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(Communicated by Julia Knight)

Abstract. We construct a model of ¬SCH +¬AP+ (Very Good Scale). This
answers questions of Cummings, Foreman, Magidor and Woodin.

1. Introduction

Notions of Very Good Scaleκ (V GSκ), Weak square κ (�∗
κ) and the Approach-

ability Propertyκ (APκ), for a singular κ, play a central role in Singular Cardinals
Combinatorics. They were extensively studied by Shelah [9, 10, 11] and by Cum-
mings, Foreman and Magidor [2].

All of these properties break down above a supercompact cardinal as was shown
by S. Shelah in [9]. By R. Solovay [12], the Singular Cardinal Hypothesis (SCH)
holds above strong compact cardinals. Also by Ben-David and Magidor [1] the
Prikry forcing adds �∗

κ. Hence it is natural to ask about interconnections between
SCH and the above principles. Cummings, Foreman and Magidor [2] asked if V GSκ

implies �∗
κ. Woodin previously asked if it is possible to have ¬SCHκ + ¬�∗

κ. In [4]
the positive answer to the second question was claimed. The second author found
a gap in the argument and was able to show that the forcing used there (extender
based forcing with long extenders) actually adds a �∗

κ- sequence.
Our goal here will be to give a negative answer to the first question and a positive

answer to the second. Thus we prove the following:

Theorem 1.1. Suppose κ is a supercompact cardinal. Then there is a generic
extension in which κ is a strong limit singular cardinal of cofinality ω so that

(a) 2κ > κ+;
(b) ¬APκ (and hence ¬�∗

κ);
(c) V GSκ.

Using standard methods we can make κ into ℵω2 . Namely the following holds:

Theorem 1.2. Suppose κ is a supercompact cardinal. Then there is a generic
extension in which κ = ℵω2 is a strong limit cardinal so that
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2 MOTI GITIK AND ASSAF SHARON

(a) 2ℵω2 > ℵω2+1;
(b) ¬APℵω2 ;
(c) V GSℵω2 .

2. The main construction

Let us first recall some basic definitions:

Definition 2.1. (S. Shelah [9]) A sequence 〈Cα | α < κ+〉 is called an APκ-sequence
iff

(a) lim(α) → Cα is a club in α and o.t.(Cα) = cf(α).
(b) There is a club subset D of κ+ such that

∀α ∈ D ∀β < α ∃γ < α Cα ∩ β = Cγ .

It is not hard to see that �∗
κ → APκ.

Definition 2.2. (a) Let 〈κn | n < ω〉 be a sequence of regular cardinals such
that

⋃
n<ω κn = κ. A sequence 〈fα | α < κ+〉 ⊆

∏
n<ω κn is called a very

good scale on
∏

n<ω κn iff
(i) 〈fα | α < κ+〉 is a scale on

∏
n<ω κn, i.e., for every f ∈

∏
n<ω κn there

exists β < κ+ and n < ω such that f(m) < fβ(m) for every m > n
and for every α < β < κ+, fα(m) < fβ(m) for almost every m;

(ii) for every β < κ+ such that ω < cf(β) there exists a club C of β and
n < ω such that fγ1(m) < fγ2(m) for every γ1 < γ2 ∈ C and m > n.

(b) V GSκ holds iff there exists a sequence 〈κn | n < ω〉 and 〈fα | α < κ+〉 such
that 〈fα | α < κ+〉 is a very good scale on

∏
n<ω κn.

Definition 2.3. (S. Shelah [9]) Let κ be an uncountable cardinal such that cf(κ) =
ω, and d : [κ+]2 → ω.

(a) d is called normal if ∀β ∀n < ω | {α < β|d(α, β) ≤ n}| < κ.
(b) d is called subadditive if ∀α < β < γ < κ+, d(α, γ) ≤ max(d(α, β), d(β, γ)).
(c) S0(d) = {α < κ+ | ∃A, B ⊆ α unbounded in α such that

∀β ∈ B ∃nβ ∈ ω ∀α ∈ A ∩ β d(α, β) ≤ nβ .

