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Abstract

We generalize the result of Gitik-Kanovei-Koepke [?] from Prikry forcing over s
to Magidor forcing and characterize all intermediate extensions of Magidor generic
extensions. We also investigate how the cofinality of « is effected when adding a set
from a Prikry or Magidor extension.

Introduction

Menachem Magidor introduced "Magidor forcing” in his paper Changing the cofinality of
cardinals [?]. This forcing was designated to change the cofinality of a measurable cardinal
to a regular cardinal larger than w. Formerly, the main method to change cofinality of mea-
surables was using Prikry forcing, which injects an w-sequence to that measurable [?].

The process of determining a generic set in both forcings, describes a formation of a co-
final sequence in a target measurable. Partial information about the final sequence yields
intermediate extensions. Naturally, the question which arises:

Are these all possible intermediate extensions?

It is well known that if P is a forcing notion and G is P-generic, then any intermediate ZFC
model V' C N C V[G] is of the form N = V[X] where X € V[G] is a generic set for some
forcing in V. Therefore, the question can be reduced to

Is there C' C Cg such that V[X] = V|[C']?

*The work of the second author was partially supported by ISF grant No.58/14.



Where Cg is a Magidor sequence corresponding to the generic set G. As proved in 2010
by Gitik-Kanovei-Koepke [?], if the forcing subjected is Prikry forcing the answer to this
question is positive. In some sense, Magidor forcing is a generalization of Prikry forcing, one
may conjecture that it is possible to generalize the theorem. Asserting the conjecture is the
main result of this paper.

Theorem 3.3 Let U be a coherent sequence in V., {ky, ...kn) be a sequence such that Oﬁ(l-{i) <
min(v | 0 < oY(v)), let G be Mml,,.v,ﬂn)[ﬁ]—genemcl and let A € V]G] be a set of ordinals.
Then there ezists C' C Cq such that V[A] = V[C"].

—

One of the main methods used in the proof was the construction of a forcing M;[U] € V,
which is a projection of Magidor forcing M[[j ]. This forcing is a Magidor type forcing which
uses only measures from U with index i € I. Moreovere, M[[ﬁ ] adds a prescribed subse-
quence Cf := (Cg) [ I as a generic object, where I C )\ is a set of indexes in \g = otp(Cg).
Hence, we may examine the intermediate extensions V' C V[C}] C V[C¢] as an iteration of

—

two forcing, which resemble M[U] and behave well.

An important consequence of this theorem is the classification of all complete subforcings of

—

M[U], this will be discussed in chapter 5.

By Theorem 3.3, if A € V[G]\ V then V[A] = k is singular. When we don’t assume
that the measures involved are normal, the situation is more complex, chapter 6 is devoted
for this investigation. The main theorem of this chapter is

Theorem 6.7 Let U = (U, | a € [k]<¥) consists of P-point ultrafilters over x. Then
for every new set of ordinals A in V7| k has cofinality w in V[A]2.

In chapter 7 we give an example for a set A such that s stays regular in V[A] (even measur-
able).

1M(,€17._,§n> [U'] is Magidor forcing with the coherent sequence U above a condition which has (K1y ey Kon)
as it’s ordinal sequence
2P(U) is the Prikry tree forcing, a detailed definition can be found in chapter 6



Notations

V' denotes the ground model.
For any set A, V[A] denote the minimal model of ZFC containing V' and {A}

H?Zl A; increasing sequences (a, ..., a,) where a; € A,

[T11A:; left-lexicographically increasing sequences (which is denoted by <;gx )
i=1j=1

[k]* increasing sequences of length o

n<w

“[k] not necessarily increasing sequences, i.e functions with domain « and range

k= U sl

n<w

(or, B) an ordered pair of ordinals. («, ) the interval between o and .
a={(ag,..an), |ad=n, a\ () = (a1, ..,1,01,...,0p)

For every a < /3, The Cantor normal form (abbreviated C.N.F) equation is «a + w"* +
v F W' =B, 11 > ... > v, are unique. If a = 0 this is the C.N.F of 3, otherwise, this
is the C.N.F difference of «, .

o(a) =~ where o = W + ... + W +w? (C.N.F).
Lim(A) ={a € A|sup(ANa) =a}
Succ(A) ={a € A|sup(ANa) < a}
LﬂIAZ» is the union of {4; | i € I'} with the requirement that A;’s are pairwise disjoint.
ic
If f: A— B is a function then for every A C A, B'C B
frA={f(z) |z A}, V"B ={z € A| f(x) € B'}
Let B C (¢ | £ < 6) = A be sequences of ordinals,

Index(B,A) ={({ <d|3Ib € B a =b}

Let P be a forcing notion, o a formula in the forcing language and p € P. If A is a
P-name, then



p || A means "there is a € V such that p |- Q= A”

e Let p,qg € P then "p, ¢ are compatible in P” if there exists r € P such that p,q <p r.
Otherwise, if they are incompatible denote it by plgq.

e In any forcing notion, p < ¢ means ”q extends p”.

e The notion of complete subforcing, complete embedding and projection is used as

defined in [7]



1 Magidor forcing

Definition 1.1 A coherent sequence is a sequence
U= {U(a,B)| B < (a) ,a < k) such that:

1. U(a, B) is a normal ultrafilter over .

2. Let j -V — Ult(U(w, B),V) be the corresponding elementary embedding , then j(U) |
a=U1{ap).

Where

} Ula=({U@0)|6<d(7) v <a)
Ul {e,B) =(U(7,0) | (6 <0”(7), y<a) V(6 < B, v=a))

Fix U , a coherent sequence of ultrafilters with maximal element x. We shall assume that
oY (k) < min(v | oY (v) > 0) := &. Let a < k with o (a) > 0, define

NU(xi) = ) Ula,i)

i<oﬁ(o¢)

We will follow the description of Magidor forcing as presented in [?].

—

Definition 1.2 MIJ[U]| consist of elements p of the form p = (t1,...,tn, (k, B)). For every

1 <11 <n,t; is either an ordinal k; if 0(7(/43,-) =0 or a pair (k;, B;) if 0" (k;) > 0.

1. Be U(k,£), min(B) > k,

€<ol (x)

2. foreveryl1 <i<n

(a) (Ki,...,kn) € [K]™

(b) Bie () U(ki§)

e<o¥ (ks)

(¢) min(B;) > ki1 (1 >1)



We shall adopt the following notations:

L t() = Oatn—i—l = <I€, B>

—

o 0Y(t;) = o"(k(t:))

e 0 (t;) > 0 then t; = (k;, B;) = (k(t;), B(t;))

S

11

° oﬁ(ti) =0 then t; = k; = K(t;)

o k(p) = {k(t1), ..., k(tn)}

n+1

e B(p) = ElB(ti)

The ordinals k; are designated to form the eventual Magidor sequence and candidates for
the sequence’s missing elements in the interval (k(t;—1), x(t;)) (where tg = 0, K(t,41) = K)
are provided by the sets B(t;).

—

Definition 1.3 For p = (t1,t9, ..., tn, (K, B)),q = (1, ..., $m, (k, C)) € M[U] , define p < q
(q extends p ) iff:

1. n<m
2. BDOC

3. 31 <y < ... <y, <m such that for every 1 < j < m:

(a) If 31 < r < n such that i, = j then k(t,) = k(s;.) and C(s;.) C B(t,)
(b) Otherwise 31 <r <n-+1 such that i,_1 < j < i, then
i. K(s;) € B(t,)
ii. oU(s;) < oV (t,)
iii. B(s;) C B(t,) N k(s;)

We also use p directly extends q, p <* q if:

1.p<gq



Remarks:

1. Let p = (t1,.... tn, (K, B)). Assume we would like to add an element s; to p between
t,—1 and t,. It is possible only if oY (¢,) > 0. Moreover, let £ = 0Y(s;), then

s; € {a € B(t,) | o¥(a) = €}

If s; = k(s;) (i.e. € =0), then any s; satisfying this requirement can be added. If
s; = (k(sj), B(s;)) (i.e. & > 0), Then according to definition 1.3 (3.b.iii) s; can be
added iff

B(tr) Nk(s;) € N U(k(s)), &)

§<¢

2. If p=(t1, ..., tn, (k, B)) € M[U'] Fix some 1 < j < n with oﬁ(tj) > 0. Then ¢; yields
a Magidor forcing in the interval (x(t;_1), £(t;)) with the coherent sequence Ul K(t;).
t; acts autonomously in the sense that the sequence produced by it is independent
of how the sequence develops in other parts. This observation becomes handy when
manipulating p, since we can make local changes at ¢; with no impact on the ¢;’s.

Let Y = {a < s | o%(a) < &}. From Coherency of U it follows that Y € (\U(k,i). For
every 8 € Y with oY(3) > 0 and i < &y define

Y(i)={a<kr|o(@)=itand Y[3] = | Y(i)

1<o

=)
=

It follows that for every g € Y and i < oﬁ(ﬁ), Y(i)Np e U(B,1). To see this take f < k in
Y and jg; : V — Ult(U(B,7),V) .

Y(@)npeUBi) « pejpuY(i)np)
By coherency, o/#1(0) (B) =i and therefore

B € ju(Y(i)NB) = {a < ju(B) | D) = ju(i) = i}.

7



Consequently, Y[g|Nn s e (| U(B,i).
i<oU(8)
For B€ () U(B,i) define recursively, B®) = B

i<oﬁ(5)
B = {a € B™ | (o7(a) = 0) v (B Na € NU(a, i)}

Let B* = () B™ it follows by induction that for all n < w

n<w
B™e (N U(Bi)
i<oU(8)
By (-completeness B* € U(f,i). B* has the feature that

i<o¥(B)

VaeB anB e () Ulai)
i<o¥ ()

—

The previous paragraph indicates that by restricting to a dense subset of M[U] we can

—

assume that given p = (t1,ta, ..., t,, (K, B)) € M[U], every choice of ordinal in B(t,) auto-
matically satisfies the requirement that we discussed in remark (2). Formally, we work above
((), (k,Y)) and we directly-extend any p = (t1, ta, ..., tn, (k, B)) as follows:

Forevery 1 <r <n+1andi< oU(tT) define

B(t,,i) ==Y (i) N B(t,)* € U(k(t,),1)
It follows that

B*t,):= W Blt,i)e N Ust) ).

<oV (tr) i<oU (t,)

Shrink B(t,) to B*(t,) to obtain
p <*p*={(t,..,t,(k B"))

v t, o’ (t,) =0
" (k(t.), B*(t,)) otherwise



This dense subset also simplifies < to

p < qiff k(p) Crlq), B(p) C Blq)

When applying the revised approach regarding the large sets, it is apparent that B(t,,1)
provide candidates, precisely, for the i-limit indexes in the final sequence Cg (defined in
p.10) i.e. of indexes v such that o(y) = i (for the definition of o(y) see Notations). This is
stated formally in proposition 1.5.

Recall that:

o M[U] satisfies x™ — c.c.

e Let p = (ty,....t,, (r, B)) € M[U] and denote v = x(t;) where j is the minimal such
that oV (¢;) > 0. Then above p there is v—<«closure.

e M][U] satisfies the Prikry condition.
Let G C M[U] be generic, define

Co =U{x(p) |p € G}

We will abuse notation by considering C'; as a the canonical enumeration of the set C.
C¢ is closed and unbounded in k. Therefore, The order type of C'¢ determines the cofinality
of k in V[G]. The next propositions can be found in [?].

Proposition 1.4 Let G C M[U] be generic. Then G can be reconstructed from Ce as
follows

—

G ={peM[U]| (k(p) C Ce) A (Cc \ k(p) C B(p))}
Therefore V[G] = V[Cg].

Proposition 1.5 Let G be M[(j] -generic and Cg the corresponding Magidor sequence. Let
(t1, ..., tn, (K, B)) € G, then



otp((k(t:), k(tiy1)) N Cq) = woﬁ(“(tiﬂ))

Thus if ki(tis1) = Ca(7) then o(y) = 0% (tisy).

Corollary 1.6 cfV%(r) = cf (oY (k))

Let p = (t1,...,tn, (k, B)) € G. By proposition 1.5 ;| for each i < n one can determine the
position of k(¢;) in Cg. Namely, Cq () = k(t;) where

¥ = Zon(tj) = 'y(t“p) c WOU(“) (*)

J<i
Addition and power are of ordinals. The equetion (*) induces a C.N.F equation
y=>", wo” (tir) (C.N.F)

This indicates the close connection between Cantor normal form of the index « in otp(Cg)
and the important elements ¢, ..., ¢, to determine that v(¢;,p) = 7. Now let ¢ = (s1, ..., s, (k, B'))
be another condition, by definition 1.3 (3.b.ii), if s; is an element of ¢ which was added to p

in the interval (k(t,), k(t,+1)) then oﬁ(sj) < oY(t,41). Consequently

p <q=(tr,p) =v(si.,q)

10



2 Combinatorial properties

The combinatorial nature of M[(j | is most clearly depicted through the language of step-
extensions as presented below.
To perform a one step extension of p = (1,1, ..., 1, (K, B))

1. choose 1 <r <n+1with 0 < oﬁ(tr)

2. choose i < oﬁ(tr)
3. choose an ordinal a € B(t,,1)

4. shrink the B(ts,7)’s to C(ts,5) € Ults,j) for every 1 < s < n+ 1 and C(ts5) =
W )
j<oU (t;)
5. For j < o¥(«) pick C(a, 5) € U(a, §), C(e, 5) € B(t,,j) Na to obtain
Cla)= W Clo))

Extend p to

P (e, (C(t:))idy, Cla)) = (11, iy, o, Cla)) 1, st (B, Cltngn))

= t, oU(t,) =0
tr {<K(tr)ac(tr)> o.w.

It is clear that every extension of p with only one ordinal added is a one step extension.
Next we introduce some notations which will describe a general step extension. The idea is
simply to classify extensions according to the order of the measures the new elements of the
sequence are chosen from.

Definition 2.1 Let p = (t1,ts, ..., tn, (k, B)) € M[U]
¢
n+1

1. For 1 <i<n+1 define the tree T;(p) = "J>[O[7(ti)], with the ordering (xy, ..., Tpy) =
(@, 2l ) aff 31 <y < ... <y < m' such that for every 1 < j < m/':

o m/

11



(a) if 31 <r < m such that i, = j then x, =

(b) otherwise 31 <r <n+1 such that if i, 1 < j <i, then ¥ <,

We think of x,’s as placeholders of ordinals from B(t;,x,). With this in mind, the
ordering is induced by definition 1.8 (3).

2. T(p) = [14] Ti(p) with < as the product order.
3. Let X;€Ti(p) 1<i<n+1,|X)|=104 X=(X1,...,X1) € T(p).
4. Let
a; = (a1, .., qq;) € H?ﬂ B(t;, Xi(j)) = B(p, X;)
X; is called an extension-type below t; and (v, ..., ) is of type X;.

