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Abstract

The critical nonlinear Schrödinger equation (NLS) on bounded domains models the propagation of cw laser beams in
hollow-core fibers. Unlike the NLS on unbounded domains which models propagation in bulk media, the ground-state
waveguide solutions are stable and the condition of critical power for singularity formation is generically sharp. © 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The critical nonlinear Schrödinger equation (NLS) on R2

iψt(t, x, y) + �ψ + |ψ |2ψ = 0, (x, y) ∈ R2, t ≥ 0, ψ(0, x, y) = ψ0(x, y), (x, y) ∈ R2 (1)

is the model equation for intense laser beam propagating in bulk media with Kerr nonlinearity. Here, ψ is the electric
field amplitude, t is the distance in the direction of propagation, (x, y) are the transverse coordinates, � = ∂xx + ∂yy

is the diffraction term and |ψ |2ψ is the focusing Kerr nonlinearity term. It is well known that solutions of Eq. (1)
can self-focus and become singular in finite time. For recent reviews on singularity formation in the critical NLS,
see [8,19,28].

Most research on self-focusing in the NLS has been carried out on unbounded domain (i.e., R2), corresponding
to propagation in bulk media. Recently, however, there has been considerable interest in the propagation of intense
laser beams in hollow-core fibers filled with a noble gas [6,13,21–24,29,30]. This physical setup offers various
advantages, since the noble gas has a pure χ(3) Kerr nonlinearity, whose magnitude can be controlled by varying
the gas pressure. Because of the difference in the index of refraction between the fiber walls and the gas, when
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the fiber diameter is much greater than the beam wavelength, the walls reflect back almost all radiation [16,30].
Therefore, one can approximate the propagation of a laser beam inside a hollow fiber with the critical NLS on a
smooth, bounded domain Ω ∈ R2,

iψt(t, x, y) + �ψ + |ψ |2ψ = 0, (x, y) ∈ Ω, t ≥ 0, ψ(0, x, y) = ψ0(x, y), (x, y) ∈ Ω (2)

with Dirichlet boundary conditions at the walls [6,29,30]

ψ(t, x, y) = 0, (x, y) ∈ ∂Ω. (3)

In this study, we use a combination of rigorous, asymptotic and numerical results to address the following question:
What is the effect of reflecting boundaries (walls) on self-focusing, and in particular on waveguide solutions and
on singularity formation? To answer this question, we first note that the boundaries have a focusing effect, as they
reflect back the diffracted part of the beam. As a result, the boundaries act together with the focusing nonlinearity
and against the defocusing diffraction term. Indeed, we show that the threshold power for singularity formation
is, in a sense, smaller than in free-space. More precisely, unlike in free-space, where the actual threshold power is
somewhat higher than the theoretical lower-bound estimate Nc, on bounded domain the threshold power is equal,
at least generically, to Nc. In addition, the boundaries stabilize the ground-state waveguides, since, by working
together with the nonlinearity, they can ‘support’ waveguides whose power is below Nc. We note that stabilization
of ground-state waveguides by an additional focusing mechanism was also observed in the case of NLS with an
attractive linear potential [26]. Indeed, the properties of the ground-state waveguides in [26] and in this study are
quite similar. The walls appear to have no effect, however, with regard to the behavior near the singularity, since
singularity formation is a local phenomena. Thus, the power concentration property of NLS still holds, and one can
expect the blowup rate to be the same as on unbounded domains.

We recall that the NLS in RD with a general nonlinearity

iψt(t, x1, . . . , xD) +
[

∂2

∂x1x1
+ · · · + ∂2

∂xDxD

]
ψ + |ψ |2σψ = 0

is called subcritical, critical or supercritical, when σD is less than, equal to, or greater than 2, respectively. Although
finite-time blowup can occur for both critical and supercritical NLS, there is a marked difference between these two
cases, as near the singularity nonlinearity dominates over diffraction in the supercritical case, while they are of the
same magnitude in the critical case. In this paper we consider the critical case σ = 1 and D = 2, which corresponds
to the hollow fiber application. Our results, however, hold for critical NLS in all dimensions (e.g., D = 1 and
σ = 2).

In order to simplify the presentation, we mainly consider radially symmetric solutions on the unit disc B1 :=
{0 ≤ r ≤ 1}, where r =

√
x2 + y2. In this case, Eqs. (2) and (3) become

iψt(t, r) + �ψ + |ψ |2ψ = 0, 0 ≤ r ≤ 1, 0 ≤ t, (4)

ψ(0, r) = ψ0(r), 0 ≤ r ≤ 1,
d

dr
ψ(t, 0) = 0, ψ(t, 1) = 0, 0 ≤ t,

where � = ∂rr + (1/r)∂r . The assumption of radial symmetry is consistent with the hollow fiber application.
However, almost all results in this paper are valid for a general bounded domain Ω so long as it is smooth and
convex. In fact, the only case where the extension from the unit disc to a general domain is not obvious involve the
variational characterization of the ground-state waveguides in Section 4.

Finally, in order to clarify the presentation, all proofs are given in Appendix A.
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2. Invariance

In this paper, unless mentioned otherwise, all Lp norms are taken over a bounded domain Ω ∈ R2, i.e.,

‖f (r)‖p :=
(∫

Ω

|f (r)|p dx dy

)1/p

.

We only consider functions in H 1
0 , i.e., those satisfying (3) and

‖ψ(t, ·)‖H 1
0
< ∞, where ‖f ‖H 1

0
:=
√

‖∇f ‖2
2 + ‖f ‖2

2.

The NLS on bounded domains, Eq. (2), has two important conserved quantities: The power 2

‖ψ‖2
2 ≡ ‖ψ0‖2

2, (5)

and the Hamiltonian

H(ψ) ≡ H(ψ0), H(f ) := ‖∇f ‖2
2 − 1

2‖f ‖4
4. (6)

As in free-space, the two transformations

1. time-translation: ψ(t, r) → ψ(t − t0, r),
2. phase change: ψ → ψeiθ with θ real

leave the NLS on bounded domain invariant. However, unlike in free-space, space translation, Galilean transforma-
tion, the scaling transformation

ψ(t, x) → λψ(λ2t, λx), (7)

and the lens transformation (pseudo-conformal transformation), do not leave Eq. (2) invariant. The absence of the
last two symmetries, which play an important role in critical self-focusing theory, is related to some of the differences
between self-focusing in free-space and in bounded domains.

3. Waveguide solutions

We begin in Section 3.1 with a short review of the theory of waveguide solutions of the NLS on R2. The
corresponding theory for bounded domains is developed in Section 3.2.