The next Lemma, which was stated in Shelah [9], shows that such a function
always exists. Let us give the proof for the benefit of the reader.

Lemma 2.4. (S.Shelah [9]) There exists a normal subadditive function d : [κ+]2 →
ω for every uncountable cardinal κ such that cf(κ) = ω.

Proof. Fix an increasing sequence 〈κn | n < ω〉 of regular cardinals cofinal in κ. For
every d : [κ+]2 → ω, let A(β, n) and (A(β,≤ n)) denote the set of all γ < β such
that d(γ, β) = n and d(γ, β) ≤ n respectively. We are going to define the function
d �γ×γ by induction on γ such that for every β ≥ κ the size of A(β, n) is at most κn.
For every γ < β < κ, we define d(γ, β) to be the least n such that γ < κn. Assume
that d �γ×γ is defined. If γ = η+1 is a successor, then let d(α, γ) = d(α, η) for every
α < η and d(η, γ) = 0. It is simple to see that d �γ×γ is normal and subadditive.
Assume now that γ is a limit ordinal. Let 〈Bi | i < ω〉 be a ⊆- increasing sequence
such that

⋃
i<ω Bi = γ and |Bi| = κi. We define the sets A(γ, n) by induction on n

as follows: By the induction hypothesis we can find A(γ, 0) such that B0 ⊆ A(γ, 0)
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and for every α ∈ A(γ, 0) the set A(α, 0) is contained in A(γ, 0). Assume that
A(γ, n − 1) is defined. Set

Xn =
⋃

{A(α, n) | α ∈
⋃

i<n

A(γ, i)}.

Note that by the induction hypothesis |Xn| ≤ κn. By another application of
the induction hypothesis, it is possible to find Yn ⊇ Xn ∪ Bn of size κn such that
A(α,≤ n) ⊆ Yn for every α ∈ Yn. Let A(γ, n) = Yn −

⋃
i<n A(γ, i). Note that the

size of A(γ, n) is κn. Now define

d(α, γ) = n iff α ∈ A(γ, n).

Let us show that the function d �γ×γ is subadditive: Let β < α < γ. Set n = d(α, γ)
and k = d(β, α). We consider two cases:

Case 1: n ≥ k. But then by our construction, β ∈
⋃

i≤n A(γ, i) and so d(β, γ) ≤
n.

Case 2: n < k. But then β ∈ Xk and so β ∈ Yk and d(β, γ) ≤ k.
This finishes the proof of the lemma. �

Fact 2.5. (S. Shelah [9]) Suppose that κ is a strong limit cardinal of cofinality ω
and d, d′ : [κ+]2 → ω are two normal functions. Then S0(d) ≡ S0(d′) (modDκ+)
(where Dκ+ is the club filter).

Fact 2.6. (S. Shelah [9]) Let κ be a singular strong limit cardinal of cofinality ω.
The statement APκ is equivalent to the existence of a normal function d : [κ+]2 → ω
such that S0(d) contains a club.

S0(d) is in fact the set of all approachable points and APκ means that modulo
the club filter every point less than κ+ is approachable.

Let us now prove Theorem 1.1. We start with a model V of ZFC + GCH such
that V |= “κ is supercompact”. Iterate first in Backward Easton fashion the Cohen
forcing C(α, α+ω+2) for each inaccessible α ≤ κ, where C(α, α+ω+2) is defined as
the poset consisting of functions f such that Dom(f) is a subset of α+ω+2 of size
less than α and for every β ∈ Dom(f), f(β) is a partial function from α to α of
size less than α.

Let P<κ denote the iteration below κ and Pκ = P<κ ∗ C(κ, κ+ω+2). Note that
the forcing Pκ preserves the cofinality of the ordinals. Let G be a generic subset of
Pκ. Denote G<κ = P<κ ∩ G. Let for each α < κ+ω+2, Fα denote the α-th generic
function from κ to 2 in G, i.e.