5. Let

n+1 [;

a = <O71’ “'7an—»+1> S H HB(tqu(.])) = B(p, X)

i=1j=1

X is called an extension-type of p and a is of type X.

Notice that by our assumption |T(p)| < min(v|0 < oY (1)) = ;. We also use:

o |X;| =1

o [, =max(i| X; #0)

° ;= Xi(y) Q= a;(7)

® Tjl41 = Oﬁ(tz‘) and a;ni1 = K(t)

® Lye = Tiy,, (i.e. the last element of X)

. oﬁ(&') = <0ﬁ(oz,~7j) | z;; € X) is the type of a.
A general extension of p of type X would be of the form:

PG (C@ig))assex; (C(E))2) = p (&, (Clxig))ignn )

5<Ii+1

12



where

Keepi

holds

C(xi

The p~X’s induces a partition of M[U] above p as stated in the next proposition which is

p @, (C(24,5))izn+1) = (81,1, .oy Syt St (K, C))

J<l;+1

. @ € B(p,X) (X is uniquely determined by &).

) t oV(t,) =0
s {<n<ts>,c<ts>> ow.

For some pre-chosen sets C(ts) € (| U(k(ts), &) , C(ts) C Blts).
£<o¥(ts)
SN (7% Tij = 0
S; =
0= {0,y o
For some pre-chosen sets C(z; ;) € () Ulwi;, &), C(xi;) C B(t) Na;.

E<xi
Ce N Uk € and min(C) > max(8,,1)
¢<o¥ (x)

ng in mind the development succeeding definition 1.3,

P, (Cli5))izns ) € M[U]

F<liH1

due to the a’s being meticulously handpicked. We will more frequently use p™ (&) with
the same definition as above except we do not shrink any sets and simply take o, ; N B(t;) =

). Define

p~ X ={p(a) | ad e Bp X)}

—

well known and follows directly from definition 1.3.

Prop
UNIqU

osition 2.2 Let p € M[(j] be any condition and p < q € M[(j] Then there exists a

e d € B(p, X) such that p~{a) <* q.

13



Example:

Let

p = ((s(t1), B(th)), r(t2), (K(ts), B(ts)), ((ts), B(ta)), (k, B))
t1 \\t;/ ;3r ?Z t5

—

oU(t) =1, 0¥(ts) =0, o¥(t3) =2, oY (ts) =1, o¥(r) =3

i}

Let

qg=p ({a11,a12), () ,{as1, 32, as3), (1), (51,052, 053))
—— '~ —~— S —~ =

al 2 as ay as

Then the extention-type of ¢ is

X1 X2 X3 X4 XS

This can be illustrated as following;:

14



Q53 + T53
} B(k) = B(k,0)U B(k, 1) U B(k, 2)
05572 -+ x5,2 asq Qas,2 5.3
Q51 4+ Ts1
— Ii(t4)
B(t4) = B<t47 0)
Q41 4 Ta1 4,1
— Ii(tg)
33 + X33
’ ’ B(t3) = B(t3,0) U B(t3,1
Q39 + T32 } ( 3) <oz§),2 ) 043(,1?03,3)
Q31+ T31 | H(tg)
-1 /ﬁ?(tl)
Q12 4+ X192 } B(ty) = B(t1,0
Q11 + 211 ( 1) a1<,1,1022,2>
a X D

As presented in proposition 2.2, a choice from the set p~ X is essentially a choice from
n
some [[A; ,A; € U; and k1 < Ky < ... < K, are measurable cardinals with normal measures

=1
n

Uy, ...,U,, Namely, [[A; = B(p, X). We will need some properties of those sets.
i=1

Lemma 2.3 Let k1 < ke < ... < Ky, be any collection of measurable cardinals with normal

measures Uy, ..., U, respectively. Assume F : [[A; — v where v < k; and A; € U;. Then
i=1

there exists H; C A; H; € U; such that [] H; is homogeneous for F.
i=1

Proof: By induction on n, the case n = 1 is known. Assume that the lemma holds for n — 1

n—1
,and fix 7= (1, ...,mn—1) € [] 4;. Define
i=1

Fi: A\ (-1 +1) — v
F*(S) = F(nla "'777n—1a£)

15



By the case n=1 there exists a homogeneous A,, 2O H (1) € U,, with color C(7) < v. Define

A H(i) = H,
el =) As
n—1 n—1
By the induction hypotheses, C': [[ A; — v has a homogeneous set of the form [] H; where
i=1 i=1

A; O H; € U;. To see that [[ H; is homogeneous for F,

=1

let 77 = (1 #0277 = {1, ) € [1H;. We have

i=1

F(7) = Faon () = F07\ (i) =
N €H (\(1n)) N\ 1), _;\<77;z>6n1::[11H1
=F'(n'\ () = ... = F(7)
[ |

Lemma 2.4 Let k1 < ke < ... < K, be a non descending finite sequence of measurable

cardinals with normal measures Uy, ..., U, respectively. Assume F : [[A; — B where B is

=1
any set, and A; € U;. Then there exists H; C A; H; € U; and set of important coordinates

I C{1,...,n} such that F | [[ H; is well defined modulo the equivalence relation:
i=1

(0, ey ) ~ (), .ol iffViel o =da
and the induced function, F, is injective.

Proof: By induction on n, if n = 1 then it is immediate since for any f: A — B such that
A € U where U is a normal measure on a measurable cardinal x, B is any set, then there
exists A D A’ € U for which F' | A’ is either constant or injective. Assume that the lemma

holds forn —1 ,n > 1 and let F': [[A; — B be a function satisfying the conditions of the
i=1

lemma. Define for every z; € Ay, Fy, : [[Ai\ (z1+1) — B
=2

F, (xo,...;zn) = F(x1, 29, ..., 7)

16



By the induction hypothesis , for every x; € A; there are A; O A;(x1) € U; and set of
important coordinates I(x1) C {2,...,n}. The function

I: A — P({2,....,n}) is constant on A} € U; with value I’. For every ¢ = 2,...,n define
Al = A A;(xy). So far, [[ A} has the property:

z1€A1 i=1

n
(1) for any (z1, 9, ..., Tp), (X1, 24, ..., x)) € [[ A} (same first coordinate)
i=1

F(zy, 29, ...,x,) = F(ay, 2, ...,a)) iff Vi e I ; = 2}

“ey n

In particular, F is a well defined function modulo I’ U {1}. Next we determine if 1 is

important. For every (o, ') € A} x A, define tiq oy : [TA;\ (¢ +1) — 2
i=2
taay (T2, p) = 1 & Fla, 2g, ..., 1,) = F(/, 29, ..., )

By lemma 2.3, for i = 2,...,n there are A, D A;(a,a’) € U; such that [[Ai(«,a’) is
i=2
homogeneous for t(, oy with color C(c,a’). Taking the diagonal intersection over A} x A}

of the sets A;(«, ) at each coordinate i = 2,...,n, we obtain H; € U; such that [[H; is
i=2

homogeneous for every t(, 4. Finally, the function C' : A} x A} — 2 yield a homogeneous

A} D Hy € Uy with color C'.

case 1: C" = 1. Let us show that the important coordinates are I'. If (x1, ..., z,), (2], ..., x]) €

[1-, H; then F(xy, 2%, ....2)) = F(z), 2, ..., x))

.oy n “ey n

F(ml,..,,xn) = F(x'l,,:p’n) =1 F(wl,xz,...,wn) = F(wl,wg,...,xﬁl) sSViel T; = ZL’;

case 2: C" = 0. We then have a second property:
(2) For every zy,2) € Hy and (2o, ...,x,) € [ [}, H;

xy = o) ff F(zy,29...,2,) = F(2, 29, ..., 2,)

We would like to claim that in this case the important coordinates are I = I’ U {1} but the
H,;’s defined, may not be the sets we seek for, since there can still be an counter example for
F' not being injective i.e.

(1, oy Tp) # (2, ..., 2)) mod-I such that F'(z1,...,x,) = F(2},...,x})

cey n

17



Let us prove that if we eliminate all counter examples from H;’s , we are left with a large
set. Take Any counter example and set

{z1,..;x,  U{x), ..., 20 } = {1, ..., yx} (increasing enumeration)

To reconstruct {xy,...,x,}, {2}, ..., 2} from {y1,...,yx} is suffices to know for example how

{z1,...,x,} are arranged between {7}, ...,z }. There are finitely many ways * for Such an

arrangement. Therefore, if we succeed with eliminating examples of a fixed arrangement,

then by completeness of the measures we will be able to eliminate all counter example.

Fix such an arrangement, the increasing sequence (y1, ..., yx) is in the product of some k large
k

sets [[ Hn,. We have to be careful since the sequence of measurables induced by ny, ..., ny is
i=1

not necessarily non descending. To fix this we can cut the sets H; such that in the sequence

(ki | 1 =1,...,n), wherever k; < k;; 1 then min(H; 1) > r; = sup(H;). Therefore, assume

k
that (k,, | i =1,...,k) is non descending. Define G : [[ H,, — 2
=1

Gy1, . yp) = 1< F(ay,...,x,) = F(x), ..., z))

By lemma 2.3 there must be U; 5 H! C H; homogeneous for G with value D. If D = 0 we
have eliminated from H;’s all counter examples of that fixed ordering. Assume D = 1, then
every i, ..., Y yield a counter example (x1, ..., z,,), (z}, ..., x]) (different modulo I). z; = )
is impossible by property (1). If 1 < 2}, Fix < w < y3 < ... < Y, where z,w € H; and
yi € Hy i=2,...k. Then G(z,ys,....,yx) = G(w, ¥2, ..., yx) = 1 and

F(z,xq,...,x,) = F(2), 2, ....;2)) = F(w, xg, ..., x,)

n

contradiction to (2). z; < ) is symmetric.

3In general, the number of possibilities to arrange two counter examples into one increasing sequence

depends on I. Nevertheless, there is an upper bound: Think of x;’s as balls we would like to divide into

n + 1 cells. The cells are represented by the intervals (x)_;,}] plus the cell for elements above z],. There

/ / / /

are (:) such divisions. For any such division, we decide either the cell is (x}_,,2}] or («}_,,z}). Hence,

there are at most (27?) - 2™ such arrangements.
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3 The main result up to «

As stated in corollary 1.6, Magidor forcing adds a closed unbounded sequence of length o (%)
to k. It is possible to obtain a family of forcings that adds a sequence of any limit length to
some measurable cardinal, using a variation of Magidor forcing as we defined it*. Namely,

let U be a coherent sequence and Ay < min(v | 0¥ (v) > 0) a limit ordinal

(not necessarily C.N.F) \g =w" + ...+ w7, >0
Let (K1, ...k,) be an increasing sequence such that oﬁ(m) = ;. Define the forcing My, . )[U']

as follows:
The root condition will be

n

where B, ..., B, are as in the discussion following definition 1.3. The conditions of this
forcing are any finite sequence that extends OM< (0] in the sense of definition 1.3. Since

— —

each (k;, B;) acts autonomously, this forcing is essentially the same as M[U]. In fact, M[U]

—

is just M. [U]. The notation we used for M][U] can be extended to My, [U] since the
conditions are also of the form (1, ..., ¢, (k, B)). Let

K1,.--Kn

<<V17 Cl>7 ) <Vm7 Cm>> < M<517---Rn>[ﬁ]

then My, . l,m>[[7] is an open subset of M<,{1W,€n>[[7] (i.e. <-upwards closed). Moreover, if
G C My, . oy [U] is any generic set with ((v1, C1), .., (m, Cin)) € G then

(G><V1 ----- Vi) = G N M(”l ----- Vm>[ﬁ] = {p € G | p Z <<V17 Cl>> L) <Vm7 Cm>>}

is generic for M, ,,m>[lj ]. (G)z is essentially the same generic as G since it yield the same
Magidor sequence, in particular V[(G)z] = VI[G].

From now on the set B in (1, ..., ., (k, B)) will be suppressed and replaced by ¢,,; = (k, B)
where x, = k. An alternative way to describe M, .,)[U] is through the following product

—

Mry,... (U] ~ M[U] ey X (M[Ufz)) 51 X -ov X MU0 >4
(M, o) [ UD)sa = {(t1, s trg1) € My, oy [U] | 6(81) > o}

“Magidor’s original formulation of M[U] in [?] gives such a family
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This isomorphism is induced by the embeddings

rt (M[U]g)) 50y = MU s r=1,.n
ir(<517 . Sk+1>> = < (K1,B1) 5 {br—1,Br—1),51,...,8k,(Kr, B(Sk41)) - (HmBn>>
———

Sk+1

From this embeddings, it is clear that the generic sequence produced by (M[(j Vi) ) >rer_y 18
just Co N (Kp_1, Kr).

The formula to compute coordinates holds in this context:
Let p = (t1, ..., tm, tig1) € M,y [U]. For each 1 <4 < m, the coordinate of s(t;) in any
Magidor sequence extending p is Co(y) = k(t;), where

v = 3w ) =t p) < Ao
7<i

Lemma 3.1 Let G be generic for I\\/JI<,{1,M,{”>[[7] and the sequence derived
Co =U{{rt1), ..., k() } | (tr, ..., ti, t141) € G}

1. otp(Cq) = Ao

2. If Ky < Cg(y) < Kip1 where 7 is limit, then there exists UV = (vy,...,Vp) such that
(G)o~(541,0mn) 35 generic for Mg~ U], Ca = Ciay,~ and the se-

Z N TN Kn)

(Fit1smekin

quences obtained by the split

—

MJ[U] X (M<Hi+1,-~, [U])>Vm — MJA<’€i+17~--7’in>[ﬁ]
are Ca N Cq(v),Cq \ Ca(7y). More accurately, if

Y=wh . Wit fwm (CN.F)
—_———
£

then

UV={(V1,.,Vm) = (K1, ..., ki, Cq (& + oﬂz/'+1), e, Ca (7))

Proof: For (1), the same reasoning as in lemmas 1.5-1.6 should work. For (2), notice that
by proposition 1.4, O, € G. Thus (G)y~

- Ly 18 generic for Mg~ ..., ,”[(7]
The embeddings

(Ki41,-
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—

- Z.1 : M(Vl,...,um>[U] — MJA<M+1,...,H”>[U]
i1 ((t1s oo trg1)) = (t1y ooy trgts (Riset, Big1)s ooy (Kny Bn))

and

— —

_ ig (M<m+1,.--,ﬁn>[U])>Vm — Mﬁ“(/iiﬂ,...,nn)[U]
Z2(<$17 ) Sk+l>) - <<H'17 Bl)? SERS) <'L€ia Bl>> S1y ey Sk’-i-l)

induces the isomorphism of Mg~ (., . xn)

[U] with the product. Therefore, i7" (G), i3 (G)
are generic for M<V17,,_7ym>[ﬁ], My 1) [U])s,,, respectively. By the definition of 4y, i, this
generics obviously yield the sequences Cg N Cg(7y) and Cg \ Ca(7).

