, Eq. (5)
is an overestimate of the exact visibility.

4. The visibility set size

We now estimate N
7*4*"-%

and N
105%/5*!--: 7*4*"-%

, the aver-
age number of visible and potentially visible objects seen
from a viewcell, respectively. We calculate these estimates
by multiplying the expected number of objects at distan-
ces between r and r#dr from viewcell by the probability
that they are visible or potentially visible, and integrating
over all rings. Since (3) and (5) are calculated under the
assumption that d<R, we choose an arbitrary radius
r
0
"aR and assume that all objects at distance less than

r
0

are visible. Using (5), the average number of visible
objects is therefore bounded by

N
7*4*"-%

+pr2
0

d
pR2
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Fig. 6. Number of potentially visible objects as a function of non-dimensional viewcell size, o/R, (left) with d"0.1, and as a function of
density (right) with e/R"0.1. Comparison of theoretical prediction, Eq. (8) with average of 100 simulations.

#P
=

r0

Pr (S visible at distance r)
d

pR2
2pr dr

"da2#CA
p2

d
#2paB A1#

o
2RB

#2da2 A1#
o
RBDexp A

!2d
n

aB.
Similarly, the average number of potentially visible

objects is given by

N
105%/5*!--: 7*4*"-%

"da2#2pC
a

(1!o/R)
#

1

(1!o/R)2

p

dD
]exp A!

da
p A1!

o
RBB.

Note that both N
7*4*"-%

and N
105%/5*!--: 7*4*"-%

depend on
d only through the combination da/p which is a small
number. Therefore, we can set a"0, to obtain simpler
expressions:

N
7*4*"-%

+

p2

d A1#
o

2RB, (7)

N
105%/5*!--: 7*4*"-%

+

2p2

d
1

(1!o/R)2
. (8)

These results agree with intuition that the number of
visible and potentially visible objects is monotonically
decreasing with d. However, our analysis shows that the
number of visible and potentially visible objects is pro-

portional to 1/d, and not, for example, to 1/Jd. Note that
these estimates are computed for circular viewcells. As
shown in Appendix B, these results hold also for a square
viewcell with side 2o, albeit with an &e!ective' diameter
which is approximately 1.27o.

An important issue in implementation of potential-
visibility-based algorithms is how much larger is the
superset of potentially visible objects than the exact vis-
ibility set. To address this issue, we "rst note that from (3)
and (5) we have that

Pr(object strongly occludedD object not visible)

+

1!exp (!(1/n)(dd/R)(1!(o/R)))

1!(1#(dd/nR)(1#o/R)) exp (!(2/p)dd/R)
.

Therefore, most distant objects (with dd/R<1) which
are not visible are indeed strongly occluded. On the other
hand,

Pr(object visibleD object potentially visible)

+

exp(!(2/n)dd/R)

(1#(dd/pR) (1#o/R)) exp (!(1/p) (dd/R) (1!o/R))
,

which means that few of the distant objects which are
potentially visible are actually visible. However, since the
number of distant potentially visible objects is exponenti-
ally small, the potential visibility set is not much larger
than the exact visibility set. Indeed, using (7) and (8) we
can estimate that

N
105%/5*!--: 7*4*"-%

N
7*4*"-%

+2
(1#o/2R)

(1!o/R)2
. (9)

Therefore, to avoid a large overhead when working with
the strong occluders, the ratio o/R (viewcell size/object
size) should be su$ciently small. However, regardless of
how small Co is, the overhead is no less than 2.

To check estimates (7) and (8) for N
7*4*"-%

and
N

105%/5*!--: 7*4*"-%
respectively, in the simulation described

earlier we compute the number of potentially visible
objects seen from a viewcell, both as a function of scene
density (with constant viewcell size), and as a function of
viewcell size (with constant density). The averaged results
of 100 simulations are shown in Figs. 6 and 7. As ex-
pected, better agreement can be seen for smaller d and
o/R. The simulation results are slightly lower than
those predicted by the model, due to the "nite size
of the simulation scene, and due to the approximations
made in the derivation of the theoretical estimates (7)
and (8). Nevertheless, the simulation results con"rm
the predictions of the mathematical model that (1) size
of visibility sets are proportional to 1/d, and (2) N

7*4*"-%
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Fig. 7. Number of visible objects as a function of viewcell size (left) with d"0.1, and as a function of density (right) with o"0.2R
(bottom) and o"R (top). Comparison of theoretical prediction, Eq. (7) with average of 100 simulations.