⋃
{f(α) | f ∈ G}.

Fix in V a normal ultrafilter U over Pκ(κ+ω+2). Let j : V → M � Ult(V, U) be
the corresponding elementary embedding. Then crit(j) = κ and κ+ω+2

M ⊆ M .
By standard arguments (see [6]) j extends in V [G] to an elementary embedding

j∗ : V [G] → M [G∗], where G∗ ∩ Pκ = Gκ and G∗ above κ is constructed in V [G]
using closure of the forcing and the fact that the number of dense sets we need to
meet is small. Also, over j(κ), we need to start with the condition {〈j(α), Fα〉 |
α < κ+ω+2} in order to satisfy j“G ⊆ G∗. This means that for each α < κ+ω+2

the function Fj(α) (i.e. the one G∗ defines to be j(α)-th function from j(κ) to j(κ))
should extend Fα.

Note that above κ we are free in choosing values of Fj(α). Let us require
Fj(α)(κ) = α for each α < κ+ω+2 and then continue to build G∗.

Let U∗ = {X ⊆ Pκ(κ+ω+2) | j“κ+ω+2 ∈ j∗(X)}. Then U∗ ⊇ U and it is a
normal ultrafilter over Pκ(κ+ω+2) in V [G].
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Lemma 2.7. (1) For every ξ < ρ < κ+ω+2 {P ∈ Pκ(κ+ω+2) | Fξ(P ∩ κ) <
Fρ(P ∩ κ)} ∈ U∗.

(2) For each f ∈
∏
{δ+ω+1 | δ < κ, δ is an inaccessible} there is ξ < κ+ω+1

such that

{P ∈ Pκ(κ+ω+1) | f(P ∩ κ) = Fξ(P ∩ κ)} ∈ U∗.

Proof. (1) In M [G∗], we have j∗(Fξ)(κ) = ξ < j∗(Fρ)(κ) = ρ. Hence the
conclusion follows from the definition of U∗.

(2) Again, in M [G∗], we have j∗(f)(κ) < κ+ω+1. Let ξ = j∗(f)(κ). It is simple
to see that ξ satisfies the desired property.

�

For every n ∈ ω let Un be the projection of U∗ on Pκ(κ+n), i.e., X ∈ Un iff
{P ∈ Pκ(κ+ω+2) | P ∩ κ+n ∈ X} ∈ U∗. Clearly Un is a normal ultrafilter on
Pκ(κ+n).

Let a, b ∈ Pκ(κ+n) and b ∩ κ ∈ κ. Set

a ⊂∼ b ↔ (a ⊆ b) ∧ o.t.(p(a)) < b ∩ κ .

Lemma 2.8. [7]
(a) ∀a ∈ Pκ(κ+n) {b ∈ Pκ(κ+n) | a ⊂∼ b} ∈ Un.

(b) {a ∈ Pκ(κ+n) | a ∩ κ is inaccessible and a ∩ κ ∈ κ} ∈ Un.

(c) Let 
X = 〈Xa | a ∈ Pκ(κ+n)〉 be a sequence of sets from Un. Then ∆ 
X =
{b ∈ Pκ(κ+n) | ∀a ∈ Pκ(κ+n) a ⊂∼ b → b ∈ Xa} ∈ Un. (∆ 
X is called the

diagonal intersection of 
X.)

We now define a version of the diagonal supercompact Prikry forcing.

Definition 2.9. p ∈ Q iff p = 〈ap
0, a

p
1, . . . , a

p
n−1, X

p
n, Xp

n+1, . . . 〉 where

(i) ∀� < n ap
� ∈ Pκ(κ+�) and ap

� ∩ κ is an inaccessible cardinal;
(ii) ∀m ≥ n Xp

m ∈ Um;
(iii) ∀m ≥ n ∀b ∈ Xp

m∀� < n ap
� ⊂∼ b;

(iv) ∀i < j < n ap
i ⊂∼ ap

j .

n is called the length of p and will be denoted by �(p).

