ADDING A LOT OF COHEN REALS BY ADDING A FEW I

MOTI GITIK AND MOHAMMAD GOLSHANI

ABSTRACT. In this paper we produce models Vi3 C V3 of set theory such that adding
k—many Cohen reals to Vo adds A—many Cohen reals to Vi, for some A > k. We deal

mainly with the case when V; and V2 have the same cardinals.

1. INTRODUCTION

A basic fact about Cohen reals is that adding A—many Cohen reals cannot produce more
that A—many of Cohen reals !. More precisely, if (s, : @ < A) are A—many Cohen reals over
V, then in V[(s, : @ < \)] there are no A™—many Cohen reals over V. But if instead of
dealing with one universe V' we consider two, then the above may no longer be true.

The purpose of this paper is to produce models V; C V5 such that adding k—many Cohen
reals to V5 adds A—many Cohen reals to Vi, for some A > k. We deal mainly with the case

when V; and V5 have the same cardinals.

2. MODELS WITH THE SAME REALS

In this section we produce models V; C V5 as above with the same reals. We first state

a general result.

Theorem 2.1. Let Vi be an extension of V. Suppose that in Vi :
(a) kK < A are infinite cardinals,

(b) A is regular,

(¢) there exists an increasing sequence {kn : n < w) cofinal in k. In particular c¢f (k) = w,
(

d) there exists an increasing (mod finite) sequence (fo : @ < A) of functions in H (Fnt1\
n<w
Hﬂ)v

and

1By “A—many Cohen reals” we mean “a generic object (sq : @ < A) for the poset C(X) of finite partial

functions from A X w to 2”.
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(e) there exists a club C' C X\ which avoids points of countable V — cofinality.

Then adding k—many Cohen reals over Vi produces A—many Cohen reals over V.

Proof. We consider two cases.

Case A\ = k*. Force to add k—many Cohen reals over V;. Split them into two sequences
of length x denoted by (r, : 1+ < k) and (r] : 1+ < k). Also let (f, : a < k™) € V] be an
increasing (mod finite) sequence in H (Kni2 \ Knt1). Let a < k*. We define a real s, as

n<w

follows:

Case 1. o € C. Then
Vn < w, sqo(n) = Tfo(n) (0).

Case 2. a ¢ C. Let o* and o™ be two successor points of C' so that o < a < a™*.
Let (o, : ¢ < k) be some fixed enumeration of the interval (a*,a**). Then for some ¢ < k,

a=a,. Let k(1) = min{k <w : (k) =1}. Set
Vn < w, sa(n) =74, (k()+n)(0)

The following lemma completes the proof.
Lemma 2.2. (s, :a < k") is a sequence of kT —many Cohen reals over V.

Notation 2.3. For each set I, let C(I) be the Cohen forcing notion for adding I—many
Cohen reals. Thus C(I) = {p : p is a finite partial function from I x w into 2}, ordered by

reverse inclusion.

Proof. First note that ((r, : 1 < k), (r] : 2 < )) is C(k) x C(x)—generic over V;. By c.c.c of
C(x™) it suffices to show that for any countable set I C k™, I € V, the sequence (s, : v € T)
is C(I)—generic over V. Thus it suffices to prove the following:
for every (p,q) € C(k) x C(k) and every open dense subset D €
* V of C(I), there is (p, q) < (p,q) such that (p,q)||-“(sa:a € 1)
extends some element of D”.
Let (p,q) and D be as above. For simplicity suppose that p = ¢ = (). By (e) there are

only finitely many o* € C such that I N [a*, a**) # 0, where o™ = min(C' \ (o* 4+ 1)). For



ADDING A LOT OF COHEN REALS BY ADDING A FEW I 3

simplicity suppose that there are two o] < a3 in C' with this property. Let n* < w be such

that for all n > n*, fo:(n) < faz(n). Let p € C(k) be such that
dom(p) = {(3,0) : In <n*(B = fa;(n) or B = faz(n))}-

Then for n < n* and j € {1, 2},
B Dl=*8.0; (1) = 1502 () (0) = P(fa; (), 0)7
Thus (p, 0) decides sq: [ n* and sa3 [ n*. Let b € D be such that
(P, 0)l="(b(a7), b(e3)) extends  (sa; [ 1", 505 [ n7)”
Where b(«) is defined by b(a) : {n: (a,n) € dom(b)} — 2 and b(a)(n) = b(a, n). Let

p=pU U {{faz (n),0,b(af,n)) : n = n", (af,n) € dom(b)}.
i€{1,2}

Then p’ € C(x) % and
@ 0)=“(8a;, $a3) extends (b(a7),b(e3))”

For j € {1,2}, let {aj,,...,ajr,—1} be an increasing enumeration of components of b in the
interval (af,a;*) (i.e. those a € (aj,aj*) such that (a,n) € dom(b) for some n). For

je{l,2} and I < k; let o = au;, where 75, < k is the index of a;; in the enumeration of

Hok

the interval (o}, ]

) considered in Case 2 above. Let m* < w be such that for all n > m*,
j €{1,2} and l; < I’ < k; we have
Foz (1) < Forey (1) < Fngy (1) < fa (1) < fany (1) < foy, ()
Let
d={(1,n,0): j € {1,2},l < kj,n <m*}.
Then g € C(x) and for j € {1,2} and n <m*, (0, q)|-"r;,, (n) = 0", thus (0, q)[—"k(j,1) =

min{k <w : 7] (k) =1} >m"”. Let

p=p U U {{(fa, (E(5,t) +n),0,b(aj,n)) : I < kj, (ai,n) € dom(b)}.
je{1,2}
It is easily seen that p € C(x) is well-defined and for j € {1,2} and ! < k;,
2This is because for n > n*, faz(n) # faz(n) and for j € {1,2}, faj (n) ¢ {faj* (m) : m < n}, thus there

are no collisions.
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(D, Q)| $ a,, extends b(aj;)”.
Thus
(D, Q)= “(5a : @ € I) extends b”.
(*) follows and we are done. 0

Case )\ > sT. Force to add k—many Cohen reals over V;. We now construct A—many
Cohen reals over V as in the above case using C' and (f, : @ < A). Case 2 of the definition
of (sq : @ < A) is now problematic since the cardinality of an interval (a*, a**) (using the
above notation) may now be above xk and we have only k—many Cohen reals to play with.
Let us proceed as follows in order to overcome this.

Let us rearrange the Cohen reals as (r, o : n < w,a < k) and (r,, : 7 € [k]<¥). We define
by induction on levels a tree T C [A]<¥, its projection 7(T) C [£]<“ and for each n < w and
a € Lev,(T) areal s,. The union of the levels of T will be A s0 (s, : @ < A) will be defined.

For n =0, let Levg(T) = () = Levg(w(T)).

For n = 1, let Lev1(T) = C, Lev1(w(T)) = {0}, i.e. w({c)) = (0) for every @ € C. For

a € C we define a real s, by
Vm < w, sq(m) =11, (m)(0).

