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Deterministic vectorial effects lead to multiple filamentation
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The standard explanation for multiple filamentation of laser pulses is that it is caused by noise in the input
beam. We propose an alternative explanation that is based on deterministic vectorial (polarization) effects.
We present numerical simulations in support of the vectorial-effects explanation and suggest a simple ex-
periment for deciding whether multiple filamentation is due to vectorial effects. © 2001 Optical Society of
America
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The propagation of intense laser beams in a Kerr
medium is governed by the vector Helmholtz
equations1
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Here, EEE � �E1, E2, E3� is the electric field in the
�x, y, z� directions, respectively, e0 is vacuum permit-
tivity, n0 is the medium’s (linear) refractive index, k0
is the wave number, and D � ≠xx 1 ≠yy 1 ≠zz. The
nonlinear polarization vector PNL in an isotropic Kerr
medium is given by1,2
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2, EEE � is the
complex conjugate of EEE , n2 is the Kerr coeff icient, and
g is a positive constant whose value depends on the
physical origin of the Kerr effect.3

Let us set the coordinate system such that the laser
beam is linearly polarized in the x direction and propa-
gates in the positive z direction as it enters the Kerr
medium at z � 0. Almost all studies ignore the vec-
torial nature of the beam and assume that the beam
remains linearly polarized inside the Kerr medium,
i.e., E 2 � E 3 � 0 for z $ 0. In that case, the Kerr
effect [Eq. (2)] is described by the scalar relation n �
n0 1 n2jE 1j

2 and, to leading order, Eqs. (1) and (2) re-
duce to the nonlinear Schrödinger equation (NLS) for
the beam amplitude A1:
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where E1 � A1�z, x, y�exp�ik0z� and D� � ≠xx 1 ≠yy .
The NLS model [Eq. (3)] has been successful in

predicting the catastrophic self-focusing of intense
laser beams4 whose input power P0 is above the
critical power for collapse Pc.5 When P0 ..Pc, cata-
strophic self-focusing is often preceded by multiple
filamentation, in which a single input beam breaks
up into several long and narrow filaments.6 Because,
according to the NLS model, beams with axially sym-
metric input profiles should remain axially symmetric
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during propagation, the question arises as to what the
mechanism is behind the breakup of axial symmetry
that leads to multiple f ilamentation. For more than
30 years, the standard (and only) explanation for mul-
tiple f ilamentation in isotropic homogeneous media,
which is due to Bespalov and Talanov,7 has been that
breakup of axial symmetry is initiated by random
noise in the input beam’s profile. However, the valid-
ity of the analysis in Ref. 7 is questionable, because it
is based on stability analysis of plane-wave solutions.
In this Letter we propose an alternative, deterministic
explanation for multiple f ilamentation that is based on
vectorial effects. We present numerical simulations
in support of the vectorial-effects explanation and
suggest a simple experiment for deciding whether
multiple f ilamentation is due to vectorial effects.

We begin by deriving a new scalar partial dif-
ferential equation for self-focusing in the presence
of vectorial effects. We nondimensionalize Eqs. (1)
and (2), using x̃ � x�r0, ỹ � y�r0, z̃ � z�2k0r02, and
EEE � �2r0k0�21

p
n0�n2A�z, x, y�exp�ik0z�, where r0 is

the initial beam width. Dropping the tildes, we get
the nondimensional vectorial system
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where N�A� � �jAj2A 1 gA2A����1 1 g�, f � �r0k0�21,
ê3 � �0, 0, 1�, and ===� � �≠x, ≠y , 0�. Because
f � l�2pr0 ,, 1, we can use perturbation analy-
sis to show that A3 � ifA1,x and A2�A1 � O� f 2�.
Therefore the system of Eqs. (4) can be reduced to the
following scalar equation for A1 (Ref. 8):
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where A1, zz is beam nonparaxiality and the other
terms on the right-hand side of Eq. (5) correspond to
vectorial effects.9 We remark that previous studies of
vectorial effects10 – 13 obtained similar, yet not identical,
equations for A1. Clearly, when f � 0, Eq. (5) reduces
to the nondimensional NLS:

iA1,z 1 D�A1 1 jA1j
2A1 � 0 . (6)