Definition 2.10. Let p, q ∈ Q. Then p ≤∗ q iff
(i) �(p) = �(q);
(ii) ∀� < �(p) ap

� = aq
� ;

(iii) ∀m ≥ �(p) Xq
m ⊆ Xp

m.

Definition 2.11. Suppose that p ∈ Q and 
a = 〈
a(�(p)), · · · ,
a(m)〉 where 
a(i) ∈ Xp
i

for every �(p) ≤ i ≤ m. We denote by p	〈
a〉 the sequence

〈ap
1, . . . , a

p
�(p)−1,
a(�(p)), . . . ,
a(m), Ym+1, Ym+2, . . . 〉,

where
Yn = {b ∈ Xp

n | ∀�(p) ≤ i ≤ m 
a(i) ⊂∼ b}

for every n ≥ m + 1.
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By Lemma 2.8(a) it is easy to see that Yk ∈ Uk, for each k > m and p	〈
a〉 ∈ Q.

Definition 2.12. Let p, q ∈ Q. p ≤ q iff there exists 
a such that p	〈
a〉 ≤∗ q.

The proof of the next two claims is quite standard, and it uses the same argu-
ments as in the case of the ordinary diagonal Prikry forcing notion; see [5].

Lemma 2.13. (a) 〈Q ≤,≤∗ 〉 is a Prikry type forcing notion, i.e., if σ is
a statement in the forcing language, then for every p ∈ P there exists
p ≤∗ q ∈ P such that q forces σ or ¬σ.

(b) 〈Q,≤∗ 〉 is κ-closed. �
Proof. (a) Assume for simplicity that �(p) = 0. Let σ be a statement in the forcing
language. Since any two conditions of length 0 are compatible, it is sufficient to
find a condition q such that �(q) = 0 and q decides σ. Let 
a = 〈a0, ..., an〉 be such
that ai ∈ Pκ(κi) for every i ≤ n and ai ⊂∼ ai+1 for every i < n. Define a sequence

X
a as follows: If there exists a sequence 
X = 〈Xm | m ≥ n+1〉 such that 
a	 
X is in
Q and decides σ, then let X
a be such a sequence. Otherwise let X
a(m) = Pκ(κ+m)
for every m ≥ n+1. Using Lemma 2.8 (c), we can find Yn ∈ Un such that for every
⊂∼ increasing sequence 
a = 〈a0, ..., an〉 and for every m ≥ n + 1,

{b ∈ Ym | an ⊂∼ b} ⊆ X
a(m).

Using Lemma 2.8 again, we can find a condition q = 〈Y ′
0 , Y ′

1 , ..., 〉 such that Y ′
i ⊆ Yi

with the following property: if there exists 
a ∈
∏

i≤n Y ′
i such that q	〈
a〉 decides σ,

then q	〈
a〉 decides σ for every 
a ∈
∏

i≤n Y ′
i (in the same way). Now it is easy to

see that q decides σ and is of length 0.
(b) This is an immediate consequence of the κ completeness of the ultrafilters.

�

Lemma 2.14. Let GQ be Q generic over V [G].
(a) 〈Q,≤ 〉 does not add any new bounded subsets to κ.
(b) ∀n cfV [G][GQ](κ+n) = ω (in fact for every κ ≤ δ < κ+ω such that cfV [G](δ)

≥ κ we have cfV [G][GQ](δ) = ω).

Proof. (a) This is a consequence of Lemma 2.13.
(b) Let 〈a0, a1, ...〉 be the generic sequence added by GQ. Let δ < κ+ω be

such that cfV [G](δ) ≥ k. A simple density argument shows that the sequence
γm = sup(am ∩ δ) is cofinal in δ. �

The next lemma is crucial for the construction.