Suppose now that n > 1 and T | n and «(T) | n are defined. We define Lev,(T),
Lev, (n(T)) and reals s, for o € Lev,(T). Let n € T | n— 1, a*,a* € Suer(n) and
a** = min(Sucr(n) \ (a* +1)). We define Sucr(n™(a**)) if it is not yet defined 3.

Case A. |a*\ a*| < k.

Fix some enumeration (o, : 2 < p < k) of ™ \ a*. Let

o Sucr(n~(a*)) = a** \ a*,
o Sucy(n™{a™) " (a)) = () for o € &™* \ o,
o Sucr(ry(r(n™(a™))) = p = o™\ a7,
o Sucary(r(n (@)~ () = () for 1 < p.
Now we define s, for a € a** \ a*. Let 2 be such that o = «,. let k = min{m < w :

Tﬂ'("l’\ (a**))™ (2) (m) = 1}, Fmally let

3Then Levy, (T) will be the union of such Sucr(n™ (a**))’s.
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¥m < w, 50 (1) = .1, (+m) (0).

Case B. |a™ \ o*| > k and cf(a™) < k.
Let p = c¢fa™ and let (a* : v < p) be a normal sequence cofinal in o* with of* > o*.

Let
e Sucr(n™(a™)) ={a;" 1 v < p},
o Sucy)(m(n™(a**))) = p.

Now we define s,:+ for v < p. Let k = min{m < w : 7z~ (a=+))~ () (M) = 1} and let
Vm < w, Saz-(m) = Tn g0 (htm) (0)-

Case C. cf(a*™) > k.

Let p and (a}* : v < p) be as in Case B. Let
o Sucr(n™(a™)) ={ap" v <p},
o Sucy(r)(m(n™(a*))) = (0).

We define sq:~ for v < p. Let k = min{m < w : r(;~(a=+))~(0y(m) = 1} and let
Vm < w, sqx- (M) = rn’fa;*(ker)(O).

By the definition, T is a well-founded tree and U Lev,(T) = A. The following lemma

n<w
completes our proof.

Lemma 2.4. (s, : a < \) is a sequence of A—many Cohen reals over V.

Proof. First note that ((rn,o : n < w,a < k), (ry, : 0 € [£]<¥)) is C(w x k) X C([k]<¥)—generic
over Vi. By c.c.c of C()\) it suffices to show that for any countable set I C A, I € V, the
sequence (Sq : a € I) is C(I)—generic over V. Thus it suffices to prove the following:
For every (p,q) € C(w x k) x C([]<“) and every open dense subset
(*) D eV of C(I), there is (p,q) < (p,q) such that (p,q)||-“(sa:a € 1)
extends some element of D”.
Let (p,q) and D be as above. for simplicity suppose that p = ¢ = @. For each n < w let
I, = 1IN Lev,(T). Then Iy = 0 and I; = I N C is finite. For simplicity let I; = {aF, a5}
where o] < a3. Pick n* < w such that for all n > n*, fo:(n) < faz(n). Let py € C(w x k)

be such that
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dom(po) = {(1,5,0) : 3n <n*(8 = fa; (n) or § = faz(n))}.

Then for n < n* and j € {1,2}
(0D~ (1) = L0750 (0) = (L, fo (0),0)"
thus (po, ) decides sq: | n* and sqz | n*. Let b € D be such that
(Po, )| *(b(7), b(a3)) extends (sa; | n*,saz [ n")".
Let

pr=p0U |J {(1 fa:(n),0,b(a},n)) 1> n*,(a},n) € dom(b)}.
Je{1,2}

Then p; € C(w X k) is well-defined and letting ¢ = (), we have
(p1, 1)l (807 Saz) extends (b(af), b(az))”.

For each n < w let J,, be the set of all components of b which are in I, i.e. J, = {a €
I, : 3n, (o, n) € dom(b)}. We note that Jy = ) and J; = I; = {aF,ad}. Also note that for
all but finitely many n < w,J, = 0. Thus let us suppose ¢ < w is such that for all n > t,
J, = 0. Let us consider Jy. For each a € J, there are three cases to be considered:

Case 1. There are o < o™ in Levy(T) = C, o = min(C \ (a* + 1)) such that
|o**\ o*| < k and o € Sucr({(a**)) = a** \ a*. Let 1, be the index of o in the enumeration
of a** \ o* considered in Case A above, and let ko = min{m < w : 7z ((a=))~ ) (M) = 1}.

Then

Ym < w, so(m) = 7"2,fa(ka+m)(0)~

Case 2. There are a* < o™ as above such that |a** \ a*| > k and p = c¢fa™ < k. Let

kK

(ap* 1 v < p) be as in Case B. Then a = o for some v, < p and if k, = min{m < w :

rﬂ(m**))ﬁ(%)(m) = 1} Then

Ym < w, sq(m) = T27fa(ka+m)(0).

*

Case 3. There are o < o** as above such that p = ¢fa™ > k. Let (a* : v < p) be as
in Case C. Then o = a}* for some v, < p and if ky = min{m < w : rr((a=+))~ 0y (M) = 1},

then

Vm < w, sa(m) =73 5. (katm)(0)-



ADDING A LOT OF COHEN REALS BY ADDING A FEW I 7

Let m* < w be such that for all n > m* and o < o’ in J; U Ja2, fo(n) < for(n). Let

g2 ={(n,n,0) : n <m*, 3 € Jo(n = w({@**)) " (ia) or
n=m({a"))" (va) or
n=m((a"))7(0))}-
Then g2 € C([k]<*) is well-defined and for each a € Ja, (¢, g2)|—“ke > m*”. Let

p2 = p1 U{(2, fa(ka +m),0,b(a,m)) : @ € J3, (,m) € dom(b)}.

Then ps € C(w x k) is well-defined, (p2,q2) < (p1,41) and for o € Jo and m < w with

(o, m) € dom(d),

(P2, @2) =" 8.0(Mm) = L2 o (katm) (0) = P2(2, fa(ka +m),0) = bla, m) = b(e)(m)”,

R

thus (p2, q2)||—“ 8o extend b(a)” and hence

(P2, @2)|I-“(50 : @ € J1 U Jo) extends (b(a) : o € Jy U Jo)".

By induction suppose that we have defined (p1,¢1) > (p2,92) > ... > (pj,q;) for j < ¢,

where for 1 < < j,
(Pi» @)= (80 € J1U...UJ;) extends (b(a) : € JyU...UJ;)".

We define (pj11,q;41) < (pj,q;) such that for each o € Jjq1, (pjs1,@j41)|l-“5a extends
b(a)”.

Let o € Jj41. Then we can find n € T' | j and o* < o** such that o*, o™ € Sucr(n),
o™ = min(Sucr(n) \ (o* 4+ 1)) and « € Sucr(n™(a**)). As before there are three cases to
be considered.

