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Abstract

Starting from a supercompact cardinal κ, we force and construct a model in which κ is
both the least strongly compact and least supercompact cardinal and κ’s strong compactness,
but not its supercompactness, is indestructible under arbitrary κ-directed closed forcing.

1 Introduction and Preliminaries

One of the most celebrated results in large cardinals and forcing is due to Laver [13], who showed

that any supercompact cardinal κ can have its supercompactness forced to be indestructible under

arbitrary κ-directed closed forcing. This raises the following

Question: Is it possible to force a supercompact cardinal κ to have its strong compactness, but not

its supercompactness, indestructible under arbitrary κ-directed closed forcing?

The purpose of this paper is to answer the above question in the affirmative. Specifically, we

will prove the following theorem.

Theorem 1 Let V ² “ZFC + κ is supercompact”. There is then a partial ordering P ⊆ V such

that V P ² “κ is both supercompact and the least strongly compact cardinal”. For any Q ∈ V P which

is κ-directed closed, V P∗Q̇ ² “κ is strongly compact”. Further, there is R ∈ V P which is κ-directed

closed and nontrivial such that V P∗Ṙ ² “κ is not supercompact”. Moreover, for this R, V P∗Ṙ ² “κ

has trivial Mitchell rank”.

Forcing to obtain a model in which the least strongly compact cardinal is the same as the least

supercompact cardinal was of course first done by Magidor in [14].

Key to the proof of Theorem 1 (specifically the fact that κ’s supercompactness is not indestruc-

tible) is the following theorem due to the second author, which we will prove as well.
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Theorem 2 Suppose κ is a Mahlo cardinal and P = 〈〈Pα, Q̇α〉 | α ≤ κ〉 is an Easton support

iteration of length κ + 1 satisfying the following properties.

1. P0 = {∅}.

2. For each α < κ, °Pα “|Q̇α| < κ”.

3. °Pκ “Q̇κ is <κ-strategically closed”.

4. For some α, δ < κ, °Pα “Q̇α adds a new subset of δ”.

5. κ is Mahlo in V Pκ+1 = V P.

Then in V P, there are no fresh subsets of κ.

We note that Theorem 2 is an analogue of results due to Hamkins (see [9, 8, 7]). Adopting

the terminology of these papers, Hamkins shows that for a suitably large cardinal κ (measurable,

supercompact, etc.) and an iteration P admitting a gap below κ, after forcing with P, there are no

fresh subsets of κ. The iterations we consider need not be gap forcings, yet they retain this crucial

property vital to the proof of Theorem 1.

Before beginning the proofs of our theorems, we briefly mention some preliminary information

and terminology. Essentially, our notation and terminology are standard, and when this is not

the case, this will be clearly noted. For α < β ordinals, [α, β], [α, β), (α, β], and (α, β) are as in

the usual interval notation. If κ ≥ ω is a regular cardinal, then Add(κ, 1) is the standard partial

ordering for adding a single Cohen subset of κ.

When forcing, q ≥ p will mean that q is stronger than p. If G is V -generic over P, we will abuse

notation slightly and use both V [G] and V P to indicate the universe obtained by forcing with P.

If ϕ is a formula in the forcing language with respect to P and p ∈ P, then p ‖ ϕ means that p

decides ϕ. If x ∈ V [G], then ẋ will be a term in V for x. Any term for trivial forcing will always

be taken as a term for the partial ordering {∅}. We may, from time to time, confuse terms with

the sets they denote and write x when we actually mean ẋ or x̌, especially when x is some variant

of the generic set G, or x is in the ground model V .
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If P is an arbitrary partial ordering and κ is a regular cardinal, P is κ-directed closed if for every

cardinal δ < κ and every directed set 〈pα | α < δ〉 of elements of P (where 〈pα | α < δ〉 is directed if

every two elements pρ and pν have a common upper bound of the form pσ) there is an upper bound

p ∈ P. P is κ-strategically closed if in the two person game of length κ + 1 in which the players

construct an increasing sequence 〈pα | α ≤ κ〉, where player I plays odd stages and player II plays

even stages (choosing the trivial condition at stage 0), player II has a strategy which ensures the

game can always be continued. P is <κ-strategically closed if P is δ-strategically closed for every

δ < κ. Note that if P is κ-directed closed, then P is <κ-strategically closed (so since Add(κ, 1) is

κ-directed closed, Add(κ, 1) is <κ-strategically closed as well). We adopt Hamkins’ terminology

of [9, 8, 7] and say that x ⊆ κ is a fresh subset of κ with respect to P if P is nontrivial forcing,

x ∈ V P, x 6∈ V , yet x ∩ α ∈ V for every α < κ.