Lemma 2.15. Q3 is κ+ω+1- c.c.

Proof. Just note that the total number of finite sequences used in the conditions is
κ+ω. �

The next lemma now follows easily.

Lemma 2.16. (a) V [G][GQ] |=“ κ is strong limit, 2κ = κ+2 = (κ+ω+2)V [G]

and cf(κ) = ω”.
(b) If V [G][GQ] |=“ω < µ = cf(µ) < κ and f : µ → V [G]”, then there is

X ∈ V [G] unbounded in µ such that f � X ∈ V [G].



6 MOTI GITIK AND ASSAF SHARON

Proof. (b): Let ḟ be a Q name for f . Let D be the set of all conditions p in P
such that for every ⊂∼ increasing sequence 
a in Xp

�(p) × ...×Xp
m and for every i < η,

if there exists p	〈
a〉 ≤∗ q ∈ P such that q decides the value of ḟ(i), then p	〈
a〉
already decides the value of ḟ(i). Let us show that D is dense. Let p be a condition
in P . Assume for simplicity that �(p) = 0. Using the fact that the ultrafilters Un are
κ closed, pick for every ⊂∼ increasing element 
a from Pκ(κ)×Pκ(κ+)× ...×Pκ(κ+n)

a condition p
a with initial segment 
a such that for every i < η if there is a direct
extension of p
a which decides the value of ḟ(i), then p
a already decides this value.
Using Lemma 2.8(c), find a condition q such that �(q) = 0 and q	
a ≥∗ p
a for every
⊂∼ increasing sequence 
a in Xp

0 × ... × Xp
m. Since every two conditions of length 0

are compatible, we can assume that q ≥∗ p. But q is in D and so D is dense in P .
Pick p ∈ D ∩ GQ and let p �	

�(p) 
a be the Prikry sequence added by GQ. For
every i < η we can find m(i) < ω and q ∈ G such that q is a direct extension of
p	
a �m(i) and q decides the value of ḟ(i). But then p	
a �m(i) already decides the
value of ḟ(i). Since cf(η) > ω, we can find a stationary set X ′ ⊆ η and m such
that m = m(i) for every i in X ′. In V [G] let

X = {i < η | p	
a �m decides the value of ḟ(i)}.
Then X is as required. �

Definition 2.17. A submodel N of Hκ+ω+1 is called a supercompact submodel iff
(1) |N | < κ and N ∩ κ is a cardinal less than κ;
(2) cf(sup(N ∩ κ+ω+1) = (N ∩ κ)+ω+1;
(3) for every A ⊆ κ+ω+1 there exists B ∈ N such that

A ∩ N = B ∩ N.

It is simple to see that if κ is κ+ω+2 supercompact, then the collection of all
supercompact submodels is stationary. The following lemma was proved by Shelah
in [9]:

Lemma 2.18 ([9]). Suppose that κ is κ+ω+2 supercompact and d : [κ+ω+1]2 → ω is
normal and subadditive. Let S be the set of δ < κ+ω+1 such that δ = sup(N∩κ+ω+1)
for some supercompact submodel. Then

S ⊆ κ+ω+1 ∩ cf(< κ) is stationary

and
S ⊆ κ+ω+1 − S0(d).

�
Let GQ be a generic subset of Q over V [G].

Proposition 2.19. V [G][GQ] |= ¬APκ.

Proof. The idea is to try to find a normal function d such that κ+ − S0(d) is
stationary. The next lemma shows that it is sufficient to find any two-place function
d with this property.

Lemma 2.20. Let κ be a cardinal such that cf(κ) = ω. If there is d : [κ+]2 → ω
such that κ+ − S0(d) is stationary, then there is a normal d such that κ+ − S0(d)
is stationary.
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Proof. Let d0 : [κ+]2 → ω be any normal function. Set d = d + d0. We need to
show that d is normal and that κ+ − S0(d) is stationary.