Case 1. |o** \ a*| < k. Then let i, be the index of « in the enumeration of a** \ o*

considered in Case A and let ko = min{m < w : 77~ (a**))~(i,) (M) = 1}. Then

Ym < w, so(m) = Tj+17fa(ka+m)(0).

Case 2. |a™ \ a*| > k and p = cfa™ < k. Let (a}* : v < p) be as in Case B and let

Vo < p be such that a = a;*. Let ko = min{m < w : 7r(y~(a*+))~ (v, (M) = 1}. Then

Ym < w, $q(m) = Tj+1’fa(ka+m)(0).
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Case 3. p = cfa™ > k. Let (o : v < p) be as in Case C. Let v, < p be such that
a=ap’ and let kq = min{m < w : 77~ (a*))~(0) (M) = 1}. Then
Vm < w,56(M) = 741, 1, (ko +m) (0).
Let m* < w be such that for all n > m* and a < &/ in J; U...U Jj41, fa(n) < for(n). Let
¢j+1 = q; U{(7,n,0) : n <m*, 3Ja € Jj41 (for some unique n € T' | j,
a** € Sucr(n), we have a € Sucp(n™(a**))
and (7 = (™ (a™")) ™ (ia)
or 77 =m(n~ (™))" (va)
or 77 = (r(n™ (™))~ (0)))}-
It is easily seen that g;11 € C([sk]<%) and for each o € Jj41, (¢, qj41)|—“ka > m*”. Let
Pi+1 =D0; U{(j+ 1, fa(ka +m),0,b(c, m)) : @ € Jj1, (o, m) € dom(b)}.

Then pj1 € C(w x k) is well-defined and (p;+1,¢;+1) < (pj,¢;) and for a € J;11 we have

(Pj+15 G+ = 8a(m) = 141 fu(katm)(0) = Dj11(J + 1, falka +m),0) = b(a,m) =

b(a)(m)”.
Thus (pj+1,¢j+1)[—"8a extends b(e)”. Finally let (p,q) = (pi,q:). Then for each com-
ponent « of b,
(D, )|~ 5o extends b(a)”.
Hence

(P @) I-“(Sa : o € I) extends b”.
(*) follows and we are done

Theorem 2.1 follows.

We now give several applications of the above theorem.

Theorem 2.5. Suppose that V satisfies GCH, k = U K and U o(kn) = Kk (where o(ky)
n<w n<w

is the Mitchell order of k,). Then there exists a cardinal preserving generic extension Vi

of V' satisfying GCH and having the same reals as V' does, so that adding k—many Cohen

reals over Vy produces k™ —many Cohen reals over V.
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Proof. Rearranging the sequence (k, : n < w) we may assume that o(k,+1) > K, for each

n <w. Let 0 < n < w. By [Mag 1], there exists a forcing notion P, such that:

e Each condition in P, is of the form (g, G), where g is an increasing function from a
finite subset of ! into r,4+1 and G is a function from ., \ dom(g) into P(ky41). We
may also assume that conditions have no parts below or at x,,, and sets of measure
one are like this as well.

e Forcing with P,, preserves cardinals and the GC'H, and adds no new subsets to x,,.

e If G, is P,—generic over V, then in V[G,,] there is a normal function ¢ : ;7 —

Kn+1 such that ran(g}) is a club subset of k,41 consisting of measurable cardinals

of V such that V[G,] = Vlg;].

Let P* = H P,, and let

n<w
P = {({{(gn,Gn) : n <w) € P*: g, =0, for all but finitely many n}.

Then using simple modification of arguments from [Mag 1,2] we can show that forcing with
PP preserves cardinals and the GCH. Let G be P—generic over V, and let g& : Kk} — K11
be the generic function added by the part of the forcing corresponding to P, for 0 < n < w.
Let X = U ((ran(g:) \ k) U {kny1}) and let g* : kK — K be an enumeration of X
in increasi%}nz;Jder. Then X = ran(g*) is club in k and consists entirely of measurable
cardinals of V. Also V[G] = Vg*].

Working in V[G], let Q be the usual forcing notion for adding a club subset of ™ which
avoids points of countable V —cofinality. Thus Q = {p : p is a closed bounded subset of

k* and avoids points of countable V —cofinality}, ordered by end extension. Let H be

Q-—generic over V[G] and C =J{p:p € H}.

Lemma 2.6. (a) (Q, <) satisfies the k™ —c.c,
(b) (Q, <) is < kT —distributive,

(c) C is a club subset of kT which avoids points of countable V — cofinality.

(a) and (¢) of the above lemma are trivial. For use later we prove a more general version

of (b).

Lemma 2.7. Let V C W, let v be reqular in W and suppose that:
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(a) W is a v—c.c extension of V,

(b) For every A\ < v which is reqular in W, there is T < v so that cfV (1) = X and T has
a club subset in W which avoids points of countable V —cofinality.

In Wlet Q = {p C v : p is closed and bounded in v and avoids points of countable

V —cofinality}. Then in W, Q is < v—distributive.

Proof. This lemma first appeared in [G-N-S]. We prove it for completeness. Suppose that
W = V[G], where G is P—generic over V for a v—c.c forcing notion P. Let A < v be regular,

qeQ, f e W?and
ql-“f : A — on”.

We find an extension of ¢ which decides ,IJ By (b) we can find 7 < vand g: A — 7
such that c¢f" () = A, g is normal and C' = ran(g) is a club of 7 which avoids points of
countable V —cofinality.

In W, let § > v be large enough regular. Working in V', let H < Vy and R: 7 — on be
such that

e Card(H) < v,

e H has A\, 7,v,P and P—names for p, Q, i,g and C as elements,
e ran(R) is cofinal in sup(H Nv),

e R| (3¢ H foreach g < 7.

Let H = H[G]. Then sup(H Nv) = sup(H Nv), since P is v—c.c, H < V¥ and if
v = sup(H Nv), then cfW(y) = cfW(r) = \. For a < A let 7, = R(g()). Then

o (Yo :a < \) €W is anormal sequence cofinal in 7,
e (y4:a < B) € H for each B < \, since R | g(f) € H,

o cfV(va) = cfV(g(a)) # w for each a < A, since R is normal and g(a) € C.
Let D = {7, : & < A}. We define by induction a sequence (g, : 7 < A) of conditions in Q
such that for each n < A
® qo = ¢,
® g, € H,

® Gn+1 S qns



ADDING A LOT OF COHEN REALS BY ADDING A FEW I 11

® ¢,+1 decides i(n),
e DN (max gy, maxg,41) # 0,

= hi = if n is a limi inal.
° q, U qp U {0y}, where 6, = sup max g, f 7 is a imit ordina

p<n
We may further suppose that

e ¢,’s are chosen in a uniform way (say via a well-ordering which is built in to H).
We can define such a sequence using the facts that H contains all initial segments of D
and that d,, € D for every limit ordinal n < A (and hence cf" (4,) # w).
Finally let ¢ = U gn U {02}, where 6\ = suprrrllgicqn. Then 65 € D U {v}, hence

n<A
cfV(6x) # w. It follows that gy € Q is well-defined. Trivially gx < ¢ and gy decides f. The

lemma follows. O

Let Vi = V|G * H]. The following is obvious

Lemma 2.8. (a) V and Vi have the same cardinals and reals,

(b) Vi £“GCH”,

Now the theorem follows from Theorem 2.1. O

Let us show that some large cardinals are needed for the previous result.