In general we will identify G with (G)z when using lemma 3.1.
Notice that, the information used in order to compute ~y(t;, p) is just oﬁ(ti). Let X be
an extension type of p, then X provides this information, therefore, one can compute the

coordinates of any extension & of type X. In particular, for any «;, substituting z;, € X
the coordinate of v, is

v =t p) W + L+t =y (@i, pT X)
In this situation we say that X wunveils the y-th coordinate. If x;, = X, we say that X

unwveils v as mazximal coordinate.

Proposition 3.2 Let p = (t1,...,t,, thy1) € M<,§17,_M>[U’] and v such that for some 0 < i <
n, Y(t;,p) < v < Y(tix1,p). Then there exists an extension-type X unveiling v as mazimal
coordinate. Moreover, if

V(i p) + 2w =5 (CN.F)

j<m

then the extension type is X = (X;) where X; = (1, ..., Ym)-
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Example: Assume \g = w; +w? 24w, let k1 < Ky < K3 < K4 = K be such that 017(/11) =w;
, oY (ko) = 0Y(k3) = 2 and oY (k) = 1. Let

P = ((n,B(n)), vz ,(k1,B(k1)), (va,B(v3)), (k2,B(k2)), (k3,B(k3)), (x,B))
1 2 3 4

ts
oV (t) =w, oY(ty) =0, o¥(ty) =1

te tr

Let G be any generic with p € G. Calculating 7(¢;,p) for i = 1,...,7 we get

1. y(t1,p) = W 0) = o = Co(w¥) =1y

U

J=wFw® B = 41 = Cgw” +1) =1,
) =w’ + 14w = =w

4. Y(ty,p) =w1 +w = Cglw +w) =3
)

=w +w+w?=w +w?
To demonstrate proposirion 3.2 let v = w® + w® - 3 + 5 therefore

Y(t2,p) =w +1 <y <w =7(ts, p)
(W 4+1)+w’-3+5=17

The extension-type unveiling v as maximal coordinate is then
X =), (), X3) X3=(5,5,5,0,0,0,0,0)
i.e. every extension & = (@31, ...a3s) € B(p, X) will satisfy that
V(e p~ ) = y(azg,p~ ) = Y(w38,p" X) =1

This concludes the example. Let us state the main theorem of this paper.

Theorem 3.3 Let U be a coherent sequence inV (K1, ...kn) be a sequence such that oﬁ(m) <

min(v | 0 < 0[7(1/)) =: dp, let G be MW,,“RH[ﬁ]-geneﬂc and let A € V[G] be a set of ordinals.
Then there ezists C" C C¢ such that V[A] = V[C"].
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We will prove Theorem 3.3 by induction on otp(Cg). For otp(Cg) = w it is just the Prikry
forcing which is know by [?]. Let otp(Cs) = Ao be a limit ordinal,

Ao =w"+..+w" (CNF)

If sup(A) < &, then by lemma 5.3 in [?], A € V[C'Nsup(A)]. By lemma 3.1, V[C'Nsup(A)] is
a generic extension of some My, ., >[(7 | with order type smaller the \g, thus by induction
we are done. In fact, if there exists & < & such that A € V[C' N« then the induction
hypothesis works. Let us assume that A ¢ V[C'Na] whenever a < k , this kind of set will be
called recent set. Since k1, .. - K will be fixed through the rest of thlS chapter we shall abuse
notation and denote M, . >[U | = M[U]. First let us show that for A with small enough
cardinality the theorem holds regardless of the induction.

Lemma 3.4 Let ¢ be a M[U]-name and p € M[U] such that p \F z is an ordinal. Then
there exists p <* p* € M[U] and an extension-type X € T(p) such that
(*) vp{@) ep X p (@)l z

Proof: Let p = (t1, ... tn, tny1) € M[U].

Claim: There exists p <* p’ such that for some extension type X
va € B(p, X) 3C(xi ) st. p{a, (C(wiy))ij) || 2

Proof of Claim: Define sets Bx(t;,j) , for any fixed X € T'(p) as follows: Recall the notation
Ix, Tme and let @ € B(p, X \ (). Define

BY(@) = {0 € Bltig, xme) | AClwiy))iy p(@.0, (Claig))ig)ll 2}

and B (62) B(tlx,mmc)\B © (ﬁ) One and only one of Bg?)(&) : Bg(l)(&) isin U(k(tiy )y Tme)-
Set B)((O_Z) de( ) E{O 1}

Bx(@) = BEY (@) € U(k(tiy), 2me)
Define
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Byt me) = o R ey PX ()

Consider the function F' : B(p, X \ (me)) — {0,1}. Applying lemma 2.3 to F', we get a
homogeneous I[I  Bkx(ti,z;;) where
@i, EX\(Tme)

By (ti,xi;) C B(ti, vij), By (ti,xi;) € U(ti, i), vij € X \ (¥me)
For £ ¢ X, Set
By(t:,€) = B(t:, )
Since |T'(p)| < k(t1), foreach 1 <i<n+1and < o(j(ti)

B'(ti,§) == (1 Bx(t:,€) € U(k(t:),€)

XeT(p)

Finally, let p’ = (#}, ..., t,,, t,,;) where

‘_{ ti oU(t) =0
’ (k(t;), B'(t;)) otherwise

It follows that p <* p’ € M[U].

—

Let H be M[U]-generic, p’ € H. By the assumption on p, there exists § < k such that

N V
V[H] E (z)g = § . Hence , there is p’ < ¢ € M[U] such that ¢ IF z = §. By proposition
2.2 there is a unique p'~ (&, 0) € p'~ X for some extension type X, such that p' (@, 0) <* q.
X, p' are as wanted:

vV
By the definition of p’ it follows that @ € B(p', X \ (z¢)) and 0 € Bx(&). Since ¢ Iz =9,
we have that Fx(d) = 0. Fix (o/,€') of type X. o/ and & belong to the same homogeneous
set, thus F(o/) = F(d) = 0 and

0 € BY () = I(Cwiy))iy st /(0 (Claiy))ig)l @

.of claim
For every @ € B(p', X), fix some (C; j(&@))i<n+1 such that
J<l;+1

24



It suffices to show that we can find p’ <* p* such that for every & € B(p*, X)
B(t;) N(as, ciy) € Ci(@) , 1<i<n+1, 1<j<[+1

Where o is the predecessor of a; j in @ . In order to do that, define p’ <* p; ;1 <n+1, j <
l; + 1 then p* >* p; ; will be as wanted. Define p; ; as follows:

Fix 5 € B(p, (z11,-..,%ij)), by lemma 2.3, the function
Cij(Bo%) : B, X\ (w11, s i) = P(By)

has homogeneous sets B*(g, z.s) C B(p,z.s) for x,.s € X \ (z11,...,2;;). Denote the
constant value by C7;(3). Define

B*(tmxr,s) - A B*(57 xr,s>, Lr,s S X \ <x1,17 -'-,xi,j>

—

BEB (x1,1,--,%i,5))

Next, fix o € B(t], z; ;) and let

Ciila) = A Cr(d, )

o’€B(p' (x1,1,-,Ti,5—1))

Thus Cf;(a) € a. Moreover, (t;) is in particular an ineffable cardinal and therefore there
are B*(t;, x;;) C B(t}, z;;) and C}; such that

Ya € B*(tz, xi,j) C’:j No = O:J(a)
By coherency, C}; € (U(t;,§). Finally, define p; ; = (tgi’j), ...,tff’j),tff;fb

(2

B =B t)N(NC;;)  1<i<n+1
J

To see that p* is as wanted, let & € B(p*, X) and fix any ¢,j. Then & € B(p;;, X) and
Q; 5 € B*(ti,J?i,j). Thus

B(t:) N (ozs, Oéi’j) Q C:j N Q4 \ Qg = C:j(ai,j> \ Qg Q C:j(al,la ey az’,j) = CZ,J(O_D
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—

Lemma 3.5 Let G be M[U]-generic and A € V[G] be any set of ordinals, such that |A| < dy.
Then there is C" C Cq such that V[A] = V[C].

proof: Let A= (a¢ | £ <) € V[G] , where § < min(v | 0 < Oﬁ(l/)) and A = (ag | £ <) be
a name in G for (a¢ | £ < J). Let ¢ € G such that ¢ IF A C Ord. We proceed by a density

—

argument, fix ¢ < p € M[U]. By lemma 3.5 | for each £ < ¢ there exists X (&) and p <* f2

satisfying (x). By 6t —<-closure above p we have p* € M[U] such that V& < & pi < p*. For
each £, define F¢ : B(p*, X (§)) — &

F¢(a) =~ for the unique 7 such that p* (&) IF ag = %
Using lemma 2.4, we obtain for every £ < ¢ a set of important coordinates
I C{{i,j) |1 <i<n+1,1<j<I}
Example: Assume oY (k) =3 ,Cs = (Ca(a) | a < w?).
ap = C;(80),a1 = Co(w +2) + C(3),a2 = Ca(w? - 2+ w+ 1)

and

p = (vo, (V, B(1,,0)), (n,?(&, 0) U B(k, 1) U B(k, 2)))

B(k)

We use as index the coordinate in the final sequence to improve clarity. To determine ay,
unveil the first 80 elements of the Magidor sequence i.e. any element of the form

o = (Vo, V1, -, Vo, (Vs B(Vw,0) \ vgo + 1), (K, B(K)))

will decide the value of ag. Thus the extension type X(0) is

80 times
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The important coordinates to decide the value of aq is only the 80th coordinate and it is
easily seen to be one to one modulo the irrelevant coordinates. For a; the form is

pr = Vo, V1, V2, V3, (Vs B(14, 0) \ 3 + 1), Vo1, Voo, (K, B(K) \ (g2 + 1))
The extension type is

X(1)

(0,0,0),{0,0))

The important coordinates are the 3rd and the 5th. For ay we have

p2:<V0’<VUJ7B(Vw’0)>7<Vw2 7B(Vw2 )>7<Vw2.27B(Vw2.2))7<Vw2.2+va(Vw2.2+w)>’<HuB(H)\VW2.2+w>>

X(Q) = <<>7 <27 2, 1>>

Back to the proof, since p was generic, there is (t1, ..., t,, t,+1) = p* € G with such functions.
Find D¢ C Cg such that

Dg € B(p*, Xe)

Dy exists by proposition 1.4 and p* € G. Since V[G] = (ag)e = as we have
\4
P (De) IF ag = ag = Fe(Dg) = ag

Set C¢ = D¢ | I¢ and ' = 5L<J(SC'5. Let us show that V[{a¢|¢ < 0)] = VI[C']:

In V[C'], fix some enumeration of C’. The sequence (C¢ | £ < §) can be extracted from
C" using the sequence (Index(Ce,C") | € < §) € V (Index(C¢,C") C otp(Cg)). For every
¢ <0 find

D; € B(p*, X¢) such that D [ Iz = C

Such Dy exists as D¢ witnesses (the sequence (D¢ | § < §) may not be in V[C']). Since
Dg ~. D¢ one sees that

Fe(Dy) = Fe(Dg) = ag
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hence (ag | £ < &) = (Fe(Dg) | § < 6) € VI

In the other direction, Given (a¢ | § < ), V§ < ¢ pick D; € F{l(ag) (Fgl(ag) # 0
follows from the fact that De € dom(F¢) and F¢(Dg) = ag). Since Fy is 1-1 modulo /¢ and
Fe(D¢) = Fe(Dy) we have

D¢ ~y, Di and C¢ = D¢ | I = D} | I
Hence
(Ce | € <0) = (Dg I Ie | £ < 0) € V[{ag | £ < 9)] and C" € V[{ag | £ < 9)).
_

We shall proceed by induction on sup(A) for a recent set A. As we have seen in the discussion
following Theorem 3.3, if A C k is recent then sup(A) = k. For such A, the next lemma
gives a sufficient conditions.

Lemma 3.6 Let A € V|G|, sup(A) = k. Assume that 3C* C Cg such that

1. C* e V[A] and Vo < k ANa € V[C*
2. cfV(k) < &

Then 3C" C Cq such that V[A] = V[C].
Proof: Let cfVA(k) = n and (¢ | € < n) € V[A] be a cofinal sequence in k. Work in V[A]

pick an enumerations of P(7ye) = (X¢,; | i < 2%) € V[C*]. Since AN~ € V[C*], there exists
ig < 27 such that ANy = X¢ ;. The sequences

C*, (i [ E<m), (el&<n)

can be coded in V[A] to a sequence (z, | @ < n). By lemma 3.5, 3C" C C¢ such that
V[{(zo | @« < n)] = V[C']. To see that V[A] = V[(zs | @ < 0)]: V[A] D V[(za | @ < )] is
trivial and A = (J X¢;, € V[(2a | @ < n)].

&<n

We have two sorts of A:
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1. Ja* < k such that V6 < k AN € V[ANa*] and we say that A N « stabilizes.
An example of such A can be found in Prikry forcing where A is simply the Prikry
sequence (a* =0).

2. For all a < k there exists § < k such that V[ANa] C V[AN ] as example we can take
Magidor forcing with oV (k) = 2 and A can be the Magidor sequence A = (k,, | @ < w?).

We shall first deal with A’s such that A N« does not stabilize.
Lemma 3.7 Assume that AN« does not stabilize, then there exists C' C Cg such that
VIA] = V[C].
Proof: Work in V[A], define the sequence (o | £ < 6):
ap =min(a | V[ANa] D V)
Assume that (¢ | £ < A) has been defined and for every &, ag < k. If A =& + 1 then set
ay =mnin(a | V[ANa] 2 VAN «ag)
If the sequence oy = k , then a, satisfies that
Va<rk ANa e V[AN ay]

Thus A N « stabilizes which by our assumption is a contradiction.
If X is limit, define

ay =sup(ag | £ <)

if &y = k define # = X and stop. The sequence (¢ | £ < 6) € V[A] is a continues, increasing
unbounded sequence in x. Therefore, cfVI4 (k) = cf(6). We shell first show that 6 < do.
Work in V[G], for every £ < 6 pick C¢ C Cg such that V[A N ag = V|[C¢]. This is a
1-1 function from 6 to P(C¢). The cardinal dy is still a strong limit cardinal (since there
are no new bounded subsets below this cardinal and it is measurable in V). Moreover,

Ao := otp(Cq) < o, thus

0 < |P(Co)l = |P(Xo)] < do
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The only thing left to prove, is that we can find C* as in Lemma 3.6. Work in V[A], for
every & < 0, C¢ € V[A] (The sequence (C¢ | £ < 6) may not be in V[A]). C¢ witnesses that

3de C K (|da| < 2% and V[ANa] = V[d,)])

So d = [U{da.|¢ < 0} € V[A] and |d| < 2%. Finally, by lemma 3.5, there exists C* C Cq
such that V[C*] = VI[d] C V[A] and for all « < Kk ANa € V[C*]. By Lemma 3.6, the
theorem holds.