Fig. 8. Regions of strong occlusion for adjacent viewcells with h"p/2, for d<R.

increases linearly with (non-dimensional) viewcell
size o/R.

5. Cell-to-cell-coherency

As stated in the introduction, the visibility set of near-
by cells and especially of adjacent cells, have many
entities in common. In this section, we estimate the
intersection of the visibility sets of adjacent cells. This
important quantity is needed to develop e$cient data
structures for an interactive walkthrough system.

Consider two tangentially adjacent circular viewcells
C1e and C2e , and let Q

1
and Q

2
denote their corresponding

potential visibility sets. We hence estimate the size of
their intersection set Q

1
W Q

2
, for o/R(1/2. To this end,

we consider an object S located at a distance d from the
"rst viewcell. Let X

1
and X

2
denote the strong occlusion

regions of S with respect to the two viewcells, respectively.
The object S is potentially visible from both viewcells if
and only if there are no objects whose center reside inside
X

1
X X

2
. Therefore,

Pr (S potentially visible from both viewcells)

&exp A!
d

pR2
DX

1
X X

2
DB.

The area of X
1

X X
2

depends on the angle h between

the line connecting the "rst viewcell and the object, and
the line connecting the two viewcells. To simplify the
presentation, instead of computing the exact area of this
region as a function of h, we bound it by its upper value,
which is attained at h"p/2, as shown in Fig. 8. For
d<R and h"p/2, X

1
X X

2
is approximately a triangle

with height d and base 2R. Therefore, for all values of h,

DX
1

X X
2
D)Rd.

We now estimate DQ
1

W Q
2
D, the average number of

objects potentially visible from both viewcells. Using
similar computations to those of Section 4, we obtain
that

DQ
1

W Q
2
D+P

=

0

2pr
d

pR2
exp A!

dr

pRB dr"
2p2

d
.

Therefore,

DQ
1

W Q
2
D

DQ
1
D

+A1!
o
RB

2
.

We thus see that the relative overlap of the two adjac-
ent visibility sets decreases linearly with viewcell size and
that there is a high cell-to-cell coherency for small view-
cells. For example, for o/R"0.1 the overlap is about
80% of the size of the original sets. Further research is
needed, to develop e$cient data structures that exploit
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this feature. Possible data structures are either di!erence
lists or some hierarchical structure (e.g. a quadtree),
where the links between nodes encode the di!erence sets.

6. Storage considerations

The analysis in Section 4 shows that for the strong
occlusion approach to be e!ective, the viewcell has to be
su$ciently smaller than the objects. However, there is no
point in taking extremely small viewcells, since even as
o tends to zero the number of potentially visible objects
cannot go below 2p2/d, which is the number of potentially
visible objects from the viewcell center point (8). In addi-
tion, partitioning the scene into smaller viewcells increases
the number of viewcells, which is highly undesirable, espe-
cially if we precompute and store each viewcell's potential
visibility set. Thus, the following question arises: What is
the optimal way to partition a scene into viewcells?

We can answer this question from the point of view of
minimizing the overall storage, assuming that for each
viewcell we store all of its corresponding potential visibil-
ity set. For example, if we partition an M by M scene into
N2 viewcells, each with sides 2o"M/N, the total storage
required is given by

G(o)+
M2

4o2
N

105%/5*!--: 7*4*"-%
(o).

The optimal viewcell size can be found from G@(o)"0.
Since N

105%/5*!--: 7*4*"-%
for a square viewcell can be ap-

proximated using (B.1), the optimal value of o/R is

1/(1.27]2J2)+0.3. For a real scene, this procedure can
be repeated, only with N

105%/5*!--: 7*4*"-%
(o) computed dir-

ectly from simulations.