Theorem 2.9. Assume that Vi O V and Vi and V have the same cardinals and reals.
Suppose that for some uncountable cardinal v of Vi, adding k—many Cohen reals to Vi

+

produces k™ —many Cohen reals to V. Then in Vi there is an inner model with a measurable

cardinal.

Proof. Suppose on the contrary that in V; there is no inner model with a measurable cardinal.
Thus by Dodd-Jensen covering lemma (see [D-J 1,2]) (K (V7), V1) satisfies the covering lemma

where K (V7) is the Dodd-Jensen core model as computed in V;.
Claim 2.10. K(V) = K (1)

Proof. The claim is well-known and follows from the fact that V' and V; have the same

cardinals. We present a proof for completeness 4. Suppose not. Clearly K (V) C K(V1), so

4Our proof is the same as in the proof of [Sh 2, Theorem VII. 4.2(1)].
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let AC o, A€ K(V1),A ¢ K(V). Then there is a mice of K(V;) to which A belongs, hence
there is such a mice of K (V;)—power a. It then follows that for every limit cardinal A > «
of V; there is a mice with critical point A to which A belongs, and the filter is generated by

end segments of
{x:x <A x acardinal in V; }.
As V and V; have the same cardinals, this mice is in V, hence in K (V). O

Let us denote this common core model by K. Then K C V, and hence (V, V1) satisfies the

v _, W

<@1)V is unbounded in ([k]<%)"* and since w} = w*,

covering lemma. It follows that ([xT]=
we can easily show that ([x*]=¢)" is unbounded in ([x*]=%)"1. Since Vi and V have the

same reals, ([x1]=9)V = ([x*]=“)"* and we get a contradiction. O

If we relax our assumptions, and allow some cardinals to collapse, then no large cardinal

assumptions are needed.

Theorem 2.11. (a) Suppose V' is a model of GCH. Then there is a generic extension Vy
of V satisfying GCH so that the only cardinal of V' which is collapsed in Vi is Ny and such
that adding X, —many Cohen reals to Vi produces R, 11—many of them over V.

(b) Suppose V satisfies GCH. Then there is a generic extension Vy of V' satisfying GCH
and having the same reals as V does, so that the only cardinals of V' which are collapsed in
Vi are Vg and N3 and such that adding RX,—many Cohen reals to V1 produces N, 1—many

of them over V.

Proof. (a) Working in V, let P = Col(Ro,R1) and let G be P—generic over V. Also let
S ={a < wy:cfY(a) =w}. Then S remains stationary in V[G]. Working in V[G], let
Q be the standard forcing notion for adding a club subset of S with countable conditions,
and let H be Q—generic over V[G]. Let C =|J H. Then C is a club subset of wY[G] =wy
such that C' C S, and in particular C' avoids points of countable V' —cofinality. Working in

V|G x H], let
R = ((P, : Ry < v <Rypa,v regular ), (Q, : Ry < v <N, 11, v regular ))

be the Easton support iteration by letting @, name the poset {p C v : p is closed and

bounded in v and avoids points of countable V —cofinality} as defined in V|G x H|**. Let
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K ={G, : Ny <v <Ry, vregular ), (H, : Ng < v < N,11,v regular ))

be R—generic over V|GxH] (i.e G, is P, —generic over V[G*H] and H, is Q, = Q,[G,]—generic

over V|G * H * G,]). Then

Lemma 2.12. (a) P, adds a club disjoint from {a < X : c¢fV(a) = w} for each regqular
A€ (Ny,v),
(b) (By 2.7) V|G« H xG,] = “Q, is < v—distributive”,
(c) V|G x H] and V|G * H * K] have the same cardinals and reals, and satisfy GCH,
(d) In V|G * H % K] there is a club subset C' of V1 which avoids points of countable

V —cofinality.

Let V4 = V|G * H = K]. By above results, V; satisfies GCH and the only cardinal of V'
which is collapsed in V7 is R;. The proof of the fact that adding X, —many Cohen reals over
V1 produces R, 1— many of them over V follows from Theorem 2.1.

(b) Working in V| let P be the following version of Namba forcing:
P={T Cws¥:Tis a tree and for every s € T, the set {t € T': t D s} has size Na}

ordered by inclusion. Let G be P—generic over V. It is well-known that forcing with P adds
no new reals, preserves cardinals > X4 and that [RY|V[C] = |RY|VIC] = NY[G] =N} (see [Sh

1]). Let S ={a < w3 :cfV(a) = wa}.
Lemma 2.13. S remains stationary in V[G].

Proof. See [Ve-W, Lemma 3]. O

Now the rest of the proof is exactly as in (a).

The Theorem follows U

By the same line but using stronger initial assumptions, adding k—many Cohen reals

may produce A—many of them for A much larger than xV.

Theorem 2.14. Suppose that k is a strong cardinal, A\ > k is reqular and GCH holds.
Then there exists a cardinal preserving generic extension Vi of V having the same reals as

V' does, so that adding k—many Cohen reals over Vi produces A—many of them over V.
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Proof. Working in V', build for each § a measure sequence s from a j witnessing “x strong”
out to the first weak repeat point. Find u such that @ = s for unboundedly many §. Let

Rz be the corresponding Radin forcing notion and let G be R;—generic over V. Then

Lemma 2.15. (a) Forcing with Ry preserves cardinals and the GCH and adds no new reals,
(b) In V[G], there is a club C, C K consisting of inaccessible cardinals of V and V|G| =
V[Cy],

(¢) Kk remains strong in V|[G].
Proof. See [Git 2] and [Cu]. O
Working in V[G], let
E=((Uy:a <)), (map:a <g B))
be a nice system satisfying conditions (0)-(9) in [Git 2, page 37]. Also let
R=((P,:kt <v < AT, vregular ), (Qy : kT < v <\ v regular ))

be the Easton support iteration by letting @, name the poset {p C v : p is closed and

bounded in v and avoids points of countable V —cofinality} as defined in V[G]®*. Let
K = {(G, : kT <v <At vregular ), (H, : kT <v <\, v regular ))

be R—generic over V[G]. Then

Lemma 2.16. (a) P, adds a club disjoint form {a < 6 : cfV(a) = w} for each regular
0 € (k,v),

(b) (By 2.7) VIG*G,] E “Q, = @V[GV] is < v—distributive”,

(¢) V[G] and V|G % K] have the same cardinals, and satisfy GCH,

(d) R is < k—distributive, hence forcing with R adds no new k—sequences,

(e) In V]G = K], for each regular cardinal k < v < X there is a club C, C v such that C,

avoids points of countable V —cofinality.