3.1. Infinite domain

Eq. (1) has radially symmetric waveguide solutions of the form

ψ = exp(iωt)Rω(r),

where Rω is the real solution of the nonlinear ODE

�Rω − ωRω + R3
ω = 0,

d

dr
Rω(0) = 0, Rω(∞) = 0. (8)

2 In the nonlinear optics context, ‖ψ‖2
2 is the normalized beam power.
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For ω > 0, Eq. (8) has an infinite number of solutions, which can be arranged in order of increasing power (see
[1,2])

‖R(0)
ω ‖2 < ‖R(1)

ω ‖2 < ‖R(2)
ω ‖2 < · · · . (9)

In addition, due to the scaling invariance of (8), we have that for ω > 0

R(n)
ω = √

ωR(n)(
√

ωr), R(n) := R
(n)
ω=1, (10)

and, as a result,

‖R(n)
ω ‖2 = ‖R(n)‖2. (11)

Integration by parts of (8) shows that

ω‖R(n)
ω ‖2

2 =
∥∥∥∥∥dR(n)

ω

dr

∥∥∥∥∥
2

2

= 1

2
‖R(n)

ω ‖4
4. (12)

Therefore,

H(R(n)
ω ) = 0. (13)

From Eqs. (10) and (12) it follows that there are solutions in H 1 to Eq. (8) when 0 < ω < ∞, but not for ω ≤ 0.
We also recall that by standard WKB,

R(n)(r) ∼ An e−r r−1/2 for 1 � r, (14)

where the constants An are given by the formula

An =
√

π

2

∫ ∞

0
(R(n)(r))3I0(r)r dr,

and I0 is the modified Bessel function.
A special role in NLS theory is played by the ground-state solution R := R(0), the so-called Townes soliton,

which is the positive, monotonically decreasing solution of

�R(r) − R + R3 = 0,
d

dr
R(0) = 0, R(∞) = 0. (15)

For any n ≥ 0, there exists a solution of (15) with exactly n zeros in the interval 0 < r < ∞ [12]. It is conjectured
that this solution is the nth-state solution R(n). However, rigorous proof exists only for the ground-state solution
[15,31].

3.2. Bounded domain

We now derive the corresponding theory for waveguide solutions of the form

ψ = exp(iωt)Qω(r)

of the NLS on a the unit disc, Eq. (4). The function Qω is the real solution of

�Qω(r) − ωQω + Q3
ω = 0,

d

dr
Qω(0) = 0, Qω(1) = 0. (16)
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For each ω we can define the functional

Iω(u) := H(u) + ω‖u‖2
2.

The nonlinear ODE (16) has an infinite number of solutions which can be arranged in order of increasing Iω [1,2]:

Iω(Q
(0)
ω ) < Iω(Q

(1)
ω ) < Iω(Q

(2)
ω ) < · · · .

The scaling properties (10) and (11) do not hold on bounded domains. This fact is used in Section 4 to provide a
variational formulation for Q

(0)
ω .

The bounded domain version of the identities (12) are given by (see Appendix A.1)

ω‖Q(n)
ω ‖2

2 =
∥∥∥∥∥dQ(n)

ω

dr

∥∥∥∥∥
2

2

−
[

dQ(n)
ω

dr
(1)

]2

= 1

2
‖Q(n)

ω ‖4
4 − 1

2

[
dQ(n)

ω

dr
(1)

]2

. (17)

Therefore,

H(Q(n)
ω ) = 1

2

[
dQ(n)

ω

dr
(1)

]2

> 0. (18)

The fact that the Hamiltonian of waveguides on bounded domains is positive, rather than zero as in the free-space
case (13), has implications to the stability of waveguide solutions (Section 7). We also note that, as in free-space,
it can be proved that the ground-state solutions Q

(0)
ω are strictly positive inside the unit disc and are monotonically

decreasing ([2], and see also Section 4).
The following result relates changes in ω of the power and the Hamiltonian of Q

(n)
ω :

Lemma 1.

d

dω
H(Q(n)

ω ) = −ω
d

dω
‖Q(n)

ω ‖2
2.

We can identify two asymptotic regimes for Eq. (16):
Large amplitude regime ‖Q(n)

ω ‖∞ � 1. In this case, if we substitute Q
(n)
ω = √

ωF
(n)
ω (

√
ωr) with ω � 1, then

F
(n)
ω (r) is the solution of

�F(n)
ω − F (n)

ω + (F (n)
ω )3 = 0,

d

dr
F (n)

ω (0) = 0, F (n)
ω (

√
ω) = 0.

Therefore, we have, both in H 1
0 and pointwise, 3 that

lim
ω→∞F (n)

ω = R(n),

where R
(n)
ω is the nth-state solution of (15). In particular, in L2,

Q(n)
ω ≈ R(n)

ω = √
ωR(n)(

√
ωr) for ω � 1. (19)

The waveguides Q
(n)
ω are, therefore, localized around the origin, and

lim
ω→∞|Q(n)

ω |2 = ‖R(n)‖2
2δ(r). (20)

3 These limits can be rigorously proved using Sturm–Liouville properties of ODEs to show that the zeros of Fω remain bounded.
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Fig. 1. ‖Q(n)
ω )‖2

2 as a function of ω for the first three states.

From (9) and (19) and the conjecture that R(n)
ω has n zeros in 0 < r < ∞, we have that for ω � 1:

1. ‖Q(0)
ω ‖2 < ‖Q(1)

ω ‖2 < ‖Q(2)
ω ‖2 < · · · ,

2. Q
(n)
ω has n zeros in 0 < r < 1.

Numerical calculations suggest that properties (1) and (2) hold for all ω (see Figs. 1 and 3).
From (14) and (19) we have that

dQ(n)
ω

dr
(1) ≈ ω

dR(n)
ω

dr
(
√

ω) → 0 as ω → ∞.

Therefore, using (18), we have that

lim
ω→∞H(Q(n)

ω ) = 0, (21)

and also that

d

dω
H(Q(n)

ω ) < 0 for ω sufficiently large. (22)

Therefore, by Lemma 1, we have that

d

dω
‖Q(n)

ω ‖2
2 > 0 for ω sufficiently large. (23)

Small amplitude regime ‖Q(n)
ω ‖∞ � 1. In this case, if we substitute Q

(n)
ω = √

εG
(n)
ω (r) with 0 < ε � 1, then

G
(n)
ω (r) is the solution of

�G(n)
ω − ωG(n)

ω + ε(G(n)
ω )3 = 0,

d

dr
G(n)

ω (0) = 0, G(n)
ω (1) = 0.