For the rest of this chapter we can assume that the sequence A N « stabilizes on a*. Let C*
be such that V[A N o*] = V[C*] and £* = sup(C*) is limit in Cg. Notice that, x* < &, this
follows from the fact that ANa* € V[Cq N «*]. Our final goal is to argue that if A is very
new then x changes cofinality in V[A]. To do this, consider the initial segment Cz N k* and

—

assume that x;_; < k* < k;. By lemma 3.1 we can split M[U]

—

such that Cg is generic for M [U] X My, [U] and Cg N k* is generic for Mo, [U]. As we
will see in the next chapter, there is a natural projection of M« [U] onto some forcing P

such that V[C*] = V[G*] for some generic G* of P. Recall that if 7 : M<,.«[U] — P is the
projection, then

M., [U]/G* = 77(G*)

In V[G*] define Q = M,-[U]/C* C Mc,[U]. It is well known that Ce; N k* is generic for Q
above V[C*] and obviously V[C*|[CaNk*| = V[CsNk*]. The reader can refer to chapter 4 to
see a formal development of QQ, though in this chapter we will only use the existence of such
a forcing and the fact that the projection depends only on the part below x*, therefore Q is
of small cardinality. The forcing M. [U] has all good properties of M[U] (and more) since
in V[C*] all measurables in U above * are unaffected by the existence of C*. In conclusion,

we have managed to find a forcing Q x M .- [U] € V[C*] such that V[G] is one of it’s generic
extensions and Yoo < k ANa € V[C*].

Work in V[C*], let A be a name for A in Q x M.,-[U] € V[C*]. By our assumption
on C*, we can find (q,p) € G such that (¢,p) IF Voo < k AN« is old (where old means in
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V[C*]). Formally, the next argument is a density argument above (q,p). Nevertheless, in
order to simplify notation, assume that (q,p) = OQxM[ﬁ]M*' Lemmas 3.8-3.9 prove that a

—

certain property holds densely often in M[U]s,+. In order to Make these lemmas more clear,
we will work with an ongoing parallel example.
Example: Let \g = otp(Cg) = w?,

A={Ce2n) |n<w}U{Csw-n)+Cq(n)|0<n<w}
Therefore
C*={Ce(2n) | n < w}, r*=Cq(w)

The forcing Q can be thought of as adding the missing coordinates to Cg | w i.e. the odd
coordinates. Let

—

p = (Vo2 Bus), Vs, (8, B(k))) € M[T]- -
1 2 3

—

Lemma 3.8 For every p € M[U]s,+ there exists p <* p* such that for every extension X of
p* and q € Q: (Recall that & = (11, -y Qme))

(Ip*~d € p*= X Ip*™ > p*d s.t.(q, p)||AN ame) =
(%) (Vpmd € p X (g, A)||AN ame = alq, @)) (a propery of ¢, X)
Example: Let

q = (v1,vs, (k*, B(k*))) , X = ((0,0), () ,(1,0))-extension of p

Let

a = ((Qui1, Qr2), (), (Qw3, awsy1)) € B(p, X)

If H is any generic with (g,p~(d)) € H then all the elements in ¢ and p~(d) have there
coordinates in C'y as specified above, thus
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(A)H M Qe = (A>H N Q341 =
= {Cu(2n) |n < w}U{Culw )+ Cu(n) | 0 <n <w}nCrlw-3+1)

If a3 + v3 > 341 then
a(q, @) = (A)u Name = Cp Teven H{Cn(w), Cr(w) + v1, 2 + Cu(2) }
If a3 + v3 < 341 then
a(q,d) = (A) g N ame = Ch Teven U{Cx (W), Cy(w) + v1, Vo + Cr(2), a3 + v3}

Anyway, we have that a(q, @) € V[C*] and therefore (q,p™@)||A N ay,e for every extension
a of type X. Namely, ¢, X satisfy (*).

Proof of 3.8: Let p = (t1, ..., tn, tny1). For every
X =(Xy,..., X, 11)-extension of p , ¢ €Q ,d€ B(p, X \ (Tme))
Recall that {x = min(i | X; # () and define B()é)( @) to be the set

{6 € Bltiy,me) | Fa3(C@iy)), (0,07 (8,0,Ca1,)) F AN = a}

Ti,j

Also let B()f)(q, a) = Bltiy, Tme) \ BX (¢, @). One and only one of B()f)(q, a), B()é)(q, @) is in

U(tiy, Tme). Define BX(q, @) and FX(&) € {0,1} such that
BX(Qa a) = B( X (& ))(Q7 @) € Ultixs Tme)

Since |Q| < 2% < k(t;, ) we have BX(d) = ﬂBX(q, a) € U(tiy, Tme). Define

BX(t1y, Tme) = ABX( V) € Ultiy, Tme)

Use lemma 2.3 to find BX(¢;,2;;) C B(ti,xi;), B*(ti,xi;) € U(t;, z;;) homogeneous for
every F.¥. As before, if X ¢ X; set BX(t;,\) = B(t;, A). Let

p*=p (B (t))i), B (ti, A) = QBX(tM)
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So far what we have managed to do is the following: Assuming they exist, let ¢, @, (C(z;;))ij,a
be such that {q, p* (@, (C(x;;))i;)) IF AN e = a. Since apme € BX(q, &\ (ane)) we most
have that F,X(@\ (ame)) = 0. Let @ be another extension of type X, then @ \ (a/,.) and
a \ {ame) belong to the same homogeneous set, thus

FX(@\ (on,e)) = @\ (ame)) =0

By the definition of F.*(a"\ (af,.)) it follows that o, € B()é)(q, a'\ (al,.)) as wanted. For

mc mc

every @ € B(p/, X) and ¢ € Q fix some (C; (g, @))i<n+1 such that
J<l;+1

7A@ (G @))igna DA N e

J<l;+1

Prove that we can extend p* to p** such that forall 1 <:<n+1,1 <7 <[+ 1 and
a e B(p*, X),

B(t:*) N (s, aij) € Ci ()

Where a; is the predecessor of «; ; in @ . In order to do that, fix ¢, j and stabilize C; ;(&)
as foLlows:
Fix 5 € B(p*, (x11,...,7;;)) By lemma 2.3 , the function

Cij(q,8,%) : B(p*, X \ (x4, ... mi5)) — P(Bi;)

has homogeneous sets B/(g, Trs,q) € B(t:, x,5) for x,s € X\ (z11,...,2;;). Denote the
constant value by C7;(q, 8). Define

B/(t:7x7",8> = . A B/(g7 xT,S?Q)v xr,s S X \ <(L’1’1, '-‘;Iz’,j>
BEB(p* (z1,1,--,Ti,j))
q€Q

Next, fix o € B(t}, x; ;) and let

C:j(Oé) - R A CZ]'(Q,OC/,O()
O/GB(p*,({L‘Ll,...,:El‘,j,1>)
qeQ

Thus C};(a) C . k(t;) is ineffable thus, there is B'(t;, 2;;) € B(t;,zi;) and C7; such that
for every a € B'(t}, %), Ci; Na = Cf;(a). By coherency, C;; € (U(t;,§). Finally, define
P = (Lt )
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B(t;r) = B'(t)n(NC7;) 1<i<n+1
i

To see that p** is as wanted, let & € B(p**, X) and fix any 4,j. Then & € B(p**, X) and
a;; € B(t, x; ;) thus for any i.j

B(t;”) N (Oés, OéiJ') g CZ] N Oéi’j \ Qg = C{jj(ai,j) \ Qg Q CZJ-<05171, ceey Oé@j) = Ci,j(a)

Lemma 3.9 Let p* be as in lemma 3.8 There exist p* < p** such that for every extension
X of p** and q € Q that satisfies (*) there ezists sets A(q,d) C k d € B(p™, X \ () such
that for all o € B(p**, T )

A(q,@) N = a(q,d, a)
Example: Recall that we have obtained the sets

a(q, 62) = CH [even U{CH(UJ), CH(CL)) + Vi, Vy2 + CH(Q)} U b(q, CY)

— (Z) Q.3 + V3 2 Ume
b((L Oé) o {{Oéw.g + 1/3} 0.3 + V3 < Qe

The element . is chosen from the set B(ts, x,,.) = B(ts,0), by shrinking this set, we can
directly extend p to p* such that for every @ € B(p*, X) , a3 + V3 < . Therefore,

A(q,d) = Cy Teven H{Cr(w), Cr(w) + v1,Vp2 + Cu(2), aps + v3}

Proof of 3.9: Fix ¢, X satisfying (*) and @ € B(p*, X \ (Tm¢)), since x(t;) is ineffable we can
shrink the set B(t], , Zm.) to B'(q,d) to find sets A(q) C ¢; such that

Vo€ B'(q,d) Alg,d) Na = a(g,d,a)

define B, (t}, Tpe) = A B**(q, d) intersect over all X, ¢ and defines p™* as before.
a€B(p*, X\(zmc))
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Thus there exists p, € G-, with the properties described in Lemma’s 3.8-3.9. Next we
would like to claim that for some sufficiently large family of ¢ € Q and extension-type X we
have ¢, X satisfy (*).

Lemma 3.10 Let p, € G-+ be as above and let X be any extension-type of p.. Then there
exists a maximal antichain Zx C Q and extension-types X < X, for ¢ € Zx, unveiling the
same mazximal coordinate as X such that for every q € Zx, q,X, satisfy (*).

Example: For our X, the correct anti chain Zy is : For any possible v, v3 choose a condition
(v1,v3, (K", B*)) € Q. This set definitely form a maximal anti chain, and by the same method
of the previous examples taking X, = X works. In general, if the maximal coordinate of X
is some w - (2n + 1), Zx will be the anti chain consisting of representative conditions for the
2n + 1 first coordinates.

Proof: The existence of Zx will follow from Zorn’s Lemma and the method proving ex-
istence of X, for some ¢. Fix any @ € B(p., X), there exists a generic H C Q x M .« [[7]
with (1o, p; @) € H = Heys X Hs,«. Consider the decomposition of M[U’}M* above p_"d in-
duced by e and let pT@ = (py, pa), ie. (pr,p2) € (M[U]s e )<an. X (M[U]sp)say,.. H stays
generic for the forcing Q X (M[U]sx)<ay,. X (M[U]s 5+ )a,,.. Define Hy = Hepe % (Hs ) <ame

and Hy = H-,,,.. Then (A)y, € V[H,] is a name of A in the forcing M[U]-,,,.. Above py
we have sufficient closure to determine (A) g, N Qe

3ps =" p2 st py by, (A Name =a

for some a € V[C*]. Hence there exists (1g.,.,p1) < (g, p}) such that

\
(q,p%) Foxme, ) P3P ANay.=a

>ame

It is clear that (q,p’{,p§>||(@xM>H*[ﬁ] AN . Finally, X, is simply the extension type of pj.

Since p} € M, [U], X, unveils the same maximal coordinate as X. By lemma 3.8, X, ¢
satisfies (x).

Lemma 3.11 & changes cofinality in V[A].

Proof: Let p, = (t], ...t 15 1) € Gy be as before, \g = otp(Cg) and (Ce(&) | £ < Ao) be
the Magidor sequence corresponding to G. Work in V[A], define a sequence (v; | y(t%, p.) <
i < Ao) C K
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Uy(tr,pe) = OG(’Y<t:zvp*)) +1= li(t;) +1

Assume that (vg | £ < & < A\g) is defined such that it is increasing and v < k. If € is limit
define

ve = sup(ve) + 1.

If sup(ve) = k we are done, since x changes cofinality to c¢f(£) < A¢ (which is actually a
contradiction for regular \g). Therefore, v < k. If £ = £ + 1, by proposirion 3.2, there exist
an extension type X¢ of p, unveiling £ as maximal coordinate. By lemma 3.10 we can find
Z¢ and X = X, unveiling { as maximal coordinate such that ¢, X, satisfies (*). By lemma
3.9 there exists

A(g,d@)sfor g e Ze d e B(p*, Xy \ (Tme))-
Since A ¢ V[C*], A # A(q,a@). Thus define n(g, @) = min(A(q, &)AA) + 1

Be = sup(n(q, @) | @ € [ve |~ N B(p*, Xy \ (Tme)), q € Ze)

It follows that B¢ < k. Assume ¢ = k, then k changes cofinality but it might be to
some other cardinal larger than dy, this is not enough (actually, by Theorem 3.3 this can
not happen). Continue toward a contradiction, fix an unbounded and increasing sequence
(n(qi,a;) | i < 0 < k). Notice that since n(q;, @;) < 1(qgi+1, @ir1) it must be that A(g;, @) #
A(Giy1, vit1) and

Algi, ai) N (g, &) = ANn(g, &) = A(giv1, aitr) N (g, &)

Define n; = min(A(g;, &) AA(Giv1, ait1)) > n(q, &;). It follows that (n; | i < 0) is a short
cofinal sequence in x. This definition is independent of A an only involve ((¢;, &) | i < 0 < k),
which can be coded as a bounded sequence of k. By the induction hypothesis there is C” C C,
bounded in & such that V[C"] = V[{{¢;, &) | i < 0 < k)]. Define C" = C* U C”, the model
V[C"] should keep k measurable but also has the sequence (n; | i < 6), contradiction.
Therefore, B¢ < K, set v¢ = B¢ + 1. This concludes the construction of the sequence v¢ . To
see that it is indeed unbounded in &, let us show that C(£) < ve: We have Ca(y(t:, pi)) <
Vs p) Assume that Co(i) < vy, (5, pe) <@ < ). If € is limit then by closureness of the
Magidor sequence

Ca(§) = sup(Ca(i) | i < &) <sup(v; | y(th,p) <i <€) <ve
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If £ =& + 1 is successor, let {ge} = Ze N G<por

Pe = p;\<CG<Z'1), ey Cg(in), Cg(f» € p;\Xg N G>,{*

By induction Cg(i,) < ve, therefore, (g, (Ca(i1), ..., Ca(in))) < ve . Finally, (ge,pe) € G,
(g, pe) IF AN Ca(§) = Alge, (Calin), ..., Calin))) N Ca(§), thus

ANCea(§) = Alge, (Ca i), ..., Calin))) N Ca(§) Cal(§) < nl(ge, (Calir), ..., Calin))) < ve.
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4 The main result above &

—

In order to push the induction to sets above k we will need a projection of M[U] onto some
forcing that adds a subsequence of Cg. The majority of this chapter is the definition of this
projection and some of it’s properties. The induction argument will continue at lemma 4.13.

Let G be generic and Cg the corresponding Magidor sequence. Let C* C Cg be a sub-
sequence and I = Index(C*,Cg). Then [ is a subset of g, hence I € V. Assume that
k* = sup(C*) is a limit point in Cg and that C* is closed i.e. containing all of it’s limit

—

v (U] for

points below x*. As we will see in the next lemma, one can find a forcing M,
which G is still generic and will be easier to project.

.....