By 2.16.(d), E remains a nice system in V[G* K], except that the condition (0) is replaced
by (A, <g) is kT —directed closed. Hence working in V[G * K], by results of [Git-Mag 1,2]

and [Mer], we can find a forcing notion S such that if L is S—generic over V|G % H] then
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e V|G * K] and V[G * K * L] have the same cardinals and reals,
e InV[GxK=xL], 2" =\, cf(k) = Rg and there is an increasing sequence (k, : n < w)
of regular cardinals cofinal in k and an increasing (mod finite) sequence (f, : a < A)

in H (Kn+1 \ Kn)-
n<w
Let V4 = V[G % K * L]. Then Vi and V have the same cardinals and reals. The fact that
adding k—many Cohen reals over V; produces A—many Cohen reals over V follows from

Theorem 2.1. O

If we allow many cardinals between V' and V; to collapse, then using [Git-Mag 1,Sec 2]

one can obtain the following

Theorem 2.17. Suppose that there is a strong cardinal and GCH holds. Let o < wy. Then
there is a model Vi D V having the same reals as V and satisfying GCH below R/ such

that adding RV* —many Cohen reals to Vi produces Nglﬂ—many of them over V.

Proof. Proceed as in Theorem 2.14 to produce the model V[G*K]. Then working in V[G* K],

we can find a forcing notion S such that if L is S—generic over V|G x H| then

e V|G * K] and V|G * K x L] have the same reals,
o In V[GxKxL], cardinals > « are preserved, k = R,,, GCH holds below X, 2¢ = N,

and there is an increasing (mod finite) sequence (fs: 8 < Ro41) in H (N1 \ Ry).
n<w

Let Vi = V[Gx K+ L]. Then V; and V have the same reals. The fact that adding X/* —many
Cohen reals over V; produces Nxbrl—many Cohen reals over V follows from Theorem 2.1.

O

3. MODELS WITH THE SAME COFINALITY FUNCTION BUT DIFFERENT REALS
This section is completely devoted to the proof of the following theorem.
Theorem 3.1. Suppose that V satisfies GCH. Then there is a cofinality preserving generic

extension V1 of V' satisfying GCH so that adding a Cohen real over Vi produces Yy —many

Cohen reals over V.

The basic idea of the proof will be to split w; into w sets such that none of them will

contain an infinite set of V. Then something like in section 2 will be used for producing
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Cohen reals. It turned out however that just not containing an infinity set of V is not
enough. We will use a stronger property. As a result the forcing turns out to be more
complicated. We are now going to define the forcing sufficient for proving the theorem. Fix

a nonprincipal ultrafilter U over w.

Definition 3.2. Let (Py, <, <*) be the Prikry (or in this context Mathias) forcing with U,
i.e.

o Py ={(s,A) € [w]<¥ x U : maxs < min A},

o (t,B) < (s,A) <t end extends s and (t\ s)UB C A,

o (t,B) <* (s,A) <=t =35 and B C A.

We call <* a direct or x—extension. The following are the basic facts on this forcing that

will be used further.

Lemma 3.3. (a) The generic object of Py is generated by a real,
(b) (Py, <) satisfies the c.c.c,
(¢c) If (s, A) € Py and b Cw )\ (maxzs + 1) is finite, then there is a x—extension of (s, A),

forcing the generic real to be disjoint to b.

Proof. (a) If G is Py—generic over V, then let » = [J{s : 3A, (s, A) € G}. r is a real and
G ={(s,A) € Py : r end extends s and r \ s C A}.

(b) Trivial using the fact that for (s, A), (t, B) € Py, if s = ¢ then (s, A) and (¢, B) are
compatible.

(c¢) Consider (s, A\ (maxb+ 1)). O

We now define our main forcing notion.

Definition 3.4. p € P iff p = (po, £1> where

(1) po € Py,

(2) P1 is a Py—name such that for some a < wy, p0||—“£1 o — w” and such that
the following hold
(2a) For every < «, gl(ﬂ) C Py x w is a Py—name for a natural number such

that



ADDING A LOT OF COHEN REALS BY ADDING A FEW I 17
e p1(B) is partial function from Py into w,
o for some fized | < w, dom p(B) C {(s,w \maxs+1):s € [w]'},
o forall By # B2 < a,ranp(B1) Nranp(B2) is finite °.
(2b) for every I Ca, I €V, p{, <po and finite J C w there is a finite

set a C « such that for every finite set b C I\ a there is pjj <* p}, such that

poll=“(VB € b,Vk € J, £1(ﬁ) # k)&(Vp1 # B2 € b,gl(ﬁl) # }31(ﬁ2))”-

Notation 3.5. (1) Call o the length of p (or p1) and denote it by lh(p) (or lh(p1)).
(2) Forn < w let I, be a Py—name such that po|—“1,n = {6 < a: p1(B) = n}”.

Then we can coincide py with (1, :n < w).

Remark 3.6. (2a) will guarantee that for 8 < o, pol|—“p1(8) € w”. The last condition in
(2a) is a technical fact that will be used in several parts of the argument. The condition (2b)

appears technical but it will be crucial for producing numerous Cohen reals.

Definition 3.7. Forp = (po,gl),q = {(qo, g1> € P, define
(D) p<qiff
® po <py 4o,
* Ih(q) < lh(p),
o pol=Vn <w, I4n=1p,nNlh(q)”.
(2)p<qiff
® po <p, o,
*p=gq

we call <* a direct or x—extension.

Remark 3.8. In the definition of p < q, we can replace the last condition by po||—“q1 =

P1 I'lh(q)”.

Lemma 3.9. Let {py, p1)||—“a is an ordinal”. Then there are Py—names 3 and q1 such
that (po, ¢1) < (po, p1) and (po, q1)l-“e = 3".

5Thus if G and r are as in the proof of Lemma, 3.3 with po € G, then p,||—“p1(8) is the I—th element of
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Proof. Suppose for simplicity that (pg, p1) = ((<>,w), ). Let 0 be large enough regular
and let (IV, : n < w) be an increasing sequence of countable elementary submodels of Hy

such that P, o € Np and N,, € Ny41 for each n < w. Let N = U N,, 6, = N, Nw; for
n<w
n<wandd= U 0n = NNuw;. Let (J, : n < w) € Ny be a sequence of infinite subsets of
n<w
w\ {0} such that U Jn = w\ {0}, J, C Juy1, and Jpiq \ J, is infinite for each n < w. Also

n<w

let (o; : 0 < i < w) be an enumeration of d such that for every n < w, {a; : 4 € J,} € Npy1
is an enumeration of 6, and {a; : i € Jp11} Ny ={; 14 € J, }
We define by induction on the length of s, a sequence (p° : s € [w]<*) of conditions such

that

P’ = <p(s)7£i> = <<S7AS>7£i>7

P° € Ny(ths—1)+1,
o [h(p®) = bsans—1)+1,
e if ¢ does not contradict p§ (i.e if ¢ end extends s and ¢\ s C Ag) then p' < p*.