Therefore,

G(n)
ω ≈ cJ0(

√−ωnr), 0 < ε � 1,

where J0 is the Bessel function of zero-order of the first kind, c a constant, ωn = −k2
n and kn the nth positive root

of J0(r). Thus, ω0 ≈ −5.8, ω1 ≈ −30.5, ω2 ≈ −74.8, etc.
The following lemma, which is a standard bifurcation result, provides further information on the solution mag-

nitude.
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Fig. 2. H(Q
(n)
ω ) as a function of ω for the first three states.

Lemma 2. When 0 < ω − ωn � 1, then

Q(n)
ω ∼ Bn

√
ω − ωnJ0(

√−ωnr), Bn =
(∫ 1

0 J 2
0 (

√−ωnr)r dr∫ 1
0 J 4

0 (
√−ωnr)r dr

)1/2

.

Note that Lemma 2 implies that in the domain 0 < ω − ωn � 1,

‖Q(n)
ω ‖2

2 = O(ω − ωn), H(Q(n)
ω ) = O(ω − ωn), (24)

and that Q(n)
ω (r) has n zeros in 0 < r < 1. In particular, Lemma 1 and (24) imply the following corollary.

Corollary 1. There exists 0 < Ωn such that

d

dω
‖Q(n)

ω ‖2
2 > 0 and

d

dω
H(Q(n)

ω ) > 0 (25)

for ωn < ω < ωn + Ωn.

Fig. 3. Spatial profile of Qω for various ω for the first three states.
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The above results, together with numerical results shown in Figs. 1–3, suggest the following picture. The nth-state
solution of (16) exists for ωn < ω < ∞, 4 and has n zeros inside the domain r ∈ (0, 1). The nonlinearity becomes
more pronounced as ω increases and it becomes negligible as ω → ωn+. As ω increase from ωn to ∞, ‖Q(n)

ω ‖2
2

is monotonically increasing from zero (see (24)) to ‖R(n)‖2
2 (see (20)). The monotonicity of ‖Q(n)

ω ‖2
2 is observed

numerically (Fig. 1) and is proved in the two limiting cases ω → ∞ (see (23)) and ω → ωn (Corollary 1). In
addition, as ω increases from ωn to zero, H(Q

(n)
ω ) is monotonically increasing from zero (see (24)) to its maximal

value and that as ω increases from zero to infinity, H(Q
(n)
ω ) is monotonically decreasing to zero (see (21)). The

monotonicity of H(Q
(n)
ω ) for ωn < ω < 0 and for 0 < ω < ∞ follows from the monotonicity of ‖Q(n)

ω ‖2
2 and

Lemma 1.

4. Variational characterization of QωQωQω

In the free-space case, the scaling invariance of Eq. (8) implies that H(R
(n)
ω ) and ‖R(n)

ω ‖2 are independent of ω

(see (11) and (13)). These properties are not true for Eq. (16) on bounded domains, and can be used to give the
following variational characterization of the ground-state solutions Qω.

Theorem 1. For all ω ∈ (−ω0,+∞), Qω(r) is the unique real minimizer over all U(x, y) ∈ H 1
0 (B1) of

inf
‖U‖2

2=‖Qω‖2
2

H(U).

In addition, for all 0 < M < Nc, there exists a unique ωM ∈ (−ω0,+∞) such that QωM
(r) is the unique real

minimizer of

inf
‖U‖2

2=M

H(U).

Thus, the variational structure of Qω is based on the absence of scaling invariance on bounded domains.

Corollary 2. If the infimum in Theorem 1 is taken over functions U which are not necessarily real, then the
minimizers are given by the one-parameter family {eiθQω(r), θ real}.

In the remainder of this section we give the proof of Theorem 1. Let us first recall the following result from
nonlinear ODE theory.

Lemma 3 (Kwong [15]). For any given ω > 0, there is a unique real positive solution to the nonlinear ODE (16).

Kwong’s result holds only for ω > 0. We are not aware of a similar uniqueness result for ω0 < ω ≤ 0, which is,
in fact, a simpler case, since f (u) = −ωu+ u3 is monotonic in u. Since this result is widely expected to be true, in
the remainder of this paper we assume that Lemma 3 holds for ω0 < ω < ∞. Note that the question here is about
uniqueness, as existence follows from classical arguments (see below).

We also recall the Gidas et al. result [9,10] that all positive solutions of the elliptic PDE in the unit disc

�Q(x, y) + Q3 = ωQ for (x, y) ∈ B1, Q(x, y) = 0 for (x, y) ∈ ∂B1, (26)

4 Unlike in free-space, where solutions of all states only exist for 0 < ω < ∞.



140 G. Fibich, F. Merle / Physica D 155 (2001) 132–158

are radially symmetric and a decreasing function of the variable r . Therefore, by Lemma 3, there is a unique positive
solution to the PDE (26) for ω > 0, which is the positive solution of the ODE (16). We assume that this also holds
for ω0 < ω ≤ 0. We emphasize that here we use the fact that Ω is a disc. The uniqueness result is believed to
remain true for positive ground-state solutions in general bounded regular convex domains, but, at present, there is
no proof for that.

As before, we denote by Qω the unique positive solution of (16). From numerical evidence (Fig. 1) we claim the
following result.

Lemma 4. ‖Qω‖2 is a strictly monotonically increasing function of ω.

We have proved Lemma 4 for 0 < ω − ω0 � 1 (Corollary 1) and for ω � 1 (23). From now on we assume that
Lemma 4 holds for all ω. Thus, the results in the remainder of this section, as well as in Section 7, are completely
proved only for 0 < ω − ω0 � 1 and for ω � 1.

We now introduce the following variational problem, which will later turn out to be the variational characterization
of Qω.

Lemma 5. For any M ∈ (0, Nc), there is a unique UM(x, y) ∈ H 1
0 (B1), such that

I (M) := inf∫ |U |2=M
H(U) = H(UM).

The infimum in Lemma 5 is taken over functions in H 1
0 which are not necessarily radial. However, using Steiner

symmetrization [25], it follows thatUM(r) is positive, radially symmetric and monotonically decreasing. Application
of the Euler–Lagrange equation with a side-condition shows that there is an ωM = ω(M) such that UM is the positive
solution of

�UM + U3
M = ωMUM. (27)

Therefore, by Lemma 3 we have that

UM = QωM
and I (M) = H(QωM

). (28)

We now claim the following properties of the function ω(M).

Lemma 6. The function ω(M) is continuous and strictly monotonic. In addition,

lim
M→Nc−

ω(M) = ∞, (29)

and

lim
M→0+

ω(M) = ω0, (30)

where ω0 = −λ0 and λ0 > 0 is the smallest eigenvalue of

−�U = λU,
dU

dr
(0) = 0, U(1) = 0.