7. Hierarchical data structure

As we have already said, one approach for reducing
rendering time in interactive walkthrough systems is to
compute the visibility set for a square viewcell, rather
than for a certain view-point. Thus, the purpose becomes
to compute the set of polygons (or objects) which are
potentially visible from every point within the cell, from
the set of polygons of the entire scene. One way to
achieve a reasonable latency time is to pre-compute the
visibility sets of all cells in the environment, and during
the walkthrough fetch the appropriate list and render it.
However, since the change in visibility from adjacent cells
is usually small, their lists include many common objects.
As a result, there are many duplications of polygons
(objects) in the data structure. For a typical scene, con-
sisting of hundreds of thousands of polygons, the amount
of produced data is too large.

We can exploit the cell-to-cell coherency, predicted by
the model (Section 5), to store the data in a hierarchical
data structure which reduces the number of duplications.
To this end, we divide the scene into &large' 4o]4o
squares, each consisting of four adjacent viewcells with
sides 2o. For each of the four adjacent cells we compute its
potential-visibility set ¹

i
(i"1,2,3,4) and the intersection

set ¹
1234

"W4
i/1

¹
i
. In the data structure, for each &large'

square, we store the intersection set ¹
1234

and the four
di!erence lists (¹

i
!¹

1234
). Thus, the rendering list of cell

i consists of the two (disjoint) lists ¹
1234

and (¹
i
!¹

1234
).

To evaluate the e!ectiveness of the proposed data
structure, we implement a simulation program with two
scenes, each consisting of randomly distributed identical
square objects (with side 2R"40). The "rst scene in-
cludes 4500 objects (9000 polygons) in an environment
with density d"0.2. The second scene includes 5062
objects (10124 polygons) with density d"0.09. We place
four adjacent square viewcells at the center of the scene
and compute the corresponding sets ¹

i
(i"1,2,3,4)

and ¹
1234

.
Fig. 9(a) shows the average coherence ratio

4D¹
1234

D/+4
i/1

D¹
i
D, as a function of cell size for the "rst

scene (d"0.2). As expected, coherence approaches its
maximum ("100%) when either o/R goes to zero or
when o becomes comparable to R and all objects become
potentially visible.

In Fig. 9(b) we plot the total storage size of the naive
data-structure (M2+4

i/1
D¹

i
(o)D/16o2) and of the hierarchi-

cal data structure (M2(+4
i/1

D¹
i
(o)D!3D¹

1234
D)/16o2), as

a function of cell size for the second scene (d"0.09). In
these simulations the use of the hierarchical data-struc-
ture leads to savings in total storage of about 25%. The
optimal cell size for the naive data-structure is o/R+0.5,
which is close to the analytic prediction (Section 6). The
optimal cell size for the hierarchical data-structure is
slightly lower.

8. Visibility in jittered scenes + simulation analysis

In our analysis so far, we assumed that objects are
randomly distributed inside the scene. Clearly, this is not
the case for urban scenes, where houses are not randomly
scattered, but rather jittered with respect to some under-
lying structure (grid, topography, etc.). In order to see
how this a!ects visibility, we consider a scene with an
underlying grid structure. The scene is divided into
equally sized squares (lots) with side ¸, such that each
square contains exactly one circle of radius R. The center
of the object is uniformly jittered with respect to the
center of the square, such that the circle still resides inside
the square. Note that the fraction of the area covered by
the objects is given by d"pR2/¸2.

In Fig. 10 the potential visibility in a jittered scene with
d"0.125 is shown as a function of distance, for di!erent
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Fig. 9. (a) Average coherence ratio as a function of cell size (b) Total storage size as a function of cell size (in arbitrary units), for the
naive data-structure (top), and for the hierarchical data-structure (bottom).

Fig. 10. Potential visibility in a jittered scene, as a function distance, for di!erent viewcell sizes. In this simulation, ¸"5, and R"1,
(d"0.1257). Simulation results vs. prediction (3) for a random scene.

viewcell sizes. This is the analogue of the left graph in
Fig. 5. These simulation results are compared with the
theoretical prediction (3), which was derived for a ran-
dom scene. The graph shows that except for objects
located in the adjacent squares, there is a good agreement
between the two.