For s =<>, let p<> = ((<>,w), ¢). Suppose that <># s € [w]<¥ and p*!""*~! is defined.
We define p®. First we define t3/ths=1 < pslihs—1 a5 follows: If there is no x—extension of
p!ths=1 deciding o then let ¢*ths=1 = pstths=1  Otherwise let t51"~1 € Njp_0)41 be
such an extension. Note that [A(t51"571) < §ps_2)11.

Let t51"hs=1 = (to, t1),tg = (s | lhs — 1, A). Let C C w be an infinite set almost disjoint
to (rant 1(B): B <Ih(t1)). Split C into w infinite disjoint sets Cj, i < w. Let (¢ : j < w)
be an increasing enumeration of C;, i < w. We may suppose that all of these is done in
Ngns—1)+1- Let p* = (pg,g‘{), where

o pi = (s, A\ (maxs+1)),
o for B <Ih(t1), Zﬁ(ﬁ) = 11(0),

o for i € Jyyns—1) such that a; € dqns—1) \ lh(%1)
gi(ai) = {(({‘(rl, co iy w\ (ri + 1)), ¢ip,) 171 > max s, (11, ..., 1) € [w]z} .

Trivially p* € Nyqns—1)+1, Ih(p®) = d5ans—1), and if s(lhs — 1) € A, then p* < gslths—1
Claim 3.10. p° € P.

Proof. We check conditions in Definition 3.4.
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(1) i.e. p§ € Py is trivial.
(2) Tt is clear that pg|— “gf : 0s(ths—1) — w” and that (2a) holds. Let us prove (2b).
Thus suppose that I C dsqps—1), I €V, p < pg and J C w is finite. First we apply (2b) to
(p, t1), I NIh(t1), p and J to find a finite set a’ C Ih(t 1) such that

(*) For every finite set b C I N1h(t1) \ @’ there is p’ <* p such that p’

[=*(V8 € b,Vk € J, t1(B) # k)&(VB1 # B2 € b, t1(51) # L1(B2))”.
Let p = (s7(r1,...,rm), B). Suppose that dqns—1) \ IM(11) = {ay,,...,ay,,...} where

J1 < Jo < ...arein Jyqps—1). Let
a=d U{ay,...,ay, }

We show that a is as required. Thus suppose that b C I'\ a is finite. Apply (*) to bNIA(t1)

to find p’ = (s (r1, ..., "m), B’) <* p such that

PI=4(VB € bNih(tq), Yk € J, £1(B) # k)&(VP1 # B2 € bNIR(L1), £1(B1) # £1(B2))”.

Also note that

pI-4v8 € bih(41), pi(8) = £1(8).

Pick k£ < w such that
VBebNIh(t1), Yoy € b\Ih(L1),ranpi(B1) N (ranpi(c) \ k) = ¢.

Let ¢ = (s7(r1, .., Tm), B) = (s (11, ...; 7)), B"\ (maxJ + k + 1)). Then q <* p’ <* p.
We show that ¢ is as required. wee need to show that
(1) ql=*VB € b\ (), Yk € J, pi(B) # K7,
(2) qll=“VB1 # B2 € b\lh(,ﬁ,l)a}ﬁ(ﬁl) # gi(@)”,
(3) all-“VB1 € bAIR(L1), 62 € b\ Th(£1), pi(B1) # pi(Be)’.
Now (1) follows from the fact that ¢|— “Ej(ai) > (i —m) — th element of B > maxJ”.
(2) follows from the fact that for i # j < w, C;NC; =0, and mng{(ai) C C;. (3) follows

from the choice of k. The claim follows. O

This completes our definition of the sequence (p® : s € [w]<¥). Let

a1 ={(p5, (B, p1(B))) : s € [w]*¥, B < Ih(p*)}.
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Then q; is a Py—name and for s € [w]<¥, p§||—-“p$ = q1 | Ih(p$)”.
Claim 3.11. ((<>,w), q1) € P.

Proof. We check conditions in Definition 3.4.
(1) ie. (<>,w) € Py is trivial.

(2) It is clear from our definition that
(<>,w)|—“q1 is a well-defined function into w”.

Let us show that [h(g1) = 6. By the construction it is trivial that lh(¢q1) < 6. We show

that {h(q1) > 0. It suffices to prove the following
(*) For every 7 < § and p € Py there is ¢ < p such that g||—“g1(7) is defined 7.

Fix 7 < d and p = (s, A) € Py as in (*). Let ¢ be an end extension of s such that t\ s C A
and 0y(p¢—1) > 7. Then pjy and p are compatible and pf |- “21(7) = Zﬁ (1) is defined”. Let
q < ph,p. Then q|— “gl(T) is defined” and (*) follows. Thus lh(gl) =4.

(2a) is trivial. Let us prove (2b). Thus suppose that I C §, I € V, p < (<>,w) and
J C w is finite. Let p = (s, A).

First we consider the case where s =<>. Let a = (). We show that a is as required. Thus
let b C I be finite. Let n € A be such that n > maxJ + 1 and b C 4,,. Let t = s (n). Note

that

VB1 # B2 €, rangﬁ(ﬁl) ﬂrangtl(ﬁg) = 0.

Let ¢ = (<>, B) = (<>, A\ (max J + 1)). Then g <* p and ¢ is compatible with p§. We
show that ¢ is as required. We need to show that
(1) ql="*VG € b,Vk € J, 4:1(8) # k7,
(2) all="VB1 # B2 € b,q1(61) # 41(B2)".
For (1), if it fails, then we can find (r, D) < ¢,p, 3 € b and k € J such that (r, D) <* pj
and {r, D)[[~“q1(8) = k". But (r, D) [~*q1(8) = p;(8) = p'(8)", hence (1 D)|—*p}(8) =
k”. This is impossible since min D > min B > maxJ. For (2), if it fails, then we can find

(r,D) < q,p}y and 1 # (2 € b such that (r, D) <* pjj and <r,D>||7“21(61) = gl(ﬂg)”. As
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above it follows that (r, D)|l— “gtl(ﬁl) = gﬁ(ﬂg)”. This is impossible since for 81 # (2 € b,
rangﬁ(ﬁl) N Tan!\)ﬁ (B2) = 0. Hence ¢ is as required and we are done.

Now consider the case s #<>. First we apply (2b) to t*, I NIAh(t*), p and J to find a
finite set o’ C [h(t*) such that

(**) For every finite set b C I NIA(t%) \ @’ there is p’ <* p such that p’

[=4(v8 € b.¥k € J, pi(8) # KB # o € by pi(B1) # pi(B2))"
Let t° = (to, £1),0s(hs—1)+1 \ Os(ths—1) = {@u,,QJ,,...}, where J; < Jp < ... are in

Js(ihs—1)+1- Define
a=dadU{ay,a,...,ay,, |
We show that a is as required. First apply (**) to bNIh(t*) to find p’ = (s, A’) <* p such
that
PI=“(VB € bNIh(t*),VEk € J, t1(8) # k)&(Vf1 # B2 € bNIA(E), £1(1) # £1(52))"

Pick n € A’ such that n > max.J + 1 and b C §,, and let » = s (n). Then

VB, # [ € b\lh(ts),rcmg’l'(ﬂl) N rang’{(ﬁg) = 0.