(i) d is normal: pick β < κ+. Since d(α, β) ≥ d0(α, β), we see that {α < β |
d(α, β) ≤ n} ⊆ {α < β | d0(α, β) ≤ n} and the conclusion follows from the
normality of d0.

(ii) κ+−S0(d) is stationary: for every β ∈ S0(d), there are A, B ⊆ β unbounded
in β which satisfy Definition 2.3(c). Since ∀α < β d(α, β) ≤ d(α, β) we get
β ∈ S0(d). We proved that S0(d) ⊆ S0(d) or equivalently κ+ − S0(d) ⊇
κ+−S0(d). But κ+−S0(d) is stationary and so κ+−S0(d) is also stationary.

�
Work in V [G] and pick any normal subadditive function d : [κ+ω+1]2 → ω. Set

S = κ+ − (S0(d))V [G]. Since κ is κ+ω+2 supercompact, we can apply Lemma 2.18
and conclude that S is stationary. In V [G, GQ], d is a function from [κ+]2 to ω, but
d is no longer normal. Let us prove that V [G, GQ] |= S ⊆ κ+ − S0(d). Otherwise
there exists δ ∈ S ∩ S0(d). Pick A, B ∈ V [G, GQ] unbounded in δ such that

∀β ∈ B ∃nβ ∀α < β α ∈ A → d(α, β) ≤ nβ.

Since ω < cfV [G,GQ](δ) < κ, we can use Lemma 2.16(b) to find A, B ∈ V [G]
unbounded in δ such that A ⊆ A and B ⊆ B. We have that for every β in B there
exists nβ such that d(α, β) ≤ nβ for every α < β in A. Thus V [G] |= δ ∈ S0(d).
This contradicts Lemma 2.18. By Lemma 2.18 and the fact that Q is κ+ω+1- c.c.,
we get that S is stationary in V [G, GQ], and therefore κ+ −S0(d) is stationary. By
Fact 2.5 and Lemma 2.20 we get V [G, GQ] |= ¬APκ as required. �
Proposition 2.21. V [G, GQ] |= V GSκ.

Proof. Let 〈Pn | n < ω〉 be the supercompact Prikry sequence defined from GQ,
i.e., for each m < ω, there is p ∈ GQ such that

〈Pn | n < m〉 = 〈ap
0, . . . , a

p
m−1〉 .

Let κn = Pn∩κ for each n < ω. Then 〈κn | n < ω〉 is an increasing sequence of inac-
cessible cardinals cofinal in κ. Consider

∏
n<ω κ+ω+1

n . For each α < (κ+ω+1)V = κ+

and n < ω let tα(n) = Fα(κn) if Fα(κn) < κ+ω+1
n and tα(n) = 0 otherwise. Clearly

{tα | α < κ+} ⊆
∏

n<ω κ+ω+1
n . We show below that it is a scale and a very good

one.

Claim 2.22. For each α < β < κ+ we have tα(n) < tβ(n) for all but finitely many
n’s.

Proof. Note that the set Y = {P ∈ Pκ(κ+ω+2) | Fα(P ∩ κ) < Fβ(P ∩ κ) <
(P ∩ κ)+ω+1} ∈ U∗. Hence for each n < ω the projection Yn of Y to Pκ(κ+n)
belongs to Un, i.e., the set Yn = {P ∩ κ+n | P ∈ Y } ∈ Un. By a simple density
argument, we can find q ∈ GQ such that Xq

n ⊆ Yn for every n ≥ �(q). But by the
choice of Yn, q forces that tα(n) < tβ(n) < κ+ω+1

n for every n ≥ �(q) as required. �
Claim 2.23. For each t ∈

∏
n<ω κ+ω+1

n there exists α such that tα(n) > t(n) for
all but finitely many n’s.