—

Proposition 4.1 Let G be M., _.\[U]-generic and C* C Cg such that C* is closed and
k* = sup(C*) is a limit point of Ci. Then there exists (11, ...,Vm) such that G is generic for
M<V1?__.,Vm>[17] and for all 1 <i <m, C* N (v;_1,v;) is either empty or a club in v;. (as usual
we have the convention vy =0)

Example: Assume that \g = w; +w? -2+ w, C* is

Co | (w1 +1) U{Cq(wi +w+2),Cq(ws +w+3)} U{Cq(wr + a) | w? -2 < a < Ao}

—

Let k1 < kg < K3 < K4 = Kk be such that oﬁ(m) =wy , oY (ko) = 0[7(53) =2 and oﬁ(ﬁc) =1
We have

—_

O,Hl)ﬂC*ZOG [wl

[\

-

(K1, k) NC* ={Cq(w1 +w+2),Cq(w; +w+3)}
3. (Ko, k3)NC* =10

-

=~

K3, ke) NC* = {Cq(w1 + a) |w? - 2 < a < A}

Then (1),(3),(4) are either empty or a club but (2) isn’t. To fix this we shall simply add
{Co(w1 +w+2),Colws +w+3)} to k1 < Ky < K3 < Ky.

Proof of 4.1: By induction on m, we shall define a sequence
V;;”L - <V1,m7 ceey Vnm,m>
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such that for every m, G is generic for My, [U]. Define 1%y = (k1, ..., k). Assume that vy,
is defined with G generic, if for every 1 < i < n,, + 1 we have C* N (Vj_1,m, Vim) s either
empty or unbounded (and therefore a club), stabilize the sequence at m. Otherwise, let i be
maximal such that C* N (v;_1 m, Vi) is nonempty and bounded. Thus,

Vicim < Sup(c* N (Vi—l,ma Vi,m)) < Vim

Since C* is closed, Cg(v) = sup(C* N (Vi—1,m, Vim)) € C* for some . As in lemma 3.1 we
can find

Vm_’—i-l = <l/17m, ceey Vi,mufla ...,ék, Vi—l—l,mu cevy Vnm,m> Q CG

such that Cg(y) = & is unveiled and the forcing M,,mll[[? ] € M, [U] is a subforcing of

M- [U] with G one of it’s generic sets. It is important that the maximal ordinal in the
sequence vy, +1 such that C* N (V-1 m+1, Vjmt1) is nonempty and bounded is strictly less than
Vim. Therefore this iteration stabilizes at some N < w. Consider the forcing My, [17 |, by the
construction of the ,’s, we necessarily have that for every 1 <i <ny+1C*N(v;-1.n,ViN)

is either empty or unbounded (Since Vyy1 = Vy).
[ |

By this proposition, we can assume that Mww,m[ﬁ] and C* satisfy the property of 4.1. If
one wishes to define a projection of M[U] onto some forcing [[}, P;, the decomposition

—

M(m,--.ﬁn)[U] = H?:l (Mﬁi)>ﬁi—1
permits us to derive a projection 7 : I\\/[[<,{17,_,{n>[lj] — [1:-, P; through projections
T (Mm)>m71 — P (1 <1< n)

First, if C*N(k;_1, K;) is empty, the projection is going to be to the trivial forcing. Otherwise,
C* N (Ki—1, ki) is a club. In order to simplify notation, we will assume that (M, )<, , =
I\\/H[(j’]m) = M[U] and C* = C* N (k;_1, k;) is a club in . It seems natural that the projection
will keep only the coordinates in [ i.e. let p = (t1,...,t,11) then 7 (p) = (t; | v(t;,p) €

I)™(t,+1) where

v {Fa(ti) 7(ti,p) € Suce()
’ ti  (ti,p) € Lim(J)
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—

Let us define a forcing notion P; = M;[U] (the range of the projection 7;) that will add

— —

the subsequence C*, such that the forcing M[U] (more precisely, a dense subset of M[U])

—

projects onto M;[U] via the projection 7; as we have just defined.
M (U]

Thinking of C* as a function with domain I, we would like to have a function similar
to v(t;, p) that tells us which coordinate are we unveiling. Given p = (ti, ..., t,, tny1), define
recursively I(to,p) = 0 and

I(ti,p) = min(i € I\ I(t;i_1,p) + 1| o(i) = 0¥ (t;))

It is tacitly assumed that {i € I\ I(t;_1,p) + 1| o(i) = o7 (t;)} # 0.

Example: Work with Magidor forcing adding a sequence of length w? i.e. Cg = {Cq(a) |
a < w?}. Assume C* = {C;(0)} U{Cs(a) | w < a < w?}. Thus I = {0} U (w? \ w), the w-th
element of C'¢ is no longer limit in C*. Let

b= <</{(t1)aB(t1)>jv\<K’7 ( >>>

123
TV TV
t1 to

—

Where oY (t1) = 1. Computing I(t1, p) we have:

I(t1,p) = w=(t1,p)

Therefore m;(p) = (k(t1), t2).

Definition 4.2 The conditions of M;[U] are of the form p = (1, ..., tn1) such that:

L. k(t) < ... <k(ty) < k(tns1) =K
2. Fori=1,...n+1

(a) I(t;,p) € Succ(!)
ii. I(t;i_1,p) is the predecessor of I1(t;,p) in I
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i I(ti1,p) + Sw¥ = I(t;,p) (C.N.F) , then

V() 5 e Y () (1), R (D] £ 0
(Reminder: Y (v) = {a < k| oY (a) =~})

(b) I(t:,p) € Lim([I)
i t;=(k(t;),Bt)) ,B(t;)e [ U(t;,%)

<ol (t;)
i I(tiog,p) +w ) = 1(t;,p)
1ii. mln(B(tl)) > /i(tifl)

—

Definition 4.3 Let p = (t1, ..., tn, tni1),q = (S1, -y Smy Smt1) € My[U]. Define
(t1y s by tna1) <5 (81, ey Sy Sma1) Uff 31 <4y < oo < iy <M < iy = m+ 1 such that

I(sj,q) € Lim(I) then B(s;) C B(tg41) N K(s;)
1. k(t,) = k(s.) and B(s;,) C B(t,)
If iy < <ipga
1. k(sj) € B(ty+1)
2. 1(s;,q) € Succ(I) then

[(5(851), £(s )1 0 Bltksr, 1) X oo X Bltisn, ser) # 0

k
where 1(s;—1,q) + > wY = I(s;,q) (C.N.F)

=1

3. 1(sj,q) € Lim(I) then B(s;) C B(tgt1) N K(s;)

—

Definition 4.4 Let p = (t1,...;tn, tui1), ¢ = (S1, -y Sy Sma1) € M[U], q is a direct exten-
sion of p, denoted p <7} q iff

1.p<iq
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Remarks:

1. In definition 4.2 (b.i), although it seems superfluous to take all the measures corre-
sponding to t; as well as those which do not take an active part in the development
of C*, the necessity is apparent when examining definition 4.3 (2.b)- the +;’s may not
be the measures taking active part in C*. In lemma 4.8 this condition will be crucial
when completing C* to Cg.

2. As we have seen in earlier chapters, the function ~y(¢;,p) returns the same value
when extending p. I(¢;,p) have the same property, let p = (t1,....t0, tht1), ¢ =
(81, ey Smy Sma1) € M[U], p < ¢, use 4.2 (2.b.ii) to see that I(t.,p) = I(s;,,q).

3. In definition 4.4, since n = m we only have to check (1) of definition 4.3.

4. Let p = (t1,....,tns1) € M;[U] be any condition. Assume we would like to unveil a
new index j € I between I(t;,p) and I(t;41,p). It is possible if for example j is the
successor of I(t;,p) in I:

Assume I(t;,p) + > w"™ = j (C.N.F), then v, < oﬁ(tiﬂ). Extend p by choosing
=1

a € B(tit1,vm) above some sequence

<517-~ Br ) € B(tiv1,7) X ... X B(tix1, Ym-1)
I{a,p™(a)) =min(r € I\ I(t;,p) | o(r) = 0(j)) = j

Another possible index is any j € Lim(I) such that I(t;,p) + w°Y) = j. For such j,
/B—» —

extend p by picking a € B(t;11,0(j)) above some sequence ([, ..., Bx), to obtain

p<i {ty, s i, (a, £<ﬂ()B(z+1a5)ma>a<”(ti+l) B(ti) \ (a+ 1)), tnpr)

Checking definition 4.2 we see that in both cases the extension of p is in M;[U].

The forcing M;[U] has lots of the properties of M[U], however, they are irrelevant for the
proof. Therefore, we will state only few of them.

Lemma 4.5 M;[U] satisfy st — c.c

Proof: Let {(ta1, .. tan,) = pa | @ < &7} C M;[U]. Find n < w and E C &*, |E| = st
and (K1, ..., k,) such that Va € E,
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Ng =n and (K(ta1), . K(tang)) = (K1 e Kn)
Fix any «a, f € E. Define p* = (t1, ..., t,, tpr1) Where

B*(t;) = B(tio) N B(tig) € [\ Uk, €)

£<o¥ (k)

L K otherwise

Since pq, pp € MI[(?], it is clear that p* € MI[U'] and also p,, ps <j p*.

—

Lemma 4.6 Let G; C M;[U] be generic , define

C] = U{{I{(tlﬂl = 17 ,n} | <t1, ---;tn7tn+1> € G[}
Then

1. otp(Cy) = otp(I) (thus we may also think of Cy as a function with domain I).

2. Gy consist of all conditions p = (t1,...,tn, thi1) € M[[[j] such that

(a) Cr(I(t;,p)) = K(t;)
(b) Cr O (5t 1), k(t:) C B(t) 1<i<n+1

k
(c) Yi € Succ(I) N (I(t,,p), I(t,11,p)) with predecessor j € I such that j + > wh = i
=1
(C.N.F) we have

[(C1(5), C1(@)]= N B(trs1,71) X oo X Bltrsr, yo-1) # 0

Proof: For (1) , let us consider the system of ordered sets of ordinals (k(p), ip4)p, Where

k(p) = {k(t1), ..., k(t,)} for p = {t1, ..., tn11) € G
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ipg : K(p) — K(q) are defined for p = (t1, ..., tn41) <7 (51, ..., Sm+1) = ¢ as the inclusion:
ipg(K(t;)) = k(t,) = K(s;,) (i, are as in the definition of <; )

Since G is afilter, (k(p), ip,g)p,q form a directed system with a direct ordered limit Lim (p) =

U x(p) = Cr and inclusions i, : k(p) — Cf.
peG]
We already defined for p <; q , p,q € G;

I(%,p) : k(p) = I, I(x,p) = I(*,q) 0 iy,

Thus (I(*,p))pec form a compatible system of functions and by the universal propery of
directed limits, we obtain

I(x): Cr — 1, I(x) oi, = I(x,p)

Let us show that I is an isomorphism of ordered set: Since I(x,p) are injective I(x) is
also injective. Assume k) < kg € Cf, find p € Gy such that ki,ke € k(p). Therefore,
I(k;,p) = I(k;) preserve the order of ki, k. Fix ¢ € I, it suffices to show that there
exists some condition p € Gy such that i € Im(I(*,p)). To do this, let us show that

— —

the set of all conditions p € M;[U] with i € Im(I(*,p)) is a dense subset of M;[U]. Let

—

p = (t1,...,tn41) € M;[U] be any condition , if i € Im(I(*,p)) then we are done. Otherwise,
there exists 0 < k& < n such that

I(tr,p) <i < I(tyi1,p)

therefore I(tx,1,p) € Lim(/). By induction on i, we shall prove that it is possible to extend
p to a condition p’, such that i € Im(I(x,p')). If

then it must be that i < I(t1,p). By definition 4.2 (2.b.ii) I(t1,p) = W), To extend P
just pick any « above some sequence

</6717 7/8_];> S B(tla’yl) X ... X B(t177/€—1)

and
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—

p <7 {a,(k(ty), B(t1) \ (a+ 1)), ta, ..., tri1) € M;[U]

If i € Succ(]) with predecessor j € I. By the induction hypothesis, we can assume that
for some k, j = I(tg,p) € Im(I(x,p)). Thus by the remark following definition 4.4 we can
extend p by some « such that i € Im(I(*,p)). Finally if i € Lim([/), then

i=Y Wi tw® (CNF)
=1

«

Therefore V3 € (a,i), S+ w°® = i. Take any i’ € I N (a,i). Just as before, it can be
assumed that i’ = I(t, p), thus I(ty, p) +w°? =i. By the same remark, we can extend p to

—

some p’ € M;[U] with j € Im(I(x,p")).

For (2), let p = (t1,....,tns1) € G;. (a) is satisfied by the argument in (1). Fix a €
Cr N (k(t;), k(tir1)), there exists p <; p' = (s1,...,8m) € Gy such that o € k(p') thus
a € B(t;11) by definition. Moreover, if I(«,p’) € Succ(l) with predecessor j € I , then by
definition 4.2 (2.a.ii), there is sj such that j = I(sg,p’) and by definition 4.3 (2.b)

[(K(sk-1), £(s))] = N B(tis1,71) X oo X Bltiyr, Yo-1) # 0

From (a),
K(sk) = C1(j) and k(sg41) = Cr(i)

In the other direction, if p = (t1, ..., tn41) € M;[U] satisfies (a)-(c). By (a), there exists some
p" € Gy with k(p) C k(p"). Set E to be

{(wr, oo, wier) € (MIU])2,p0 | 5(wy) € B(ts) U{s(t:)} — Blw;) € B(t:)}

—

E is dense in M;[U] above p”. Find p” <; p' = (s1, ..., Sm+1) € Gy N D. Checking definition
4.3, Let us show that p <; p’: For (1), since k(p) C k(p’) there is a natural injection
1 <4 < ... <i, < m which satisfy x(t,) = k(s;.). Since p’ € E, B(s;.) C B(t,). (2a),
follows from condition (b), (2b) follows from condition (c). Since p’ € E, if i, < j < i,41
then «(s;) € B(t,41), thus, (2¢) holds.

45



—

So given a generic set G for M;[U] , we have V|[C;] = V[G/]. Once we will show that

—

77 is a projection, then for every G C M[U] generic,

m1(G) = {p € My[U] | 3¢ € 7}G, p <1 q}

—

will be generic for M;[U] and by the definition of 7; on page 45 we have that the corresponding
sequence to m;(G) is C*, as wanted. Let us concentrate on showing 7; is a projection. Let
D be the set of all

—

b= <t1a '--7tn7t’n+1> € M[U] ’ ﬂ-I(p) = <t;17 "'7t;matn+1>

such that:

L y(ti;,p) € Lim(I) = v(t;,_,,p) = v(ti,~1,p)

2. v(ti;,p) € Succ(I) — 7(ti;—1,p) is the predecessor of (t;;,p) in I.

Condition (1) is to be compared with definition 4.2 (2.b.ii) and condition (2) with (2.a.ii).
The following example justifies the necessity of D.