Pick k < w such that £ > n and
VB € bNIA(t?), V62 € b\ lh(ts),rang’i(ﬂl) N (Tang{(ﬂg) \k)=0.

Let ¢ = (s,B) = (s, A’ \ (maxJ + k+ 1) U {n}). Then ¢ <* p’ <* p and ¢ is compatible

with p{ (since n € B). We show that ¢ is as required. We need to prove the following

(1) qll-*v8 € b,k € J, q1(8) £ K7,

(2) ql=¥51 # o € b\ I(E), q1(B1) # q1(Ba)",

(3) qll=*VB1 € bNIh(t*), VP2 € b\ IA(t*), q1(61) # ¢1(82)".
The proofs of (1) and (2) are as in the case s =<>. Let us prove (3). Suppose that (3) fails.
Thus we can find (u, D) < ¢,pf, f1 € bNIA(t?) and Fy € b\ [h(t?) such that (u, D) <* py
and {u, D) [~“q1(81) = q:(6)". But {u, D)l~“q1(8) = p}(8) = pi(8)" for B € b, hence
(u, D)[[=*pi(B1) = pi(B2)". Now note that F; = a; for some i > lhs + 1, min D > n and

~

min(D \ {n}) > k, hence by the construction of p”

(u, DY||—“p%(B2) > (i — lhs)—th element of D > k”.
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By our choice of k, ranp’ (1) N (ranpi(B2) \ k) = 0 and we get a contradiction. (3)

follows. Thus ¢ is as required, and the claim follows. O

Let

B ={p50) :s € W=, I <7 pll-"g =77}

Then ( is a Py—name of an ordinal.
Claim 3.12. ((<>,w), q1)|[-"“a = 3"

Proof. Suppose not. There are two cases to be considered.

Case 1. There are (ro, 1) < <<<>,w>,g1> and § such that (ro, 71)[—“0 € o and
6 ¢ 7. We may suppose that for some ordinal o, (ro, r1)|=“a¢ = a”. Then § < a.
Let ro = (s, A). Consider p* = <p8,£f). Then pj is compatible with ry and there is a
*—extension of p® deciding . Let t € Nygns—1)41 be the x—extension of p® deciding o
chosen in the proof of Lemma 3.9. Let t = (to, £1),t0 = (s, B), and let v be such that
(to, t1)|-“a =9". Let n € AN B. Then

o pgﬁ<”>, to and p§ are compatible and (s~ (n), AN BN As~,)) extends them,
o p* (M <4,
Thus p* ™|—“q =9". Let u = (s (n), AN BN Ag—~(ny \ (n+1)).

Then v < pgﬂm and u||—“r; extends rpjﬂ“ﬂ which extends ¢,”. Thus (u,1:) <
t, <r0,£1>,psﬁ<"). It follows that a = . Now § < ~ and psﬁ<”>||—“gJ = +”. Hence
(p(‘;ﬁm),&) € f and p* =45 € 7. This is impossible since (ro, T1)|l—%“0 & B

Case 2. There are (rg, 71) < <<<>,w>,21> and 0 such that (rg, 1)~ € g and
d ¢ a”. We may further suppose that for some ordinal a, (ro,r1)||-“c = o”. Thus
d > a. Let r = (s, A). Then as above p§ is compatible with r and there is a *—extension
of p* deciding . Choose ¢ as in Case 1, t = (to, £1),to = (s, B) and let v be such that
(to, t1)||-“a = 7". Let n € AN B. Then as in Case 1, & = v and p* ™|-“q = 4.
On the other hand since (ro, r1)|-“0 € 7, we can find 5 such that § does not contradict
p8h<n>, (5, p3)||-“a = 7" for some ¥ > ¢ and (p§,d) € g Now ¥ = v = « > § which is in

contradiction with 6 > «. The claim follows. O

This completes the proof of Lemma 3.9. g
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Lemma 3.13. Let (po, p1)||—“f : w — On”. Then there are Py—names g and g1 such

that (po, ¢1) < (po, p1) and (po, ¢ 1)|="f = g”.

Proof. For simplicity suppose that (pg, p1) = ((<>,w), D). Let 6 be large enough regular
and let (IV,, : n < w) be an increasing sequence of countable elementary submodels of Hy

such that P, f € Ny and N,, € N,,41 for every n < w. Let N = U Ny, 6, = N, Nw; for
n<w
n < wandd = U(Sn:Nﬂwl. Let (J, :n < w) € Np and (o; : 0 < ¢ < w) be as in

n<w
Lemma 3.9.

We define by induction a sequence (p® : s € [w]<*) of conditions and a sequence (3, : s €

[w]<“) of Py—names for ordinals such that

o p° = (pg, p1) = ({s,w \ (maxs +1)), p7),
® p° € Ny(lhs—1)+1,

Ih(p®) > Og(ihs—1)s

Pl f(ths = 1) = 8.,

if t end extends s, then p' < p.

For s =<>, let p<> = ((<>,w),0). Now suppose that s <> and p*'""s~! is defined.
We define p®. Let Cspns—1 be an infinite subset of w almost disjoint to (rangi”hs_l(ﬁ) :
B < Lh(p*1™hs=1)). Split Cypps—1 into w infinite disjoint sets (Cgpns—1¢ @ t € [W]<¥ and ¢
end extends s [ lhs — 1). Again split Csps—1,s into w infinite disjoint sets (C; : i < w). Let
(¢ij : j < w) be an increasing enumeration of C;, ¢ < w. We may suppose that all of these

is done in Nyps—1)+1- Let ¢° = (g5, 2?), where

o ¢ =(s,w)\ (maxs+1)),
o for B < Ih(p*lths=1) ¢3(B) = pi”hs*l(ﬁ),
o for i € Jyyns—1) such that a; € d5qns—1) \ Ih(ps!ths=1)

gf(ai) ={{{(s7(r1,...,mi),w\ (ri + 1)), ¢ir,) : 71 > maxs, (ry, ..., r;) € [w]*}.
Then ¢* € Nyns—1)41 and as in the proof of claim 3.10, ¢* € P. By Lemma 3.9, applied
inside Ny(ps—1)+1, we can find Py—names ,ﬂvs and gf such that <q8,£§> < (q&fqﬁ) and
(@, p=f(ths — 1) = B, Let p* = (p§, pi) = (a3, pi)- Then p* < p***~! and

Pl f 1 lhs = {(i, Bajia) 1 < lhs}”
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This completes our definition of the sequences (p* : s € [w]<¥) and (3, : s € [w]<¥). Let

~

a1 = {05 (5. 3B 15 € [, 5 < Ih(p")),

~

9 = {{p5, <iaés[i+1>> s € [w]S¥,i < lhs}.