Proof. Let ṫ be a name for t and assume that � ṫ ∈
∏

n<ω κ+ω+1
n . Let us show that

for every q there is q ≤∗ p and α < κ+ω+1 such that

(∗) � tα(n) > t(n) for almost every n.
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Assume for simplicity that �(q) = 0. Let 
a be as in Definition 2.11. Since q	〈
a〉
forces that t(m) < (
a(m) ∩ κ)+ω+1 < κ, we can use the Prikry condition and the
fact that ≤∗ is κ closed to find r ≥∗ q	〈
a〉, which determines the value of ṫ(m).
Using the same arguments as in the proof of the Prikry property, we can find p′ ≥∗ q
such that for every 
a as in Definition 2.11 there exists β
a such that p′	〈
a〉 forces
that ṫ(m) = β
a. Let h(
a) = β
a. Note that for each n we have

(∗∗) j∗(h)(κ, j
′′
(κ+), ..., j

′′
(κ+n)) = αn < κ+ω+1.

Let α = sup{αn | n < ω}+1. By the construction of Fα, we know that j∗(Fα)(κ) =
α, and so using (**), we can shrink the sets of measure one of p′ to form a condition
p so that for every 
a, β
a < Fα(
a(m) ∩ κ). It is simple to see that α and p satisfy
(*). �
Claim 2.24. 〈tα | α < κ+〉 is a very good scale.

Proof. Let α < κ+ be of uncountable cofinality below κ. Then (cfα)V [G,GQ] =
(cfα)V [G] = (cf(α))V . Then pick a club C ⊆ α in V with o.t.(p(C)) = cfα. Now
by the choice of U∗ we have

A = {P ∈ Pκ(κ+ω+2) | ∀γ, β ∈ C(γ < β → Fγ(P ∩ κ) < Fβ(P ∩ κ)} ∈ U∗

since j∗(Fγ)(κ) = γ < β = j∗(Fβ)(κ) in M [G∗] for each γ < β < (κ+ω+1)V and
|C| = cfα < κ.

Let An be the projection of A to Pκ(κ+n). The set of q such that Xq
n ⊆ An for

every n ≥ �(q) is dense in Q and so we can find such a condition q in GQ. Now it
is simple to see that q forces that tγ(m) < tβ(m) for every m ≥ �(q), and we are
done. �
Remark 2.25. (a) The same argument shows that 〈tα | α < κ++ = (κ+ω+2)V 〉

is a very good scale in
∏

n<ω κ+ω+2
n .

(b) It is possible instead of using the explicit construction producing the scale
just to start with an indestructible under κ-directed closed forcing super-
compact cardinal κ. Then set 2κ = κ+ω+2. Any functions Hα such that
[Hα]V = α (α < κ+ω+2) with V being the projection of a supercompact
measure from Pκ(κ+ω+2) to κ can be used instead of the Fα’s.

(c) Cummings and Foreman have shown in an unpublished work that in V Q

there is a scale on
∏

n κn+1
n which is not good. This gives an alternative

argument for the failure of APκ in V Q.

Our next task will be to push everything down to ℵω2 . The argument is quite
standard, so let us only concentrate on the main points.

Let j : V → M be a κ+ω+1 supercompact embedding. We would like to find an
extension j∗ of j to V [G] such that all the ordinals α < j(κ) will be of the form
j∗(g)(κ) for some g : κ → κ.

Work in V [G]. Since κ+ω+1
M [G] ⊆ M [G] and the number of antichains of

j(P<κ)/G in M [G] is κ+ω+2, we can find a generic subset H of j(P<κ)/G over
M [G]. Set M∗ = M [G ∗ H] and let 〈xα | α < κ+ω+2〉 be an enumeration of j(κ).