Example: Assume that
M=w?and I={2n|n<wlU{w+2,w+3}U{w-n|n<w}

let p be the condition

<<Vw> Bw>a Vi+1, <Vw'2a Bw-2>7 <’%7 B>>
——— T —— N~

t1 to t3 ta

W[(p) = <<Vw,Bw>, &:_2/, </€7 B>>

t1 n—>t§l t3'—>t§2 ta

The w+ 2, w+ 3-th coordinates cannot be added. On one hand, they should be chosen below
V,.2, on the other hand, there is no large set we can choose them from. The difficulty occurs
due to:

w -2 € Succ(l) but w+ 3 € I is the predecessor and 7y(ty)=.,
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Pointing out condition (2). Notice that we can extend p to

<<Vw; Bw>7 Vi+1) Vw42, Vw+3, <Vw~27 Bw-2>7 </€7 B>>

to avoid this problem.
Next consider

I={2n|n<wlU{w+2,w+3}U{w-n|n<w, n#2}
and let p be the condition

<<Vw7 Bw>7 <Vw-27 Bw-2>7 <Vw-37 Bw-3>7 </€7 B>>
—— ~~ ~ ~~ 7 N—~\—
t1 to t3 ta

W[(p) = <<Vw,Bw>, <Vw~3v Bw-3>v </{’ B>>
—— e e N e’

t1 '_%1 t3»—>t§2 tq

Once again the coordinates w + 2,w + 3 cannot be added since
min(B,.3) > V.. This corresponds to condition (1)

Y(tiy,p) =w <w-2 =7ty 1,p)

As before, we can extend p to avoid this problem.

Proposition 4.7 D is dense in M[U]

—

Proof: Fix p = (ti, ..., t,+1)€ M[U], define (py | k < w) as follows:

po = p. Assume that p, = <t§k), ...,t;?,tfi)jq) is defined. If p, € D, define py,1 = pg. Other-

wise, there exists a maximal 1 < ¢; = i;(k) < n' + 1 such that w(tgl.c),pk) € I which doesn’t

satisfy (1) V (2) of the definition of D. ’
2 () € Lim(D) and (7, pr) < (L pe)

Since y(tz(f),pk) € Lim(7) there exists v € I N (y(tgf)_l,pk),V(tgc),pk)). Use proposirion

3.2 to find pgy1 > pr with v added and the only other coordinates added are below 7, thus
if tgf) =t then y = fy(tf,k_ﬁl),pkﬂ). Thus, every | > r satisfies (1) V (2). If pgr1 ¢ D then

the problem must accrue below fy(tgf), Dk)-
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—(2): v(tl(-f),p) € Succ(/) and v(tgle,p) is not the predecessor of v(tgf),p))

Let v be the predecessor in I of ( i ,p) By proposirion 3.2, there exist ppyq > pp with

~v added and the only other coordinates added are below . As before, if tgf) t* Y then

v =~(t, ¢k D prat) and for every [ > r Y(t, ¢ ) pr1) satisfies (1) V (2).

The sequence (py | k < w) is defined. It necessarily stabilizes, otherwise then the sequence
’y(tgf()k), pr) form a strictly decreasing infinite sequence of ordinals. Let p,« be the stabilized
condition, it is an extension of p in D.

Lemma 4.8 7; | D: D — M;[ﬁ] is a projection, i.e:

. T 1S onto.
. p1 <pe=mr(pr) <y 7mr(p2) (also <* is preserved)
. Vp € M[U] Vg € M;[U] (m(p) <rg = 3p' 2 p (¢=m1(p))

Proof: Let p € D, such that m;(p) = (¢t ,...,t, ,, tpi1)

11 °) ’L/’

Claim: 77(p) computes I correctly i.e. for every 0 < j < n', we have the equality v(t;;,p) =
I(t; ;. mr(p))-
Proof of claim: By induction on j, for j = 0, v(0,p) = 0 = I(0,7;(p)) . For j > 0,

assume y(t;,_,,p) = I(t;_,,m(p)) and y(¢;;,p) € Succ(l). Since p € D, y(t;;_,,p) is the
predecessor of y(t;;,p) in I. Use the induction hypothesis to see that

I(t; ,mr(p)) = min(B € T\ y(ti,_,,p) + 1] 0(8) = o"(t;;)) = v(t;;,p)

For (t;;, p) € Lim([), use condition (1) of the definition of D to see that v(t;,_,, p)—i—w"U(tij) =
Y(ts,, p) Thus

—

vre 10 (y(ti,_,,p), ¥ (ti;,p)) (o(r) < o"(t;))

In Particular,
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I(t;,,m(p)) = min(B € I\ y(t;, ,,p) + 1] 0(B) = o”(t,)) = (ti,.p)
.of claim

Checking definition 4.2, show that 7;(p) € M;[U]: (1), (2.a.i), (2.b.i), (2.b.iii) are immediate
from the definition of 7;. Use the claim to verify that (2.a.ii), (2.b.ii) follows from (1),(2) in
D respectively. For (2.a.ii), let 1 < j < n/, write

V(tijfﬂp) + Z WOU(tZ) = V(tiwp)

ij_1<l§ij

This equation induces a C.N.F equation

(s, mr(p)) + Spoy ) = I(t:,, 71(p)) (CN.F)

Thus
((t1y)s o 5(t1 1)) € Y (0 (1)) X oo X Y (07 (11, 0)) (), A(8:)] =
1)- Let ¢ = (t},...,t € M;[U]. For every t’ such that I(t,q) € Succ([), use definition
1 n+1 J J
4.2 (2.a.ii) to find §j = (s;1, ..., S;,m;) such that

(Rs5.1)s s (s5rymy)) € Y (1) X XY () (68, 1), 5 (8, )]

where I(t; _1,q)+ > w” = I(t; ,q) (C.N.F).
i=1
For each i = 1,...,n such that o¥(¢;) > 0 and (t;) € Succ(I) pick some B(t.) € (| Ul(t;,£).

£<017(t;)

Define p= <t17 "'7tn+1>ﬂ<8_7“ | I(tT’7q) € SUCC(I)>

.:{<<><w\<aW> +1) oU(t) >0
’ K(t!

) otherwise

Once we prove that (s, ;,p) ¢ I and that p computes I correctly i.e. y(t;,p) = I(t,q), it
will follow that 7/ (p) = (t; | v(t;,p) € I) = q. By induction on 4, for i = 0 it is trivial. Let
0 < ¢ and assume the statement holds for i. If I(t;,,,q) € Lim(/), then by 4.2 (b.ii)
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I(ti 1, q) = 1(t;,q) + w? i) = y(ti,p) + wo" tis1) = Y(tiv1,p)

If I(t;,,,q) € Succ(l), then from 4.2 (a.ii) it follows that I(Z],q) is the predecessor of
I(t;,,q). By the choice of s;{1,

m—1 o
7<t1+17p) — fy(tz,p> + Z W’ylni + wrm (nm _ 1) + on(terl) _
=1

m—1 7 (¢
= I(tha) + 2w+ (o, — 1)+ W = It q)

Also, for all 1 < r < myy, Y(Sit1,,p) is between two successor ordinals in I, hence
Y(Siz1,p) ¢ 1. Finally, p € D follows from 4.3 (a.ii) and condition (1) and if v(¢;,p) €
Lim(/) we did not add s;. Thus ;4 =i; — 1.

(2)- Assume that p,q € D, p < q. Using the claim, the verification of definition 4.3 it
similar to (1).

(3)- We shall proof something weaker to ease notation. Nevertheless, the general statement

—

if very similar. Let p = (t1,...,t,41) € M[U]. Assume that
T (p) = (th sty ) <1t 1St ot ) = ¢ € My[U]

For every [ = 1,...,m such that I(s;,m;(p)) € Succ(l) use definition 4.3 (2b) to find 5 =
(Si.1, -+ Stm,) such that

(R(s11), - K(81m,)) € Btiy, 1) X oo X Bltiy Y1) (£ (s1-1), £(s1))] ™

where I(s;—1,7(p)) + > w = I(s;,7(p)) (C.N.F). Define p < p’ to be the extension p’ =
i=1
P (S, ey ) (S| I(s,mr(p)) € Suce([)) where

1Y Em

o — J{R(si), Bi\ K(sim) + 1) o7 (s;) > 0
! S; otherwise

As in (1), m(p') = (tiys ity 5 (81), -, (80,)", - Li,,). Notice that since we only change s

5 TR 7 . m

such that I(s;, m;(p)) € Succ(]), (s))’ = 5. Thus 7;(p’) = ¢ and p’ € D follows.
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—

Definition 4.9 Let G; be M;[U] generic, the quotient forcing is
M[U)/Gy = x=YGy = {p e M[U] | 1 (p) € G}
[ |

The forcing M[U]/G; completes V[G;] to V[G] in the sense that if ¢ C M[U] is generic such
that 73(G) = G then G is also M[U]/G-generic.

Proposition 4.10 Let z,p € M[ﬁ] and q € I\\/[[I[lj], then
V —

. ’/T](p) <;q=4q H_Ml[ﬁ] pE M[U]/QI

- q by ]v) € M[ﬁ]/gl = 77(p), q are compatible

- @y pe M[U]/CEI = 7;(p), 71(x) are compatible

Lemma 4.11 Let G; be M;[U]-generic. Then the forcing M[U]/G; satisfies kT — c.c. in
VIGi].

Proof: Fix {p, | @ < k*} C M[U]/G; and let
reGyp, r ”_M,[(?] Vo < kT Pa € M[U’]/(S[
Next we shall show that

E = {qeM[U]| (¢Lr) V(g Py Jo B < kT (]Za,]zﬁ are compatible)}

—

is a dense subset of M;[U]. Assume r <; 1/, for every a < k" pick some 1’ <; ¢* €

— —

M;[U], p} € M|U] such that

° WI(pZ) =q,

o1



\ -
o ¢, IFpo < pj, € M[U]/G

\
There exists such ¢ ,pl: Find v <; ¢, and p,, such that ¢, I+ p/, = p, then by the
proposition 4.10 (2), there is ¢}, >; m7(pl,), ¢,,- By lemma 4.8 (3) there is p}, > p/, such that
¢ = m(pk). It follows from proposition 4.10 (1) that

\ —
4, - po < pi, € M[U]/G

Denote p}, = (t1,a: - tha,as tnat1,a)s @i = (tivas o biny a5 tnat1,0)- Find S € k%, n < w and
(K1, ..., kn) such that |S| = kT and for any a € S, n, = n and

(K(t1.a), s E(tng.a)) = (K1, oy Bn)-
Since 7;(pk) = ¢ it follows that
</‘i(ti17a), vy /i(t'ima,a» = </€i1, vy Him>

forsomem<wand 1 <14 < ... <1y <n.
Fix any o, f € S and let p* = (ty, ..., tn, ty11) Where

o _ (ki B(tia) N B(ti ) oV (tia) >0
! K; otherwise

Inspired by the boolean algebras we shell denote pj, N pj = p*. Set

*

¢ =m(p*) = <t§1, ...,t§m>

Then ' <; ¢} N gy = mr(ph) Nwr(ps) = 7 (pf, N ps) = m1(p*) = ¢*. It follows that ¢* € E
\% —
since by proposition 4.10 (1) ¢* Iby, 5 P* € M[U]/Gy and

The rest is routine.
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Lemma 4.12 Let G be M[ﬁ]-genem’c. Then the forcing M[[j]/GI satisfies kT — c.c. in
VIG].

Proof: Fix {ps | a < xT} CM[U]/G; in V[G] and let
r€G, ribygg Vo <K' pa € M[[j]/ql
Similar to lemma 4.11 we shall show that

E = {z e M[U] | (¢Lr)\/(q Iy Jav, B < “+(11a’79~5) are compatible)}

is a dense subset of M[U]. Assume r < 1’ , for every o < 1T pick some 1/ < 2/, € M[U] , pl, €

. y
MJ[U] such that z/, IFy) Pa = Pl,- By proposition 4.10 (3), we can find m;(x)), 71(p)) <1 Ya-
By lemma 4.8 (3), There is 2/, <z ,p/, < p¥ such that

mr(20), 1 (P) <1 Yo = m(py) = mr(a})

Denote

xz - <51a7 ceey Ska,av Ska+1,a> ) pz = <t1,a7 teey tna,aa tna+1,a>
Tr(02) st i) = Tr(0)

Find S C k" |S| = kT and (K4, ..., kn), (V1, ..., V&) such that for any o € S
(K(t1.0)s s B(tng.a)) = (K1y ooy By (K(S1,0)s ooy £(Ska)) = (V1 ooy Vi)

Fix any o, 8 € S and let p* = p;, Npj, «* = x;, Nxj. Then pl,,py <* p* and z,, 15 <} 2~
Finally claim that x* € E:

mr(p*) = 7 (py) N wr(ps) = wr(ah) Nmp(h) = mr(x*)

\% —
thus * Iy 5 p* € M[U]/G. Moreover, z, <* z* which implies that
v
x* “_M[ﬁ] p* > Pa Pp-
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Lemma 4.13 If A€ V|G|, AC k™ then there exists C* C Cg such that V[A] = V[C"].

Proof: Work in V[G], for every a < k™ find subsequences C, C Cg such that V[C,] =
V[A N a] using the induction hypothesis. The function a — C, has range P(Cg) and
domain k™ which is regular in V[G]. Therefore there exist E C k™ unbounded in £* and
a* < kT such that for every o € E, C,, = Co+. Set C* = Cy», then

1. C* C Cy

2. C* e V[ANna*| CV[4]

3. Va <kt ANa e VI[C¥]
Since Cg is a club, it can be assumed that C* is a club by adding the limit points of C*
to C*, clearly it will still satisfy (1)-(3). Unlike A’s that were subsets of , for which we
added another piece of Ci to C* to obtain C” such that V[A] = V[C'], here we claim that
VIA] = V[C*]:
By (2), C* € V[A]. For the other direction, denote by I the indexes of C* in C' and consider
the forcings M;[U], M[U]/G;. Assume that A ¢ V[C*|, we shall reach a contradiction: Let

A be a name for A in M[U]/G; where /G = G;. Work in V[G,], by lemma 4.6 (2),
VIG;] = V[C*]. For every a < k™ define

Xo={BCall[Ana=B|#0}

where the truth value is taken in RO(M[U]/G;)- the complete boolean algebra of regular
open sets for M[U]/G;. By lemma 4.11

Va < k1 | X,| < k.