Then ¢ and g are Py —names.
Claim 3.14. ((<>,w), q1) € P.

Proof. We check conditions in Definition 3.4.
(1) i.e (<>,w) € Py is trivial.

(2) It is clear by our construction that
(<>,w)|—“q1 is a well-defined function”

and as in the proof of claim 3.11, we can show that lh(gl) = 6. (2a) is trivial. Let us prove
(2b). Thus suppose that I C 6, I € V, p < (<>,w) and J C w is finite. Let p = (s, A). If
s =<>, then as in the proof of 3.11, we can show that a = @ is a required. Thus suppose
that s #<>. First we apply (2b) to p®, I NlAh(p®), p and J to find @’ C lh(p®) such that
*) For every finite b C I NIh(p®) \ @’ there is p’ <* p such that p/
|- (Y8 € bWk € J, pi(8) # K)&(VB: # B2 € b, pi(B1) # pi(Ba)).

Let d(hs—1)+1 \ Osths—1) = {s, -, g, .. Where Jp < Jp < ... are in Jygps—1)41. Let
a=a U{ar,az,...,ay,, }

We show that a is as required. Let b C I\ a be finite. First we apply (*) to bNIh(p®) to

find p’ = (s, A’) <* p such that
PI-4(Y8 € b1 Ih(p*), Yk € J, p3(8) # K)&(¥61 # f € b IA(), pi(B1) # pi(Be))".

Also note that for g € bNIh(p®), p'l-“q1(8) = p5(B3))”. Pick m such that maxs +
maxJ +1 <m < w and if ¢ end extends s and m < maxt, then C,; is disjoint to J and to
ranp$(0) for B € bNIh(p®). Then pick n > m,n € A’ such that b C §,,, and let t = s (n).

Then

o VB1 # B2 € b\Ih(p"), ranp}(51) N ranp!(82) = 0,

~

o V3 € bNIlh(p®),VBz € b\ lh(p®), rcmgﬁ(ﬂl) ﬂrangﬁ(ﬂg) =0,
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o V3 € b\ lh(p®),ranpi(B)NJ =0.
Let ¢ = (s,B) = (s, A’ \ (n+1)). Then ¢ <* p’ <* p and using the above facts we can

show that

qll=“(VB € b,Vk € J, 1(B) = pi(B) # k)&(Vp1 # B2 € b, ¢1(B1) = p1(P1) # pi(B2) =
q1(52))

Thus q is as required and the claim follows. O
Claim 3.15. ((<>,w), q1)|-“f=g".

Proof. Suppose not. Then we can find (rg, 71) < ((<>,w), ¢1) and i < w such that

(ro, r1)=“f(@) # g(i)”. Let ro = (s, A). Then ry is compatible with pj and ro|—“71

extends pi”. Hence (ro, 71) < (p§, pi) = p°. Now p°|[=“g (i) = Bspiy1 = f(i)” and we get
a contradiction. The claim follows. O
This completes the proof of Lemma 3.13. O

The following is now immediate.
Lemma 3.16. The forcing (P, <) preserves cofinalities.

Proof. By Lemma 3.13, P preserves cofinalities < w;. On the other hand by a A—system

argument, P satisfies the wy—c.c and hence it preserves cofinalities > ws. O
Lemma 3.17. Let G be (P, <)—generic over V. Then V[G] E GCH.
Proof. By Lemma 3.13, V[G] = CH. Now let k > w;. Then
@)V < (Bl < 27)Y = w*
The result follows. O

Now we return to the proof of Theorem 3.1. Suppose that G is (P, <)—generic over V,
and let V4 = V[G]. Then V] is a cofinality and GCH preserving generic extension of V.
We show that adding a Cohen real over V; produces N;—many Cohen reals over V. Thus
force to add a Cohen real over V;. Split it into w Cohen reals over V;. Denote them by
(Pnom :my,m < w). Also let (f; 14 <wy) € V be a sequence of almost disjoint functions from

w into w. First we define a sequence (s, ; : i < wy) of reals by
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Vk < w, sn,i(k) =10, £,01)(0).
Let (I, : » < w) be the partition of w; produced by G. For o < wy let
e n(a) = that n < w such that « € I,,
e i(a) = that i < w; such that « is the i—th element of I,,4).

We define a sequence (t, : a < wi) of reals by to = Sp(a),i(a)- The following lemma

completes the proof of Theorem 3.1.
Lemma 3.18. (t, : a < w) is a sequence of Ry —many Cohen reals over V.

Proof. First note that (r, , : n,m < w) is C(w x w)—generic over V;. By c.c.c of C(wy) it
suffices to show that for every countable I C wy, I € V, (t, : a € I) is C(I)—generic over
V. Thus it suffices to prove the following
For every ((po, £1>, q) € P+ C(w x w) and every open dense subset
* D eV of C(I), there is <<q0,g1>,r) < <<p07£1>,q> such that <<q0721>
,M)|[=“(t, : v € I) extends some element of D”

Let ((p0,£1>,q> and D be as above. Let a = sup(I). We may suppose that lh(gl) > a.
Let J = {n : 3Im,k,(n,m, k) € dom(q)}. We apply (2b) to <p0,£1>,l,po and J to find a
finite set a C I such that:

(**) For every finite b C I \ a there is p{, <* py such that pj|—“(V3

€ b,k € J, p1(B) # K)&(VB # o € b, p1(A1) # p1(B))".
Let

S={wkj):veak<wij<2(n), fiu(k)0,]) € q}

Then S € C(wy). Pick ko < w such that for all vy # va € a, and k > ko, fiw,)(k) # fis) (k).

Let
S*=SU{{vk0) :ve€ak< kg, (1k,1) & S}.

The reason for defining S* is to avoid possible collisions. Then S* € C(w;). Pick $** € D
such that S** < S*. Let b = {v : 3k, 4, (v, k,j) € S**} \ ¢. By (xx) there is pj <* py such

that

poll—“(Yv € b, Vk € J,gl(v) # k)& (Vv £ 1y € b,gl(ul) + gl(yg))”.
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Let p{ < pj be such that (p{j, p1) decides all the colors of elements of a Ub. Let
q" = qU{{n(v), fiw)(k),0,5" (v, k)) : (v, k) € dom(S™)}.

Then ¢* is well defined and ¢* € C(w x w). Now ¢* < ¢, (<p87£1>,q*> < <<po,£1>,q> and

for (v, k) € dom(S**)
(WG, p1), )-8 (v, k) = " (n(v), fiw)(B);0) = Znw). gy () (0) = Lu(R)"-
It follows that
(o, p1), @) I=“(t : v € I) extends S,

(*) and hence Lemma 3.18 follows. O
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