This agreement can be explained as follows: Recall that
an object S is potentially visible if there are no objects
inside the region of strong occludence, X

S
(Section 2). For

long distances, X
S

intersects with many squares. Let us
denote by A

j
the intersection area of the jth square that

intersects with X
S
. The probability that the center of the
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Fig. 11. Visibility probability in a jittered scene with ¸"5 and R"0.5, (d"0.0314), as a function of distance from a point viewcell with
o"0. Average of 100 simulations (triangles), vs. theoretical prediction (5) for a random scene (solid line).

object inside the square does not reside inside A
j

is
approximately 1!A

j
/¸2. Thus,

Pr (S potentially visible)+<
j
A1!

A
j

¸2B+<
j

exp A!
A

j
¸2B

"exp A!
DX

S
D

¸2 B,
which is exactly the same as in the case of a random
scene, (Eq. (3)).

The disagreement between the theoretical prediction
for random scenes and the simulation results for a jittered
scene is most noticeable for distances of the order of one
or two squares. In order to understand this, we note that
for example, objects is the neighboring squares are al-
ways visible in the jittered scene as there is no other
object than can occlude them, which is not necessarily the
case for a random scene.

We now turn to the visibility probability. A compari-
son between the actual visibility in a jittered scene and
prediction (5) for a random scene appears in Fig. 11. This
is the analogue of the right graph in Fig. 5. As can be
seen, visibility decreases exponentially, but at a slower
rate than predicted by (5). In order to understand the
di!erence between the two, consider the jittering range
(i.e. the maximal deviation of object's center from the
center of the square) as an additional parameter. When
the jittering range is much larger than the length of the

squares, then the objects locations are approximately
random, and visibility approximately follows (5). Clearly,
as the jittering range is reduced, on the average more
objects become visible. The extreme case when there is no
jittering at all (i.e., all objects are centered on a Cartesian
grid), achieves the highest visibility. Therefore, our simu-
lations in which the jittering range equals the side of the
square, correspond to an intermediate case between ran-
domness and a Cartesian grid.

Since the potential visibility in the jittered scene
behaves as (3) the potential visibility set size is approxim-
ately given by (8). However, as visibility in the jittered
scene decays slower than (5), equation (7) is an underesti-
mate for the actual visibility set size. Therefore, the
&strong occluders'method is even better suited for jittered
scenes, as the overhead of the potentially visible set is
even lower than (9) for a random scene, as analyzed in the
previous section.

Appendix A

A.1. Probability of visibility

To calculate the probability for S to be visible, we "rst
note that regions X

1
and X

2
have the same area and

geometrical shape. Let k
1

and k
2

denote the number of
objects in X

1
and X

2
, respectively. Under our approxima-

tion, k
1

and k
2

are independent Poisson distributed
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2This approximation slightly underestimates the probability
for visibility, since it does not take into account the case when
there are no horizontal rays of sight from the viewpoint to the
object S but there are diagonal ones. However, when d<R,
these neglected events have a very low probability, and their
e!ect on our approximation is small.

random variables with mean oDX
i
D. Consequently, using

(1), we have that

Pr (S visible)"Pr (no objects in X
S
)

]
=
+

k1, k2/0

Pr (S visible Dk
1
, k

2
)Pr (k

1
, k

2
)

"e~o@XS@
=
+

k1, k2/0

Pr (S visible Dk
1
, k

2
)

]
e~o@X1@(oDX

1
D)k1

k
1
!

e~o@X2@ (oDX
2
D)k2

k
2
!

. (A.1)

Let My(1)
i

Nk1
i/1

and My(2)
j

Nk2
j/1

denote the y coordinate of
the center of the objects in X

1
and in X

2
, respectively.

Under the assumption that there are no excluded volume
e!ects (the fact that circles cannot overlap), My(1)

i
Nk1
i/1

and
My(2)

j
Nk2
j/1

are independent identically distributed random
variables. Let F

1
(y) denote the probability that the

y coordinate of the highest point of object i in X
1

is
below y, i.e.

F
1
(y)"Pr (y

i
(y!R).

Let f
1

(y) denote the corresponding probability density
function. In a similar manner, let F

2
(y) denote the prob-

ability that the bottom point of object j in X
2
lies above y,

F
2
(y)"Pr (y

j
'y#R).