For every B € X,, define b(B) = ||ANc||. Assume that B’ € Xgand oo < fthen B = B'Na €
X, Switching to boolean algebra notation (p <p ¢ means p extends q) b(B’) <p b(B). Note
that for such B, B" if b(B') <p b(B), then there is

0<p<p (0(B)\b(B)) <p b(B)

Therefore
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pNb(B) <p (b(B)\b(B") Nb(B') =0
Hence pLb(B’). Work in V[G], denote A, = AN a. Recall that
Va < kT A, € V[C¥]

thus A, € X,. Consider the <p-non-increasing sequence (b(A4,) | @ < k™). If there exists
some v* < kT on which the sequence stabilizes, define

A= {BCkt|JablA)IFANna =B} e V[C*]
To see that A’ = A | notice that if B, B’, a, o/ are such that
b(Ay) - ANa =B, b(A.) - Ana' = B’

if v < o' then we must have B'Na = B otherwise, the non zero condition b(A,+) would force
contradictory information. Consequently, for every & < k™ there exists £ < v < k™ such
that b(A,-) IF ANy =AnN~, hence AN~y = AnN~. This is a contradiction to A ¢ V[C"].
Therefore, the sequence (b(A,) | @ < k) does not stabilize. By regularity of ¥, there exists
a subsequence (b(A4;,) | &« < k™) which is strictly decreasing. Use the observation we made
to find p, <p b(A;,) such that p,Lb(A;,,,). Since b(A,,) are decreasing, for any § > «
PaLb(A;;) thus po Lpg. This shows that (p, | @ < x7) € V[G] is an antichain of size ™
which contradicts Lemma 4.12. Thus V[A] = V[C*].

End of the proof of Theorem 3.3: By induction on sup(A) = A > x*. It suffices to
assume that A is a cardinal.

casel: (cfVI€(\) > k) the arguments of lemma 4.13 works.

case2: (cfVIE(A) < k) Since M[U] satisfies k™ — c.c. we must have that v := cfV(\) < k.
Fix (yi| i < v) € V cofinal in A. Work in V[A], for every i < v find d; C & such that
Vld;] = V[AN~]. By induction, there exists C* C Cg such that V[{d; | i < v)] = V[C*],

therefore

1. Vi<v AN~ € V[CH]
2. C* e V[A]
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Work in V[C*], for i < v define X; = {B C a | ||JAN~v = B|| # 0}. By lemma 4.11,
| X;| < k. For every i < v fix an enumeration

Xi = (X(0,€) | £<r)eVI[CT]

There exists § < k such that AN~ = X(4,§). Moreover, since v < k the sequence
(AN~ |i<v)=(X(i,&) | i <) can be coded in V[C*] as a sequence of ordinals below s
. By induction there exists C” C C¢ such that V[C"] = V(& | i < v)]. It follows

VIC", ] = (VIC*DIG i < v)] = VIA]
Finally, we can take for example, C' = C" U C* C Cg to obtain V[A] = V[

.theorem 3.3
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5 Classification of subforcing of Magidor

Definition 5.1 Let U be a coherent sequence and k a measurable cardinal with 0 < 0[7</£) <
min(v | of (v) > 0). Let I Cw® ) be a closed subset. Define:

1 Oy = ((), (k, B*)) where B* has the following properties
e B¢ [ U(k )
£<o(x)
o For every f € B* oﬁ(ﬁ) < oﬁ(m)

o Forevery € B* BNnpe [\ U(B,E
£<o¥ (B)

2. For every p = <t1, N B’>> such that each t, is an ordinal or a pair, define v;(to,p) =0
and

Yi(tr,p) = min(i € I\ v;(t—1,p) + 1| 0(i) = o7 (£,))

If for some 1 <1 <n, {i € I\vi(ty—1,p) + 1] 0(i) = oY (t,)} = 0 then for every 1 < j <n
let vi(t;,p) = N/A.

3. The elements of M;[[j] are of the form p = <t1, s b, (K, B>> such that each t, is an ordinal
or a pair and yi(t,1,p) # NJ/A for every 1 <r <mn, such that:

(a) K(t]) < ... < k(t,) <k

(b) BC B*, Be [\ U(k,¥¢)

¢<ol (k)

(c) For everyl <r <mn

i. If vi(t,,p) € Succ(l) then
A t,=k(t,) € B*
B. ~y(t,_1,p) is the predecessor in I of v;(t,,p)
it. If vi(t,,p) € Lim(I)
A. t. = (k(t.),B(t.,)) € B* x P(B*), B(t;) ¢ [\ U(t,¢)

g<ol (t,)
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U

B. yi(tr—1,p) +w” ) = 1(t,, p)
C. min(B(t,)) > k(t,_1), where k(ty) =0

4. Letp=(t1,...;tn,tni1),q = (S1, -y Smy Sma1) € M[[[j] Define
(t1, ooyt tna1) <g (81, ey Sy Sma1) 4ff 31 <dy < oo < iy <M < iy = m+ 1 such that

(a) w(t;) = K(si,) and B(s;,) € B(tr)
(b) Ifip <j < Tkt 1

i. K(s;) € B(tg+1)
ii. I(s;,q) € Lim(I) = B(s;) C B(tps1) N k(s;)

Definition 5.2 The forcings {M,;[U] | I € P(woﬁ(”))} is the family of Magidor-type forcing
with the coherent sequence U.

In practice, Magidor-type forcings are just Magidor forcing with a subsequence of U; If I
is any closed subset of indexes, we can read the measures of U from which the elements of
the final sequence are chosen using the map I +— (o(i) | i € I) (recall that o(i) = 7, where
i=w'+...+wm C.N.F).

Example: Assume that oﬁ(m) =2 and let a
I={l,wu,w+1}U(w-3\w-2)U{w-3,w-4,..} € P(w?)

Then (o(i) | i € I) = (0,1,0,0,0...,1,1,1...). Therefore M;[U] is just Prikry foricing with
S— N~

w w

U(k1,0) for some measurable k1 < x followed by Prikry forcing with U(k, 1).

Although in this example the noise at the beginning is neglectable, there are I’s for which
we do not get ”pure” Magidor forcing which uses one measure at a time and combine several
measure. The next theorem is a Mathias characterization for Magidor-type forcing and is
proven in [?].

Theorem 5.3 Let I\\/Jll[ﬁ] be a Magidor-type forcing, C = (C(i) | i € I) be any increasing
continues sequence. Then

Ge = {p e My[U] | k(p) € C, C\ x(p) C B(p)}
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is a generic for M;[U] iff:

. For everyie I oﬁ(C(i)) = o(1)

. For every (ci,...,c,) € [Lim(C)]<¥ and every A, € () Ul(cr,j) for 1 <r <mn, there exists
j<o (cr)
ap<c <ag<c <. <a,<c, such that C N (ay,c.) C A,

We restate Theorem 3.3 in terms of complete subforcing [7].

Theorem 5.4 Let P C M[U] be a complete subforcing of M[U] then there exists a mazimal
antichain Z C P and I,, p € Z such that P, (the forcing P above p) is equivalent to the

Magidor-type forcing My, [U]s,, -

—

Proof: Let H C P be generic, then there exists G C M[U]| generic such that H = G NP,
in particular V' C V[H] C V[G]. By Theorem 3.3, there is a closed C" C Cg such that
V[C'] = V[H]. Let ¢’ be a P-name of C’ and I it’s set of indexes in Cg. The assumption

oY (k) is crucial to claim that I € V. By the Mathias characterization (see theorem 5.4), C’

—

is generic for M;[U]. Let p € P such that
p IF C" is generic for I = I, and V[H] = V[C]

This is indeed a formula in the forcing language since for any set A, V[A] = |J L[z, A]
2Cord,zeV

where L[z, A] is the class of all constructable sets relative to z, A. Redefine C’, H to be

— —

M, [U]-names for C’, H and let g, € RO(M,,[U]) be
¢y = ||H is generic for P, p € H and V[H| = V[C"]||

Clearly M Ip[lj ]>q, and P>, have the same generic extensions
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6 Prikry forcings with non-normal ultrafilters.
Let x be a measurable cardinal and let U = (U, | a € [k|<¥) be a tree consisting of
rk—complete non-trivial ultrafilter over k.

Recall the definition due to Prikry of the tree Prikry forcing with U.

Definition 6.1 P(U) is the set of all pairs (p,T) such that

. p 18 a finite sequence of ordinals below k,

T C [k]<¥ is a tree with trunk p such that
for every q € T with ¢ > p, the set of the immediate successors of q in T, i.e. Sucr(q) is
in Uy.

The orders <,<* are defined in the usual fashion.

For every a € [k]<¥, let m, be a projection of U, to a normal ultrafilter. Namely, let
Ta © kK — K be a function which represents £ in the ultrapower by U,, i.e. 7]y, = k. Once
U, is a normal ultrafilter, then let 7, be the identity.

By passing to a dense subset of P(U), we can assume that for each (p, 7"y € P(U), for
every (vi,...,v,) € T we have

v < Ty () Sve <ol St < Tpyn) (Vn)
and for every v € Sucr({v1, ..., Vn)), Tur,..0n) (V) > Vn.

Note that once the measures over a certain level (or certain levels) are the same - say for
some n < w and U, for every a € [k]", U, = U, then a modified diagonal intersection

AL A, ={v<k|Va<m(v)(veA,)} el,

a<k’ T

once {A, | @« < k} C U, can be used to avoid or to simplify the tree structure.

For example, if (V,, | n < w) is a sequence of k—complete ultrafilters over &, then the
Prikry forcing with it P((V, | n < w)) is defined as follows:

Definition 6.2 P((V, | n <w)) is the set of all pairs (p, (A, | |p| < n < w)) such that
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1. p=(v1,...,v) is a finite sequence of ordinals below k, such that
v; < m;(v;), whenever 1 < j <i <k,

2. A, €V, for every n,|p| < n <w, and

3. Mrp1(min(Agyq1)) > max(p), where m, : kK — Kk is a projection of V,, to a normal ultrafilter,
i.e. T, 1S a function which represents k in the ultrapower by V,, [n]y, = k.

A simpler case is once all V,, are the same, say all of them are U. Then we will have the
Prikry forcing with U:

Definition 6.3 P(U) is the set of all pairs (p, A) such that

1. p=(v1,...,v) is a finite sequence of ordinals below k, such that
v; < m(v;), whenever 1 < j < i <k,

2. AeU, and

3. m(min(A)) > max(p), where m is a projection of U to a normal ultrafilter.

Let G be a generic for (P(U), < ). Set

C=Hpl3T (1) €G}

It is called a Prikry sequence for U.

For every natural n > 1 we would like to define a k—complete ultrafilter U,, over [k]"

which correspond to the first n—levels of trees in P(U).
Ifn=1,set Uy = Uyp.

Deal with the next step n = 2. Here for each v < k we have U,,.
Consider the ultrapower by Uly:

i<> V= M<>.
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Then the sequence iy ((Upy | ¥ < &)) will have the length iy ().
Let U<[Z-d]U<>> be its [id]U<> ultrafilter in My over i (). Consider its ultrapower
P My = Mya)

Wiy, )

O U()>

Set

27 Wiay,,) © 4

Then
in:V — M([id]U<>)~

Note that if all of Uy,y’s are the same or just for a set of v’s in Uy they are the same, then this
is just an ultrapower by the product of Uy with this ultrafilter. In general it is an ultrapower
by

U<) — Lim<U<,,> | V< Ii),

where
X € U<> — Lim<U<,,> ’ v < /ﬁ:) iff [id]qu]U()) S ZQ(X)

Note that once most of Uy, ’s are normal, then U ;g v,) is normal as well, and so, [id] Uy =

id]U<>>
iy (k).

Define an ultrafilter U, on [k]* as follows:

X €U, iff ([idlv,, idlu,, ) € ia(X).

[id]UO

Define also for k = 1,2, ultrafilters U} over k as follows:

X € Uy iff [id]y, € ia(X),

X eU, iff [id]U<[id]U<>> € iy(X).

Clearly, then Uy = Uy and Uj = Uy — Lim(Uy,y | v < k). Also U; is the projection of
U? to the first coordinate and U2 to the second.

Let ((),T) € P(U). It is not hard to see that T' | 2 € Us.

Continue and define in the similar fashion the ultrafilter U,, over [|" and its projections
to the coordinates U for every n > 2,1 < k < n. We will have that for any ((),T) € P(U),
T | neU,. Also,if 1 <n <m < w, then the natural projection of U, to [k]" will be U,,.
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It is easy to see that C' is a Prikry sequence for (U” | 1 < n < w), in a sense that for
every sequence (A, | n <w) € V, with A,, € U}, there is ny < w such that for every n > ny,
C(n) e U
However, it does not mean that C' is generic for the forcing P((U | 1 < n < w)) defined
above (Definition ?7). The problem is with projection to normal. All U!’s have the same
normal Uj.

Suppose now that we have an ultrafilter W over [x]¢ which is Rudin-Keisler below some
G over [k]* (W <gk U), for some k, 0,1 < £,k < w. This means that there is a function
F : []* — [k]* such that
XeceWiff FFX € 9.

So F projects U to W. Let us denote this by W = F,*U.
The next statement characterizes w—sequences in V|[C].

Theorem 6.4 Let (o | k < w) € VI[C] be an increasing cofinal in k sequence. Then
(o | kB < w) is a Prikry sequence for a sequence in V' of k—complete ultrafilters which are
Rudin -Keisler below (U, | n < w).”

Moreover, there exist a non-decreasing sequence of natural numbers (ny | k < w) and a
sequence of functions (Fy, | k <w) inV, Fy : [k]"™ — Kk, (k <w), such that

.o = F(C | ng), for every k < w.

. Let (ng, | i <w) be the increasing subsequence of (ng | k < w) such that

(a) {ng, | i <w}={nk |k <w}, and
(b) k; = min{k | nj, = ny, }.

Set U; = {k | ni. = ng, }|. Then (Fp(C | ng,) | i <w,ng = ng,) will be a Prikry sequence for
(Wi | i <w), i.e. for every sequence (A; | i <w) € V, with A; € W;, there is iy < w such
that for every i > ip, (Fip(C | ng,) | i < w,ng = ng,) € Ai, where each W; is an ultrafilter
over [k]% which is the projection of Uny, by (Fiis ooy Frirei-1)-

Proof. Work in V. Given a condition (g, S), we will construct by induction, using the Prikry
property of the forcing P(U, a stronger condition (p,T’) which decides Q. once going up to
a certain level ng of T'. Let us assume for simplicity that ¢ is the empty sequence.

°Let (Vx | k < w) be such sequence of ultrafilters over k. We do not claim that (ax | k < w) is Prikry
generic for the forcing P({(Vy | k < w)), but rather that for every sequence (A | k < w) € V, with Ay € Vi,
there is kg < w such that for every k > kg, ax € V.
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Build by induction ({),T) >* ((),S) and a non-decreasing sequence of natural numbers
(ng | k < w) such that for every k < w

1. for every (n1,...,mn,) € T there is py, ., ) < & such that

(a) the condition ((ny, coos T )s T o,y fOTCOS " 00 = Py )
(b) Pt seeing) = 7T<n1,..-,nnk71>(77nk)7

2. there is no n,n; < n < ngyq such that for some (ny,...,n,) € T and E the condition
({1, -, mn), E) decides the value of a1,

Now, using the density argument and making finitely many changes, if necessary, we can
assume that such ((), T") in the generic set.