From Lemma 6, it follows that as M goes from zero to Nc, ω(M) is monotonically increasing from ω0 to infinity.
In particular, for all ω ∈ (−ω0,+∞), there is a unique M = M(ω) ∈ (0, Nc), such that ω = ω(M) and M(ω) is
an increasing function of ω (see Fig. 1).

Summarizing the results of Lemmas 3–6 lead to Theorem 1.
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5. Global existence

Local existence in time in H 1 for the Cauchy problem (2) on bounded domains has been proved by Bourgain
in the case of periodic boundary conditions using function expansion in Fourier series [3]. An adaptation of this
technique can be used to prove local existence in the case of Dirichlet boundary conditions. We also recall that
Ginibre and Velo proved local existence in H 1 for the NLS in free-space (1), and that if blowup occurs ‖ψ‖H 1 goes
to infinity at the blowup time [11]. These results were later extended to the NLS (2) on bounded domains by Brezis
and Gallouet [4]. Since by (5), ‖ψ‖2

2 is bounded, global existence is equivalent to ‖∇ψ‖2
2 being bounded. In order

to bound ‖∇ψ‖2
2, we rewrite Eq. (6) as

‖∇ψ‖2
2 = H(0) + 1

2‖ψ‖4
4.

We also recall the Gagliardo–Nirenberg inequality

‖u‖4
L4(Ω)

≤ C1,2(Ω)‖u‖2
L2(Ω)

‖∇u‖2
L2(Ω)

. (31)

Combining the last two equations gives

‖∇ψ‖2
2 ≤ H(0) + C1,2(Ω)

2
‖ψ‖2

2‖∇ψ‖2
2.

Therefore, if C1,2(Ω)‖ψ0‖2
2 < 2 or, equivalently, if

‖ψ0‖2
2 < Nc(Ω), where Nc(Ω) := 2

C1,2(Ω)
,

then ‖∇ψ‖2
2 remains bounded and the solution exists globally.

The optimal constant C1,2(Ω) in the Sobolev inequality (31) satisfies

1

C1,2(Ω)
= inf

u�≡0∈H 1
0 (Ω)

JΩ(u), where JΩ(u) =
∫
Ω

|∇u|2∫
Ω

|u|2∫
Ω

|u|4 .

We recall that the calculation of C1,2(R
2) was done in [31] by minimization of the functional

JR2(u) =
∫ |∇u|2 ∫ |u|2∫ |u|4 ,

over all functions u ∈ H 1(R2) (see for existence [31] for uniqueness [15]). The minimum of JR2 is achieved by
the ground-state Townes soliton R(r), and is unique up to scaling, phase and translation parameters. In addition,
JR2(R) = 1

2‖R‖2
2. Therefore, C1,2(R

2) = 2/‖R‖2
2 and

Nc := Nc(R
2) = ‖R‖2

2 ≈ 2π · 1.86.

The optimal constant in Sobolev inequalities, such as (31), depends, in general, on the domain Ω . In the critical
case, however, Fibich [5] showed that the following results hold.

Lemma 7. In critical case σD = 2,

1. C1,2(Ω) is independent of Ω .
2. C1,2(Ω) = C1,2(R

2).
3. infu∈H 1

0 (Ω)JΩ(u) = infu∈H 1(R2)JR2(u).
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The result of Lemma 7 holds only in the critical case σD = 2. Indeed, the proof utilizes the fact that in the critical
case the rescaling (A.11) does not change the relative sizes of diffraction and nonlinearity.

An immediate consequence of Lemma 7, which shows an important difference between bounded domains and
R

2, is the following corollary.

Corollary 3. The infimum of JΩ(u) over all functions u ∈ H 1
0 (Ω) is not achieved.

From Lemma 7 it follows that the necessary condition for singularity formation in R2 is also true for bounded
domains.

Theorem 2 ([5]). The condition ‖ψ0‖2
L2(Ω)

≥ Nc is necessary for singularity formation in (2)–(3), where Nc =
Nc(R

2).

The question whether the condition ‖ψ0‖2
2 ≥ Nc is also sufficient for singularity formation is addressed in Section

6.2.

6. Singularity formation

As in free-space, the main analytical tool for proving blowup of NLS solutions on bounded domains is the variance
identity.

6.1. Variance identity and Hamiltonian condition for blowup

Let us define the variance of ψ ∈ H 1
0 (B1) by

V (t) =
∫

r2|ψ |2r dr.

Then, differentiating V with respect to time, using (4) and integrating by parts gives

Vt = −2i
∫

r2ψ∗ψr + c.c.,

where c.c. is complex conjugate. Differentiating a second time and using (6) gives the variance identity on bounded
domains:

Vtt = 8H(0) − 4|ψr(t, r = 1)|2. (32)

Therefore, we have the following result [14].

Lemma 8. If H(0) < 0 then ψ becomes singular at a finite time Tc < ∞.

Remarks:

• The variance identity on bounded domains differs from the free-space one by the boundary term. This term is
negative, because reflecting boundaries enhance blowup.

• The difference between bounded and unbounded domains is also evident when H(0) > 0 and ψ exists globally.
In this case, from the variance identity it follows that in free-space case limt→∞V (t) = ∞. On bounded domains,
however, V always remains bounded. For example, when Ω = B1, we have that V (t) ≤ ‖ψ0‖2

2.
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• A general rule of thumb in nonlinear wave equations is that waveguides are stable if and only if there is no
singularity formation in the equation. We see, thus, that NLS on bounded domains is an exception to this
‘rule’.

• If we substitute the waveguide solution ψ = exp(iωt)Qω(r) into the variance identity, we recover Eq. (18).

6.2. Critical power condition for blowup

We have seen that, as in free-space, a necessary condition for singularity formation is ‖ψ0‖2
2 ≥ Nc, while the

condition H(0) < 0 is a sufficient one. The following lemma shows that, as in free-space, the condition ‖ψ0‖2
2 ≥ Nc

is sharp in the following (weak) sense.

Lemma 9. For all ε > 0, there exists a blowup solution with initial condition ψ0, such that ‖ψ0‖2
2 ≤ (1 + ε)Nc.

It is well-known that in free-space the condition of a negative Hamiltonian is not really necessary for singularity
formation, as solutions with positive Hamiltonian can blowup [6,7]. On the other hand, any initial condition which is
not R(r) and does blowup has power strictly above Nc [17,18]. Therefore, the actual critical power in free-space of
the one-parameter family of initial conditions ψ0 = cf(x, y) is above Nc, but below the upper bound 2JR2(f ) which
correspond to the condition H(0) = 0 [6,7]. As first pointed out by Fibich and Gaeta in [6], numerical simulations
suggest that in a bounded domain the condition ‖ψ0‖2

2 < Nc is in fact sharp, at least generically. In other words, all
initial profiles with power above Nc ultimately lead to blowup. In this study, we have carried additional numerical
simulations which support this observation.