The asymmetry in the x and y derivatives in
Eq. (5) implies that vectorial effects breakup the
axial symmetry while inducing a preferred direction
in the transverse plane (the direction of input beam
polarization). Indeed, axial symmetry is broken at
the vectorial model [Eq. (1)] by the linear polarization
of the input beam. In this Letter we show that the
breakup of axial symmetry by vectorial effects can
lead to multiple filamentation. A typical simulation
can be seen in Fig. 1, where we solve Eq. (5) for an ax-
ially symmetric Gaussian input beam with P0 � 5Pc.
As the beam propagates, it goes through the following
stages: (i) nonaxial self-focusing, (ii) defocusing into
a ring with two peaks, (iii) a second self-focusing,
(iv) defocusing of the central peak and emergence
of two filaments, and (v) self-focusing of the two
filaments. During the last stage the two filaments
propagate forward in the z direction while they move
away from each other along the axis of initial polar-
ization at a constant speed (Fig. 2).

Also, we numerically tested the Bespalov–Talanov
model for multiple f ilamentation7 by solving the
unperturbed NLS (6) with high-power �P0 ..Pc�
axially symmetric input Gaussian beams, to which
we added random noise, both in amplitude and in
phase. We ran many simulations but could not see
any evidence of multiple f ilamentation caused by
random noise.14 Rather, the beams converged to an
axially symmetric profile as they collapsed. We also
note that the Bespalov–Talanov model cannot explain
the multiple f ilamentation experiments reported in
Ref. 15 because “although [the f ilament patterns
were] random in appearance, [they] were perfectly
reproducible shot to shot.”15 We believe that the
major weakness of the Bespalov–Talanov model is
that it assumes that, to leading order, the electric
field is a plane wave. Under this assumption (which
implies infinite input power), instabilities can grow
while the leading-order solution remains unchanged.
Such is not the case, however, for a propagating beam,
for which the transverse self-focusing dynamics of the
leading-order solution dominate the evolution of the
noise.

The results presented so far show that vectorial
effects can lead to multiple f ilamentation for beams
whose power is only a few times the critical power.
They do not, however, rule out the possibility that
under certain conditions multiple filamentation can
result from noise in the input beam. Indeed, multiple
filamentation has been observed in simulations of
NLSs with saturating nonlinearity for very powerful
beams �P0 � 100 Pc�.16 – 19 In addition, our model
does not include other mechanisms, such as time
dispersion, plasma generation, and photon absorption,
which, in theory, could also lead to multiple fila-
mentation. Nevertheless, we can propose a simple
experimental test for deciding whether multiple f il-
amentation results from vectorial effects. This test
is based on the observation that vectorial effects are
the only mechanism (neglected in the derivation of

Fig. 1. Deterministic multiple f ilamentation of an axially
symmetric input beam A1�z � 0, x, y� � 2

p
5Pc exp�2�x2 1

y2��. Here f � 0.025 and g � 0.5.

Fig. 2. Isosurface jA1j
2 � 28 of the data in Fig. 1.
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the NLS model) that breaks up the axial symmetry
while including a preferred direction in the transverse
plane, which is that of the initial linear polarization.
Therefore, if multiple f ilamentation results from
vectorial effects, then (i) the filamentation pattern
should persist between experiments (as reported in
Ref. 15), (ii) if the direction of linear polarization of the
input beam is rotated in the transverse plane between
experiments, the filamentation pattern should follow
the same rotation, and (iii) when a beam splits into
two filaments, the splitting should occur either in the
direction of initial polarization or perpendicular to
it. If, in contrast, multiple filamentation results from
noise in the input beam, the filamentation pattern
should vary between experiments and, in particular,
be independent of the direction of initial polarization.
We note that this test can be applied to any filamen-
tation experiment and not only to those governed by
Eq. (1).
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