For every k < w, define a function Fj, : Lev,, (T) — k by setting

Fe(mus ooy M) = v i (s oy M )s Topy o)) I ke = v

We restrict now our attention to ultrafilters U which are P-points. This will allow us to
deal with arbitrary sets of ordinals in V[C].
Recall the definition.

Definition 6.5 U is called a P-point iff every non-constant (mod U) function f : k — K is
almost one to one (mod U ), i.e. there is A € U such that for every 0 < k,

{v e Al f(v) =0} <~
|

Note that, in particular, the projection to the normal ultrafilter 7 is almost one to one.
Namely,

{y <w[xv)=a}f <k,

for any o < k.
Denote by U™ the projection of U to the normal ultrafilter.

Lemma 6.6 Assume that U= (U, | 1 < a € [k]<%) consists of P-point ultrafilters. Suppose
that A € V[C]\ 'V is an unbounded subset of k. Then k has cofinality w in V[A].
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Proof. Work in V. Let A be a name of A and (s,S) € P(U). Suppose for simplicity that
s is the empty sequence. Define by induction a subtree T of S. For each v € Lev;(S) pick
some subtree S, of S,y and a, C 7 (v) such that

(), SHIHA N () = .

Let S(0)" be a subtree of S obtained be replacing S,y by S, for every v € Lev(S).
Consider the function v — a,, (v € Lev;(S5)). By normality of m,Uy it is easy to find
A(0) € s and T(0) C Levi(S(0)'),T(0) € Uy such that A(0) N7y (v) = a,, for every
v € T(0). Set the first level of T" to be T'(0). Set S(0) to be a subtree of S(0)" obtained by
shrinking the first level to 7°(0).

Let now (v1,15) € Levs(5(0)). So, i,y (v2) > v1. Find a subtree S, ,, of (S(1),, ,,)), and
Aoy © Ty (v2) such that

<<V17 I/2>’ SI/IO7V1> H‘é m 7T<V1><V2> = C111/17’/2'

Let S(1)" be a subtree of S(0) obtained be replacing Sy, ,,y by S, ,,, for every (v1,v2) €
Levy (5(0)).

Again, we consider the function v — a,, (v € S(1),,). By normality of 7(,,),Uy,) it is easy
to find A(v1) € k and T'(11) C (S(1)},,y), T (1) € U,y such that A(v1) N, (v) = au,,, for
every v € T(1y).

Define the set of the immediate successors of vy to be T'(v4), i.e. Sucr(v1) =T (v1). Let S(1)
be a subtree of S(1)" obtained this way.

This defines the second level of T'. Continue similar to define further levels of 7.

We will have the following property:

(*) for every (n1,...,n,) €T,

A simple density argument implies that there is a condition which satisfies (*) in the
generic set. Assume for simplicity that already ((),T") is such a condition. Then, C' C T™*.
Let (k, | n <w) = C. So, for every n < w,

Let us work now in V[A] and define by induction a sequence (1, | n < w) as follows. Consider
A(0). It is a set in V, hence A(0) # A. So there is 1 such that for every v € Lev,(T) with
7y (v) > n we have ANy (v) # A(0) Ny (v). Set ny to be the least such 7.

Turn to ;. Let £ € Levi(T) be such that 7y () < mo. Consider A(£). It is a set in V,
hence A(§) # A. So there is n such that for every v € Levy(T(e)) with mey(v) > n we
have AN me(v) # A(E) N e (v). Set n(§) to be the least such 7. Now define 7, to be
sup({n(§) | m (&) < no}). The crucial point now is that the number of &’s with 7y (§) < o is
less than k, since Uy is a P-point.
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If 71 = K, then the cofinality of k (in V[A]) is at most 7. So it must be w since the Prikry
forcing used does not add new bounded subsets to x, and we are done.
Let us argue however that this cannot happen and always 71 < k.

Claim 1 7, < k.

Proof. Suppose otherwise. Then
sup({n(¢§) | my(§) < mo}) = .

Hence for every o <  there will be § with 7 (§) < 1o such that
Ana=A(¢)Na.
Then, for every o < x there will be &, & with 7y (§), 7 (£") < o such that
A Na=AE)Na.
Now, in V, set pe ¢ to be the least p < k such that

A€) Np# A Np,
if it exists and 0 otherwise, i.e. if A(§) = A({'). Let

Z = {pee | (&), 7 (&) <o}

Then |Z|V < k, since the number of possible £, £’ is less than k. But Z should be unbounded
in x due to the fact that for every a < & there will be { with 7 (§) < 7o such that
ANna=A()Naand A # A(§). Contradiction.

.of the claim

Suppose that ng, ...,n, < k are defined. Define 7,,1. Let (&, ...,&,) be in T. Consider
A(&o, .., &n). Tt is a set in V| hence A(&,...,&,) # A. So there is i such that for every v €

Levypio(Tig,...60y) With me e y(v) > n we have AN T, ey (V) # A&, ---&n) N ey, ey (V).
Set n(&o, ...&n) to be the least such 7. Now define 7,11 to be sup({n(&,...&) | 7y (&) <

Moy -+ T{(&o, ..., §n71)<§n> < nn}>
Each relevant ultrafilter is a P-point, and so, the number of relevant &, ...&, is bounded in

K. S0, M1 < K, as in the claim above.

This completes the definition of the sequence (1, | n < w).
Let us argue that it is cofinal in .
Suppose otherwise.
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Theorem 6.7 Let U = (U, | a € [k]<¥) consists of P-point ultrafilters over k. Then for
every new set of ordinals A in V'V k has cofinality w in V[A].

Proof. Let A be a new set of ordinals in V[G], where G C P(U) is generic. By Lemma ?7?,
it is enough to find a new subset of A of size k.

Suppose that every subset of A of size x is in V. Let us argue that then A is in V as well.
Let A = sup(A).

The argument is similar to [?](Lemma 0.7).

Note that (P.+(A))Y remains stationary in V[G], since P(U) satisfies k™ —c.c. For each
x € (Per (M) pick (s,,S;) € G such that

(82, Sz)[fANz=ANw.

There are a stationary £ C (Pe+()\))Y and s € [k]<“ such that for each x € E we have
s = s,. Now, in V', we consider

H={(s,T) € PU) |3z € Pix(N)Ja Cx (s, T)|fANw=a}.
Note that if (s,T), (s,T") € P(U) and for some x C y in Pe+(A), a C x,b C y we have
(T ANz =a and (s, ) ANy = b,

then b N x = a. Just conditions of this form are compatible, and so they cannot force
contradictory information.
Apply this observation to H. Let

X={aCX|3(s8)ecH TrecPs\(s,T)FANz =a}.

Then necessarily, | J X = A.

.of the claim

We do not know wether V[A] for A € V[C]\V is equivalent to a single w—sequence even
for A C k™. The problematic case is once U,,’s have kT —many different ultrafilters below in
the Rudin-Keisler order.

Theorem 6.8 Assume that there is no inner model with o(«) = at™. Let U be k—complete
ultrafilter over k and V. = L[E], for a coherent sequence of measures E. Force with the

Prikry forcing with U. Suppose that A is a new set of ordinals in a generic extension. Then
the cofinality of k is w in V[A].
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Proof. Consider
iv:V—>M>~V"/U.

By Mitchell [?], iy is an iterated ultrapower using measures from E and images of E. In
addition we have that "M C M. Hence it should be a finite iteration using.

k is the critical point, hence no measures below k are involved and the first one applied is a
measure on £ in E. Denote it by Ey and let

ioiV—>M1

be the corresponding embedding. Let k1 = iy(k). Rearranging, if necessary, we can assume
that the next step was to use a measure E; over k; from iO(E). So, it is either the image
of one of the measures of E or Ey — Lim(E¢ | £ < k), where (E¢ | £ < k) is a sequence of
measures over x from E which represents in M, the measure used over k.
Let

11 My — M,

be the corresponding embedding and ko = i1(K1).
ko can be moved further in our iteration, but only finitely many times. Suppose for simplicity
that it does not move.
If nothing else is moved then U is equivalent to Eq — Lim(E* | £ < k) and ?7 easily provides
the desired conclusion.
Suppose i1 o 7y is not iy. Then some measures from ¢; o iO(E) with critical points in the
intervals (k, k1), (K1, k2) are applied. Again, only finitely many can be used.
Thus suppose for simplicity that only one is used in each interval. The treatment of a general
case is more complicated only due to notation.
So suppose that a measure E, with a critical point 0 € (k, k1) is used on the third step of
the iteration.
Let

Qg 1 My — M3

be the corresponding embedding. Note that the ultrafilter V defined by
X € V iff 22<5> € iQ O il OZ()(X)

is P—point. Thus, a function f : Kk — k which represents 0 in M, i.e. 6 = io(f)(k), will
witness this.

Similar an ultrafilter used in the interval (k1, k2) will be P—point in M, and so, in V, it
will be equivalent to a limit of P—points.

So such situation is covered by ?7.

.of the claim
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7 Prikry forcing may add a Cohen subset.

Our aim here will be to show the following:

Theorem 7.1 Suppose that V' satisfies GCH and k is a measurable cardinal. Then in a
generic cofinality preserving extension there is a k—complete ultrafilter U over k such that
the Prikry forcing with U adds a Cohen subset to k over V. In particular, this forcing has a
non-trivial subforcing which preserves reqularity of k.

By [?] such F' cannot by normal and by 6.6 F' cannot be a P-point ultrafilter, since in
any Cohen extension, x stays regular.

Note that the above situation is impossible in L[u]. Just every x—complete ultrafilter
over the measurable x is Rudin-Kiesler equivalent to p", for some n,1 < n < w, by [?].
But the Prikry forcing with " is the same as the Prikry forcing with p which is a normal
measure.

We start with a GCH model with a measurable. Let x be a measurable and U a normal
measure on k.
Denote by jy : V — N ~ Ult(V,U) the corresponding elementary embedding.

Define an iteration <Pa, Qs |la<k < /<o> with Easton support as follows. Set Fy = 0.
Assume that P, is defined. Set @), to be the trivial forcing unless a is an inaccessible
cardinal. ~
If « is an inaccessible cardinal, then let ), = Qa0 * Qa1, Where (), is an atomic forcing
consisting of three elements Og,,, Za, Yo, such that Ta, Yo are two incompatible elements
which are stronger than Og,,.

Let Q.1 be trivial once vy, is picked and let it be the Cohen forcing at «, i.e.

Cohen(a,2) ={f:a—=2]||f| <a}

once r, was chosen.

Let G, C P, be a generic. We extend now the embedding
jU V= N,
in V[G,], to
Jir 2 VIGK] = N(Gr * Gy o)

for some G, j; (x)) € Pl ji(x)) Which is N[G,]—generic for Pj (x)/ G- This can be done easily,
once over k itself in (),.o, we pick y., which makes the forcing (), a trivial one.

This shows, in particular, that & is still a measurable in V[G,], as witnessed by an extension
of U.
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Consider now the second ultrapower Ny >~ Ult(NV, jy (U)).
Denote jy by j1, N by Nj. Let
Jiz : N1 — N

denotes the ultrapower embedding of Ny by 71(U). Let j, = ji2 0 j1. Then
J2: V. — Ns.

Let us extend, in V[G,], the embedding
Jiz: N1 — Ny

to
g1zt NG % Gl gy w))] = NalGr * Gl i (n)) * Gl (5).g2 ()

in a standard fashion, only this time we pick xj, (. at stage ji(x) of the iteration. Then a
Cohen function should be constructed over j;(), which is not at all problematic to find in
VIGy].

Now we will have
Jo € Js : VIG] = No[Gr % G jy(w) * Glji(s),a ()]
which is the composition of jj with ji,.

Define a k—complete ultrafilter W over x as follows:

X e Wiff X Ck and j1(k) € 75(X).

Proposition 7.1 W has the following basic properties:
. WnNv=U,
Ao < Kk |z, was picked at the stage « of the iteration } € W,

. if C C Kk is a club, then C € W. Moreover

{v € C| v is an inaccessible} € W.

Proof:
(1) and (2) are standard. Let us show only (3). Let C' C k be a club. Then, in Ny, js(C) is
a club at js(k). In addition, jo(C) N k1 = 51(C). Now, 71(C) is a club in j;(k). It follows
that ja(x) € j2(C).
In order to show that

{v € C'| v is an inaccessible} € W,

just note that j;(k) is an inaccessible in Ny, and so W concentrates on inaccessibles.
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Force with Prikry(W) over V[G,].
Let
¢ = <7]n | n < w>

be a generic Prikry sequence.
By (2) in the previous proposition, there is n* < w such that for every m > n*, at the stage
N of the forcing Py, x,,  was picked, and, hence, a Cohen function f,,, : 7, — 2 was added.

Define now H : k — 2 in V[G,, C] as follows:

H=f. U | foner T s 0nsr)-

n*<m<w

Proposition 7.2 H is a Cohen generic function for k over V[G,].

Proof Work in V[G,]. Let D € V[G,] be a dense open subset of Cohen(r). Consider a set

C ={a < k| if o is an inaccessible, then DNV, [G,] is a dense open subset of Cohen(a) in V[G,]}.

Claim 1 C' is a club.

Proof. Suppose otherwise. Then S = k\ C is stationary. It consists of inaccessible cardinals
by the definition of C'.
Pick a cardinal y large enough and consider an elementary submodel X of (H,, € ) such
that

L. X N (V)G = (V5)VIGe | for some § € S,

2. kK, P,,De X

Note that it is possible to find such X due to stationarity of S. Note also that (V;)V1¢<] =
V. [G,] and (Vs)VIG=l = V5[Gy], since the iteration P, splits nicely at inaccessibles.

Let us argue that D N Vs[Gs] is a dense open subset of Cohen(d) in V[Gs].
Just note that

DNX =DnXn V) =DnV;)VC = DN Vs[Gyl.
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So let g € (Cohen(8))%!1%]. Then ¢ € X. Remember X < H,,. So,
X | D is dense open ,

hence there is p > ¢,p € DN X. But then, p € D N V;[Gs|, and we are done.
Contradiction.

.of claim

It follows now that C' € W. Hence there is n** > n* such that for every m,n** < m < w,
Nm € C.

So, for every m,n™* < m < w,
fom €D,

since D is open.

It is almost what we need, however H [ n,, need not be f, , since an initial segment may
was changed.

In order to overcome this, let us note the following basic property of the Cohen forcing:

Claim 2 Let E be a dense open subset of Cohen(k,2), then there is a dense subset E*
of E such that for every p € E* and every inaccessible cardinal 7 € dom(p) for every ¢ :
d—=2,p|[0,k)Uq € E*.

The proof is an easy use of k—completeness of the forcing.

Now we can finish just replacing D by its dense subset which satisfies the conclusion of
the claim. Then, H [ n,, will belong to it as a bounded change of f,, .
So we are done.
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