In order to motivate this observation, we note that in free-space

1. Unless the initial condition is R(r), a finite amount of power always radiates away from the singularity due to
diffraction.

2. The amount of power going into the singularity is ≥ Nc [7], and numerical experiments show that the amount
of power going into the singularity is, in fact, equal to Nc.

The second fact also holds for bounded domains. However, with regard to the first fact, in the case of bounded
domains all power which radiates away from the singularity is reflected back by the boundary. As a result, as the
solution tries to reorganize itself in the form of the Qω function, no power is lost, or radiated, to the background. As
more and more power is trapped in this profile, ω in increasing, which implies that the solution becomes narrower
and narrower.

Of course, the condition ‖ψ0‖2
2 < Nc cannot be sharp for all initial profiles, since the initial condition ψ0 = Q

(2)
ω

for ω sufficiently large, has power above Nc yet the corresponding waveguide solution does exist globally in time.
Our numerical simulations suggest, however, that these solutions are unstable. One can conjecture, therefore, that
on bounded domains all stable solutions which are global in time must have power strictly below Nc.

6.3. Concentration result

The local nature of blowup in the critical NLS is manifested in the concentration theorem, which shows that
the amount of power going into the singularity is given by a constant which is ≥ Nc. This result was proved in
free-space by Merle and Tsutsumi in [20]. The same proof applies also in the bounded domain case, since it is based
on (i) power conservation, (ii) Hamiltonian conservation, and (iii) the Nirenberg–Gagliardo inequality. In fact, one
can use the free-space version of the Nirenberg–Gagliardo inequality, applied to ũ(t), as defined in (A.10). We thus
have the following result.
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Theorem 3. Let ψ(t, r) be a solution of (4) which blows-up as t → Tc. Then, for all ρ > 0,

lim
t→Tc

‖ψ(t)‖L2({r≤ρ}) ≥ Nc.

Note that from Theorem 3 we can recover Theorem 2. Clearly, the result of Theorem 3 is of most interest when ρ

is small. In some sense, this result says that at the blowup time a power of at least Nc goes into the singularity point
(which is the origin in the case of a radially symmetric solutions). We expect the amount of power going into the
singularity to be exactly Nc.

In light of the power concentration property, one can expect that the boundary has no effect near the singularity
and thus that blowup on bounded domains is a local phenomena, much as it is in free-space. If true, this implies that
the asymptotic profile near the singularity and the rate of blowup are the same as in free-space. The last statement
is, however, only a conjecture at present.

7. Stability of ground-state waveguide solutions

We recall that the ground-state waveguides of the NLS on RD are orbitally stable in the subcritical case, but
are unstable in the critical and supercritical case. The instability in the critical case is related to the fact that
the Hamiltonian of ground-state waveguides is equal to zero (13). As a result, small perturbations can make the
Hamiltonian negative and thus result in blowup [31].

The situation on bounded domains is quite different, since these waveguides have strictly positive Hamiltonian
(18). In other words, unlike the free-space case, where nonlinearity and diffraction are completely balanced only
when the power is equal to Nc, the reflecting boundary ‘enables’ the nonlinearity to support weaker waveguides
whose power is below Nc. Indeed, we now show that the ground-state waveguides in the critical NLS on bounded
domains are orbitally stable.

Lemma 10. The ground-state waveguides

ψ = exp(iωt)Q(0)
ω (r) (33)

are orbitally stable in H 1
0 . That is, for all ε > 0 there is δ such that if infθ∈R‖ψ0 − eiθQ

(0)
ω ‖H 1

0
≤ δ, then

inf
θ∈R

‖ψ(t, ·) − eiθQ(0)
ω ‖H 1

0
≤ ε for all t ≥ 0.

We recall that a generic condition for stability of ground-state waveguides is that [27,32]

d

dω
‖Q(0)

ω ‖2
2 > 0. (34)

Thus, the result of Lemma 10 is consistent with Lemma 4.
Since the ground-state waveguides (33) are orbitally stable, a natural question is whether they are local or global

attractors. The following lemma shows that they are not.

Lemma 11. Let ψ0 be an initial condition. Then

lim
t→∞ inf

θ∈R
‖ψ(t, ·) − eiθQ

(0)
ω̄ ‖H 1

0
= 0 for some ω̄, (35)

if and only if ψ0 ≡ eiθ0Q
(0)
ω̄ for some θ0.
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The results of Lemmas 10 and 11 are intuitive, because fixed points in conservative systems are centers, rather
than attractors.

7.1. Stability of higher-order waveguides

We have carried numerical simulations which showed that, indeed, the ground-state waveguides are orbitally
stable. When we tested the stability of higher-state waveguides, our simulations clearly indicate that those whose
power is above Nc are unstable and blowup in finite time. However, higher-state waveguides whose power is
sufficiently below Nc appear to be numerically stable for quite a long time. In fact, for given numerical parameters
(grid size, time-step size, etc.), higher-state waveguides seem to have a similar deviation from the exact solution as
the ground-state waveguides.

8. Numerical results

8.1. Numerical methods

We solve the NLS on a unit disc, Eq. (4), by combining a Crank–Nicholson implicit method for the Laplacian
with Adams–Bashford extrapolation for the nonlinearity. Thus, the predictor stage is(

1 − i
dt

2
∆

)
ψpred. =

(
1 + i

dt

2
∆

)
ψ(t, ·) + i

3

2
|ψ |2ψ(t, ·) − i

1

2
|ψ |2ψ(t − dt, ·),

Fig. 4. On-axis amplitude of the solution of Eq. (4) with the initial condition (36).
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and the corrector stage is(
1 − i

dt

2
∆

)
ψ(t + dt, ·) =

(
1 + i

dt

2
∆

)
ψ(t, ·) + i

1

2
|ψ |2ψ(t, ·) + i

1

2
|ψpred.|2ψpred..

We use forth-order schemes for the spatial derivatives:

ψr(·, r) ≈ ψ(·, r + 2 dr) − 8ψ(·, r + dr) + 8ψ(·, r − dr) − 8ψ(·, r − 2 dr)

12 dr
,

ψrr(·, r) ≈ −ψ(·, r + 2 dr) + 16ψ(·, r + dr) − 30ψ(·, r) + 16ψ(·, r − dr) − ψ(·, r − 2 dr)

12 dr2
.