If k
1
"0 then Pr (S visibleD0, k

2
)"1, regardless

of k
2
. Otherwise, when d<R, the probability that S is

visible given n(X
S
)"0, n(X

1
)"k

1
and n(X

2
)"k

2
is

approximately2

Pr (S visible Dk
1
, k

2
)+

Pr A min
1xixk2

y(2)
j
! max

1xixk1

y(1)
j
'2RB

which can be evaluated as follows:

Pr Amin
k2

y(2)
j
!max

k1

y(1)
j
'2RB

"P
0

~2R

Pr Amax
k1

y(1)
i
"mB Pr Amin

k2

y(2)
j
'm#2RB dm

"P
R

~R

k
1
f
1
(y) Fk1~1

1
(y)[F

2
(y)]k2 dy. (A.2)

Note that (A.2) is also valid in the case k
2
"0, for

which Pr (S visibleDk
1
, 0)"1. Inserting (A.2) into (A.1),

and changing the order of summation and integration
yields

Pr (S visible)"e~o(@XS@`@X1@)#e~o@X@P
R

~R

f
1
(y)oDX

1
D dy

]
=
+

k1/1

(oDX
1
DF

1
(y))k1~1

(k
1
!1)!

=
+

k2/0

(oDX
2
DF

2
(y))

k
2
!

"e~o(@XS@`@X1@)#oDX
1
De~o@X@

]P
R

~R

exp (oDX
1
D F

1
(y)

#oDX
2
DF

2
(y)) f

1
(y) dy. (A.3)

We now compute F
1
(y) and F

2
(y) when d<R. In this

case, X
1
and X

2
are approximately trapezoids with height

d and bases of length 2R and 2o and

DX
1
D"DX

2
D"d(R#o).

For each value of y, we calculate the fraction of the
area of X

1
in which an object center can reside such that

its highest point still lies below y. This gives

F
1
(y)" G

(R#y)2

2(R2!o2)
for!R(y( !o,

1

2A1#
2y

(R#o)B for !o(y(o,

1!
(R!y)2

2(R2!o2)
for o(y(R.

Due to the re#ection symmetry in the problem
F
2
(y)"F

1
(!y). We now insert these expressions into

(A.3). Noting that F
1
(y)#F

2
(y)"1 we obtain

Pr (S visible)"C1#oDX
1
DP

R

~R

f
1
(y) dyDe~o(@XS@`@X1@).

Since f
1
(y)"F@

1
(y) is a probability density function, its

integral equals unity, and (5) follows.

Appendix B

B.1. Visibility set size for a square viewcell

The potential visibility set size for a square viewcell
with side 2o is bounded from below and above by (8) with

o and J2o, since the square is bounded between two

circles with radii o and J2o, respectively. We hence
perform a more exact analysis in order to get a sharper
estimate. For a square viewcell, and an object at a dis-
tance d, the region of strong occludence X

S
depends on

the angle h formed between the line connecting the
square and the object, and the axis of the square viewcell
(Fig. 12). For d<R, X

S
is approximately a triangle with
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Fig. 12. The e!ective radius o(h) for an object centered at (x
0
, y

0
) which forms an angle h with the square viewcell, for d<R.

height d and baseline 2(R!o(h)), where the e!ective
viewcell radius o(h) is given by

o(h)"J2o sin(p/4#h).

We divide the plane into 8 sectors, such that in each
the angle h3[0, p/4]. Using (3) with o"o(h), the average
number of potentially visible objects is given by

N
105%/5*!--: 7*4*"-%

"8P
n@4

0

dhP
=

0

dr
d

pR2
r exp A!

2r

pR A1!
o(h)

R BB
"

8p

d P
p@4

0

dh

(1!(J2o/R) sin (p/4#h))2
.

The last integral can be evaluated analytically, though
the exact expression is rather complicated. However,
a Taylor expansion for o/R;1 yields

N
105%/5*!--: 7*4*"-%

+

2p2

d A1#16
3!2J2

(2!J2)2

o
RB

+

2p2

d
1

(1!1.27o/R)2
.

Therefore, the e!ective radius for a square viewcell
with side 2o is o

%&&
"1.27o.
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