Lemma 2.26. There exists a generic subset K of C := (C(j(κ), j(κ+ω+1)))M [G∗H]

with the following properties:
(a) j′′(Gκ) ⊆ K;
(b) j(Fα)(κ) = xα, where Fα is the α-th Cohen function.
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Proof. Let 〈Ai | i < κ+ω+2〉 be an enumeration of the antichains of C in M∗.
Since C is κ+ω+1 closed in V [G], we can find a C generic subset K∗ over M∗.
For each α < j(κ+ω+1), set K∗ �α= {p �α| p ∈ K∗}. Set F =

⋃
j′′(Gκ). Note

that F ⊆ j′′(κ+ω+2) × κ × κ. For each α < j(κ+ω+1), we let K �α be the set
of all conditions p such that for every δ < κ+ω+2, if j(δ) < α, then p(j(δ)) ⊇
j(F (δ)) = F (δ) and p(j(δ))(κ) = xδ. Note that since sup(j′′(κ+ω+2)) = j(κ+ω+2),
we need to change only κ+ω+1 many coordinates and so p is in M∗. Since K∗ �α is
C �α:= (C(j(κ), α))M∗

generic over M∗, and the number of changes is small (that
is, κ+ω+1 < j(κ)), we conclude that K �α is also (C(j(κ), α))M∗

generic over M∗.
Let K =

⋃
α<j(κ+ω+2) K �α. Since every antichain in C is an antichain of C �α for

some α < j(κ+ω+2), we get that K is C generic over M∗. Also by our construction,
K satisfies (a) and (b) and we are done. �

Let j∗ : V [G] → M∗[K] be the extension of j to V [G]. Let U∗
n be the κ+n

ultrafilter derived from j∗, i.e.,

X ∈ U∗
n iff j′′(κ+n) ∈ j∗(X).

Let i∗n : V [G] → Ult(V [G], U∗
n) ∼= Nn and kn : Nn → M∗[K]. By standard argu-

ments we can find an M∗[K] generic subset H∗ of Col(κ+ω+2, j(κ)). Now by our
construction, the range of kn contains {j∗(Fα)(κ) | α < κ+ω+2} ∪ {kn(in(κ))} =
j(κ)+ 1 and so crit(kn) > in(κ). But since (Col(κ+ω+2, in(κ)))Nn satisfies in(κ+)-
c.c, the filter generated by k−1

n (H∗) is (Col(κ+ω+2, in(κ)))Nn generic over Nn. De-
note this filter by Hn.

Now we are ready to define a new forcing Q.

Definition 2.27. p ∈ Q iff

p = 〈ap
0, f

p
0 , ap

1, f
p
1 , . . . , ap

n−1, f
p
n−1X

p
n, F p

n , Xp
n+1, F

p
n+1, . . . 〉

so that the following holds:

(1) 〈ap
0, a

p
1, . . . , a

p
n−1, X

p
n, Xp

n+1, . . . 〉 is as in Definition 2.9 with the U∗
n’s replac-

ing the Un’s.
(2) ∀� < n − 1 fp

� ∈ Col((ap
� ∩ κ)+ω+2, ap

�+1 ∩ κ).
(3) fp

n−1 ∈ Col((ap
n−1 ∩ κ)+ω+2, κ).

(4) ∀� ≥ n Fn is a function on Xp
n such that

(a) Fn(P ) ∈ Col((P ∩ κ)+ω+2, κ).
(b) j∗n(Fn)(j′′nκ+) ∈ Hn.

All the previous claims remain valid here. Only in Lemma 2.16(b) do we restrict
ourselves to µ’s of the form κ+ω+1

n or κ+ω+2
n for the Prikry sequence 〈κn | n < ω〉.

Let us conclude with two questions.

Question 1. Is it consistent that ℵω is a strong limit, 2ℵω > ℵω+1 and ¬�∗
ℵω

(or
¬APℵω

)?

Question 2. Is it is consistent that GCH holds below κ, 2κ > κ+ and ¬�∗
κ (or

¬APκ) for a singular cardinal κ?

Question 3 (Cummings). Is it consistent that there is a very good scale on every
increasing sequence 〈κn | n < ω〉 of regular cardinals such that

⋃
n<ω κn = κ and

¬APκ ?
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