Boundary conditions are implemented as follows: Near r = 0, we use radial symmetry to add the two fictitious
points ψ(−dr) = ψ(dr) and ψ(−2 dr) = ψ(2 dr). At r = 1 we use the Dirichlet condition ψ(r = 1) = 0. At

Fig. 5. Same as Fig. 4 with the initial condition (37).
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r = (1 − dr) we use the one-sided forth-order schemes

ψr(·, 1 − dr) ≈ −ψ(·, 1 − 4 dr) + 6ψ(·, 1 − 3 dr) − 18ψ(·, 1 − 2 dr) + 10ψ(·, 1 − dr) + 3ψ(·, 1)

12 dr
,

ψrr(·, 1 − dr) ≈ −ψ(·, 1 − 4 dr) + 4ψ(·, 1 − 3 dr) + 6ψ(·, 1 − 2 dr) − 20ψ(·, 1 − dr) + 11ψ(·, 1)

12 dr2
.

The Laplacian is evaluated at the origin using

�ψ(·, 0) = 2ψrr(·, 0).

Since the left-hand side matrix I − ( 1
2 dt)∆ of the predictor and the corrector stages is the same and does not change

during the iterations, it is LU-decomposed only once. As a consistency check, we monitor the conservation of ‖ψ‖2
2

and H(ψ).

Fig. 6. Same as Fig. 4 with the initial condition (38).
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8.2. Numerical results

The theory presented so far tells us very little on the dynamics of solutions whose initial power is below critical,
except that they exist for all time. In the following, we present results of numerical simulations which reveal some
features of the dynamics. In our simulations we use the initial conditions

ψ
(1)
0 (r) = c1J0(k0r), k0 ≈ 2.405, (36)

ψ
(2)
0 (r) = c2(1 − r2), (37)

ψ
(3)
0 (r) = c3J0(k1r), k1 ≈ 5.520. (38)

Fig. 7. Solution of Eq. (4) with the initial condition (36). (A) Distance from waveguide. (B) On-axis amplitude. Squares and circles mark the
locations where distance from waveguide is maximal and minimal, respectively.

Fig. 8. Same as Fig. 7 with the initial condition (37).
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Fig. 9. Same as Fig. 7 with the initial condition (38).

In Figs. 4–9, the value of the coefficients are c1 = 3.0444, c2 = 2.7375 and c3 = 4.645. These values are chosen
so that all initial conditions have the same power as Q

(0)
ω̄=1, i.e.,

‖ψ(1)
0 ‖2

2 = ‖ψ(2)
0 ‖2

2 = ‖ψ(3)
0 ‖2

2 = ‖Q(0)
ω̄=1‖2

2 ≈ 0.67Nc.

Both ψ
(1)
0 (r) and ψ

(2)
0 (r) are monotonically decreasing, while ψ

(3)
0 (r) is not. The initial conditions are ordered

according to their H 1 distance from Q
(0)
ω̄=1:

‖ψ(1)
0 − Q

(0)
ω̄=1‖H 1

0
≈ 1.10, ‖ψ(2)

0 − Q
(0)
ω̄=1‖H 1

0
≈ 2.38, ‖ψ(3)

0 − Q
(0)
ω̄=1‖H 1

0
≈ 34.1.

The generic behavior of solutions with power below critical is focusing–defocusing oscillations (Figs. 4–6). Strictly
speaking, these focusing–defocusing oscillations are not periodic. However, in the case of ψ(1)

0 , which is the closest

to Q
(0)
ω̄=1, the oscillations are smooth and almost periodic. The leading-order dynamics is similar in the case of ψ(2)

0 ,

but the oscillations have little bumps, or wiggles. In the case of ψ(3)
0 , the oscillation pattern is much more complex.

The envelope of the oscillations undergoes changes which occur on time-scales that are longer than that of the
primary oscillations. Note, in particular, Fig. 6B and C, where several long time-scales can be observed. In addition,
the small wiggles in Figs. 5 and 6 occur on much shorter time-scales. We checked that the wiggles are a feature
and not a numerical artifact, by varying the values of dr and dt . In addition, we note that wiggles can be observed
in Fig. 2 in [6], where a different numerical scheme was used. The wiggles do not disappear with time (Figs. 4C
and 6D), since the equation is conservative and time-reversible, rather than dissipative. For the same reason, the
solutions in all cases do not approach a limit cycle as t → ∞.

In Figs. 7–9, we plot theL2-distance between |ψ | and the ground-state waveguide with the same power, i.e., ‖|ψ |−
Q

(0)
ω̄=1‖2

2. The distance is maximal around the solution peaks and valleys, and it is minimal half-way in-between.
As a result, the frequency of the oscillations of the distance is twice that of the solution. To better see this, we add
squares and circles in Figs. 7–9 at the locations where the distance is maximal and minimal, respectively.

We can explain the dynamics of the distance by employing the standard nonlinear optics ansatz

ψ(t, ·) ∼ S(r, t) exp

(
iτ(t) + i

α(t)r2

2

)
,
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where S(t, r), τ(t) and α(t) are real. From Hamiltonian conservation we have that

H(S) + α2V (S) ≡ (ψ0). (39)

Since ‖S‖2
2 = ‖Q(0)

ω̄ ‖2
2, the potential energy H(S) is minimal when S = Q

(0)
ω̄ (Theorem 1). Therefore, the

distance between S and Q
(0)
ω=1 is minimal at the bottom of the potential well, which is roughly half-way between

the focusing peaks and valleys. On the other hand, at the focusing peaks and valleys α = 0. Hence, at these
points the kinetic energy vanishes, the potential energy is maximal and the distance between S and Q

(0)
ω=1 is the

largest.

Fig. 10. On-axis amplitude for the initial conditions. (A) ψ
(1)
0 ; (B) ψ

(2)
0 and (C) ψ

(3)
0 , when ‖ψ(i)

0 ‖2
0 = 0.99Nc.
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In Fig. 10, we plot the dynamics of the solutions when the values of the coefficients cis in (36)–(38) are raised
so that the power of the initial conditions is 1% below critical, i.e.

‖ψ(1)
0 ‖2

2 = ‖ψ(2)
0 ‖2

2 = ‖ψ(3)
0 ‖2

2 = 0.99Nc.

In the case of the initial conditions (36) and (37), the dynamics remains roughly the same. In fact, at this power, the
two solutions are more similar than at the lower power. In contrast, the dynamics in the case of the initial condition
(38) is quite different from the lower power case, looking more chaotic than periodic. Note that the H 1 distance

Fig. 11. Same as Fig. 10 with ‖ψ(i)
0 ‖2

0 = 1.01Nc.
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from the ground-state with the same power, Q(0)
ω̄=17, are comparable for all the three initial conditions:

‖ψ(1)
0 − Q

(0)
ω̄=17‖H 1

0
≈ 25.2, ‖ψ(2)

0 − Q
(0)
ω̄=17‖H 1

0
≈ 29.3, ‖ψ(3)

0 − Q
(0)
ω̄=17‖H 1

0
≈ 33.1.

In Fig. 11, we plot the dynamics of the solutions when the values of the cis in (36)–(38) are set so that the power
of the initial conditions is 1% above critical, i.e.

‖ψ(1)
0 ‖2

2 = ‖ψ(2)
0 ‖2

2 = ‖ψ(3)
0 ‖2

2 = 1.01Nc.

In the case of the initial conditions (36) and (37), the solutions blowup in a finite time, in accordance with the
observation in [6] that the condition of critical power is generically sharp on bounded domains. For comparison, we
note that on unbounded domains, Gaussians with the same power do not blowup, as the critical power for Gaussians
is 1.8% above Nc [6]. The dynamics in the case of the initial condition (38) looks chaotic, but does not lead to
blowup until t = 2 (Fig. 11C). In fact, in our simulations we do not see any evidence for blowup until t = 50. We
caution, though, that as t increases, the numerical solution becomes less and less reliable, which may be the result
of the ill-posedness of the equation with this initial condition. Therefore, we cannot rule out the possibility that this
initial condition does lead to a finite-time blowup.
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Appendix A. Proofs

A.1. Eq. (17)

If we multiply (16) by rQ(n)
ω and integrate, we get that

−
∥∥∥∥∥dQ(n)

ω

dr

∥∥∥∥∥
2

2

− ω‖Q(n)
ω ‖2

2 + ‖Q(n)
ω ‖4

4 = 0.

Similarly, if we multiply (16) by r2(dQ(n)
ω /dr) and integrate, we get that

ω‖Q(n)
ω ‖2

2 = 1

2
‖Q(n)

ω ‖4
4 − 1

2

[
dQ(n)

ω

dr
(1)

]2

.

Combining these two relations gives the desired identities.

A.2. Lemma 1

From (16), we have that

d

dω
H(Q(n)

ω ) = −2
∫ ([

�Q(n)
ω +

(
Q(n)

ω

)3
]

dQ(n)
ω

dω

)
r dr = −ω

d

dω
‖Q(n)

ω ‖2
2.
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It should be noted that in the above calculation we implicitly assumed that Q(n)
ω is differentiable with respect to ω.

By standard theory, one can deduce differentiability if one proves that Q(n)
ω is unique. A proof of uniqueness result

is, however, only available for ground-state solutions (Lemma 3).

A.3. Lemma 2

We expand Q
(n)
ω in an asymptotic series

Q(n)
ω ∼ Q

(n)
ω,0 + δQ

(n)
ω,1 + · · · , 0 < δ � 1,

and substitute into (16). The leading-order equation is

�Q
(n)
ω,0 − ωnQ

(n)
ω,0 = 0,

and its solution is Q
(n)
ω,0 = c(δ)J0(

√−ωnr). The equation for next-order terms is

δ
[
�Q

(n)
ω,1 − ωnQ

(n)
ω,1

] = (ω − ωn)Q
(n)
ω,0 − (Q

(n)
ω,0)

3.

Since the eigenvalues of the radial Laplacian in the unit disc among radial functions are simple, the solvability
condition for this equation is that Q(n)

ω,0 is orthogonal to the right-hand side. Since Q
(n)
ω,0 is not orthogonal to either

of these terms separately, both should be kept, implying that c2(δ) = (ω − ωn)B
2
n .

A.4. Corollary 2

From Theorem 1 we have that |U | = Qω. Therefore, U = eiθ(r)Qω and H(U) = H(Q) + ‖Qθ ′(r)‖2
2. Since U

is a minimizer, we have that H(U) = H(Q), implying that θ(r) ≡ constant.

A.5. Lemma 5

Existence. For all U ∈ H 1
0 with ‖U‖2

2 = M < Nc, by the Gagliardo–Nirenberg inequality (31),

H(U) =
∫

|∇U |2 − 1

2

∫
|U |4 ≥

∫
|∇U |2 − M

Nc

∫
|∇U |2 = Nc − M

Nc

∫
|∇U |2 ≥ 0. (A.1)

Since H(U) ≥ 0, there exists a sequence Un such that

‖Un‖2
2 = M and H(Un) → I (M).

By (A.1), we have that
∫ |∇Un|2 is bounded. Since, in addition, ‖Un‖2

2 = M , there is a subsequence of Un which
converges weakly inH 1

0 toU∞. Since on bounded domainH 1
0 is compactly embedded inL2 andL4, the subsequence

also converges strongly in L2 and in L4 to U∞. Therefore,∫
|U∞|2 = M and

∫
|∇U∞|2 ≤ lim inf

n

∫
|∇Un|2,

from which it follows that

H(U∞) ≤ lim inf
n

H(Un) = I (M).

Therefore, U∞ = UM and H(U∞) = I (M).
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Uniqueness. We claim that for a given M , UM is unique. By contradiction, let us consider two different minimizers
UM �= ŪM , and the corresponding ωM and ω̄M . The uniqueness result of Kwong (Lemma 3) implies that ωM �= ω̄M .
Therefore, from the strict monotonicity of properties ‖Uω‖2 (Lemma 4) we have that ‖UM‖2 �= ‖ŪM‖2, which is
a contradiction.

A.6. Lemma 6

Let M0 < Nc, we first show that ω(M) is continuous at M0. Let {Mn} be a sequence such that limn→∞Mn = M0.
By definition, the sequence QMn := Qω(Mn) satisfies ‖QMn‖2

2 = Mn → M0. We claim that

H(QMn) → H(QM0). (A.2)

To see that, let εn be defined so that

‖(1 + εn)QM0‖2
2 = Mn. (A.3)

Therefore, εn → 0 and limn→∞H((1 + εn)QM0) = H(QM0). In addition, by Lemma 5, (28) and (A.3), we have
H(QMn) ≤ H((1 + εn)QM0). Combining the last two relations yields

lim sup
n

H(QMn) ≤ H(QM0). (A.4)

Similarly, let ε̃n be defined so that

‖(1 + ε̃n)QMn‖2
2 = M0. (A.5)

Therefore, ε̃n → 0 and limn→∞[H((1 + ε̃n)QMn) − H(QMn)] = 0. In addition, by Lemma 5, (28) and (A.5), we
have H(QM0) ≤ H((1 + ε̃n)QMn). Combining the last two relations yields

H(QM0) ≤ lim inf
n

H(QMn). (A.6)

Therefore, (A.2) follows from (A.4) and (A.6).
From (A.2), it follows that H(QMn) is bounded. Since Mn < Nc, by the Gagliardo–Nirenberg inequality, QMn

is bounded in H 1
0 . Therefore, there is a subsequence of QMn which converges weakly in H 1

0 , hence strongly
in L2 and L4 to U∞. In addition, ‖U∞‖2

2 = M0 and H(U∞) ≤ H(QM0). Therefore, by Lemma 5 and (28),
U∞ = QM0 . Since QMn converges strongly in L4 to QM0 , (A.2) implies that ‖∇QMn‖2 → ‖∇QM0‖2. Therefore,
‖QMn‖H 1

0
→ ‖QM0‖H 1

0
and QMn converges strongly in H 1

0 to QM0 .

Now, on one hand, since QMn converges strongly to QM0 in H 1
0 and in L4,∫

QM0QMn →
∫

Q2
M0

,

and ∫
(�QMn + |QMn |2QMn)QM0 →

∫
(�QM0 + |QM0 |2QM0)QM0 = ωM0

∫
Q2

M0
.

On the other hand, since QMn satisfies Eq. (27),∫
(�QMn + |QMn |2QMn)QM0 = ωMn

∫
QM0QMn.

Therefore, ωMn → ωM0 .



G. Fibich, F. Merle / Physica D 155 (2001) 132–158 155

From the uniqueness result of Kwong (Lemma 3) we have that the function ω(M) is injective. Since it is also
continuous, it follows that ω(M) is strictly monotonic.

Since ω(M) is monotonic, Eq. (29) can be proved by showing that M → Nc as ω → ∞. To see that, let
U = ωV (ωr). Then, V is the solution of

�V − V + V 3 = 0, Vr(0) = 0, V (ω) = 0 and ∀r ∈ [0, ω), V (r) > 0.

Therefore, using the positivity, we have as ω → ∞, V → R(r) (see [2]), the Townes soliton whose power is given
by Nc.

In order to prove Eq. (30), let us note that from Gagliardo–Nirenberg inequality (31),

(1 − C1,2M)

∫ ∇u2∫
u2

≤ H(u)∫
u2

≤
∫ ∇u2∫

u2
. (A.7)

In addition, by Lemma 5 and (27), we have that

inf∫
u2=M

H(u)∫
u2

= H(UM)

M
= −ωM. (A.8)

We recall that

inf∫
u2=M

∫ ∇u2∫
u2

= λ0. (A.9)

Therefore, taking the infimum on all sides of (A.7), and using (A.8) and (A.9), gives

(1 − C1,2M)λ0 ≤ −ωM ≤ λ0,

from which (30) follows.

A.7. Lemma 7

For completeness, we repeat here the proof given in [5]. Clearly, it is sufficient to prove (3). For all u ∈ H 1
0 (Ω)

let us define the extended function ũ as follows:

ũ =
{

u, (x, y) ∈ Ω,

0, (x, y) /∈ Ω.
(A.10)

Since ũ ∈ H 1(R2) and JΩ(u) = JR2(ũ), it follows that

inf
u∈H 1

0 (Ω)

JΩ(u) ≥ inf
u∈H 1(R2)

JR2(u).

On the other hand, let us define

uε(r) =




1

ε
R
( r
ε

)
, r ≤ M − 1,

gε(r), M − 1 ≤ r ≤ M,

0, |x| ≥ M,

(A.11)
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where M is a positive number such that {|x| ≤ M} ⊂ Ω , R is the Townes soliton (15), and gε(r) is a smooth
monotonically decreasing function such that gε(M) = 0 and gε(M −1) = (1/ε)R((M −1)/ε). Since uε ∈ H 1

0 (Ω)

and R(r) decays exponentially (14), we have that

inf
u∈H 1

0 (Ω)

JΩ(u) ≤ lim
ε→0

JΩ(uε) = JR2(ε
−1R(r/ε)) = JR2(R) = inf

u∈H 1
0 (R2)

JR2(u).

A.8. Corollary 3

Assume that the minimum of JΩ is achieved by a function u, and let ũ be defined by (A.10). In light of Lemma 7,
ũ is a minimizer of JR2(u) and is thus equal to the R function, up to scaling and phase shift. In particular, it follows
that ũ does not vanish on the boundary of the domain, which is a contradiction.

A.9. Lemma 8

If H(0) < 0, then from (32) we have that there exists a 0 < T ∗ < ∞ such that V (T ∗) = 0. However, from the
uncertainty principle we have that

‖ψ‖2
2 ≤ V (ψ)‖∇ψ‖2

2.

Therefore, we see that Tc ≤ T ∗.

A.10. Lemma 9

Let us define ψ0 = (1 + ε)A(R(Ar) − R(A)). Then, it is clear that ψ0 ∈ H 1
0 (Ω), and that ‖ψ0‖2

2 ≤ (1 + ε)Nc.
In addition, limA→∞H(ψ0) = −∞. Therefore, H(ψ0) < 0 for sufficiently large A, implying that the solution
blows-up in finite time.

A.11. Lemma 10

By negation. If not, then if we take a sequence ψn(t, r) such that ‖ψn(0, ·) − Q
(0)
ω ‖H 1

0
→ 0, there exists a

sequence tn → ∞ such that for all n

inf
θ∈R

‖ψn(tn, ·) − eiθQ(0)
ω ‖H 1

0
≥ ε0 > 0.

Let Vn(r) := ψn(tn, r). Then

‖Vn‖2 = ‖ψn(0, r)‖2 → ‖Q(0)
ω ‖2, H(Vn) = H(ψn(0, r)) → H(Q(0)

ω ).

Therefore, ‖Vn‖H 1
0

≤ C, and there is a subsequence Vn which converges weakly in H 1
0 , hence strongly in L2 and

in L4 to Ũ . Therefore,

‖Ũ‖2 = ‖Q(0)
ω ‖2, H(Ũ) ≤ lim inf

n
H(Vn) = H(Q(0)

ω ).

In light of Theorem 1 and Corollary 2, the above relations show that Ũ = eiθ0Q
(0)
ω for some θ0 andH(Ũ) = H(Q

(0)
ω ).

Therefore, H(Vn) → H(Ũ), ‖Vn‖H 1
0

→ ‖Ũ‖H 1
0

and Vn converges strongly in H 1
0 to Ũ . We thus have that

inf
θ∈R

‖ψn(tn, ·) − eiθQ(0)
ω ‖H 1

0
≤ ‖Vn − Ũ‖H 1

0

n→∞→ 0.

Contradiction.
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A.12. Lemma 1

If (35) holds, then

lim
t→∞‖ψ‖2

2 = ‖Q(0)
ω̄ ‖2

2 and lim
t→∞H(ψ) = H(Q

(0)
ω̄ ).

From power and Hamiltonian conservation we have that ‖ψ0‖2
2 = ‖Q(0)

ω̄ ‖2
2 and H(ψ0) = H(Q

(0)
ω̄ ). Hence, by

Corollary 2, ψ0 = eiθ0Q
(0)
ω̄ .
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