From time to time within the course of our discussion, we will refer to partial orderings P as

being Gitik iterations. By this we will mean an Easton support iteration as first given by the

second author in [6], to which we refer readers for a discussion of the basic properties of and

terminology associated with such an iteration. For the purposes of this paper, at any stage δ at

which a nontrivial forcing is done in a Gitik iteration, we assume the partial ordering Qδ with

which we force is either δ-directed closed or is Prikry forcing defined with respect to a normal

measure over δ (although other types of partial orderings may be used in the general case — see

[6] for additional details).

We recall for the benefit of readers the definition given by Hamkins in [10, Section 3] of the

lottery sum of a collection of partial orderings. If A is a collection of partial orderings, then the

lottery sum is the partial ordering ⊕A = {〈P, p〉 | P ∈ A and p ∈ P} ∪ {0}, ordered with 0 below

everything and 〈P, p〉 ≤ 〈P′, p′〉 iff P = P′ and p ≤ p′. Intuitively, if G is V -generic over ⊕A, then

G first selects an element of A (or as Hamkins says in [10], “holds a lottery among the posets in

A”) and then forces with it.1

Finally, we mention that we are assuming familiarity with the large cardinal notions of mea-

1The terminology “lottery sum” is due to Hamkins, although the concept of the lottery sum of partial orderings
has been around for quite some time and has been referred to at different junctures via the names “disjoint sum of
partial orderings,” “side-by-side forcing,” and “choosing which partial ordering to force with generically.”
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surability, strongness, strong compactness, and supercompactness. Interested readers may consult

[11] or [15] for further details. We do note, however, that the measurable cardinal κ is said to

have trivial Mitchell rank if there is no elementary embedding j : V → M generated by a normal

measure U over κ such that M ² “κ is a measurable cardinal”. We explicitly observe that if κ has

trivial Mitchell rank, then κ is not supercompact (and in fact, if κ has trivial Mitchell rank, then

κ is not even 2κ supercompact).

2 The Proofs of Theorems 1 and 2

We begin with the proof of Theorem 2.

Proof: Suppose κ is a Mahlo cardinal, P = Pκ+1 = 〈〈Pα, Q̇α〉 | α ≤ κ〉 is an Easton support

iteration of length κ + 1 with P0 = {∅}, for each α < κ, °Pα “|Q̇α| < κ”, °Pκ “Q̇κ is <κ-

strategically closed”, and κ is Mahlo in V P. Assume without loss of generality that forcing with Q0

over V adds a new subset of ω (so °P0 “Q̇0 adds a new subset of ω”). Let G = Gκ+1 = Gκ ∗G(κ)

be V -generic over P = Pκ ∗ Q̇κ (so G1 is V -generic over P1 = P0 ∗ Q̇0), and let ẋ be a term such

that °P “ẋ is a fresh subset of κ”.

Work for the time being in V [G]. Because °P “ẋ is a fresh subset of κ”, it is the case that

°P “For every η < κ, ẋ ∩ η ∈ V̌ ”. Therefore, for every inaccessible cardinal η < κ, we may

choose a condition p(η) = 〈ṗν | ν ∈ supp(p(η))〉 ∈ G deciding ẋ ∩ η. Since P is an Easton support

iteration, supp(p(η)) ∩ η is a bounded subset of η. Now, using the fact that κ is Mahlo in V [G]

and Fodor’s Theorem applied to the function f(η) = The least ξ such that supp(p(η)) ∩ η ⊆ ξ,

let S ⊆ κ, S ∈ V [G] be stationary such that for η1, η2 ∈ S, supp(p(η1)) ∩ η1 = supp(p(η2)) ∩ η2.

Since 〈p(η) ¹ η | η ∈ S〉 forms a ∆-system, working in V [G], we can find η∗ < κ and p∗ ∈ Pη∗

such that for κ many values of η, it is the case that p(η) ¹ η = p∗. This means we can choose

a condition q∗∗ ∈ G, q∗∗ ≥ p∗ such that q∗∗ °P “For κ many ordinals η < κ, there is p(η) ∈ Ġ

such that p(η) ¹ η = q∗∗ ¹ η∗ and p(η) ‖ ẋ ∩ η”. For the remainder of the proof of Theorem 2, let

q∗∗ ¹ η∗ = p∗∗.

Work now in V . Using the properties of q∗∗ given in the last sentence of the preceding paragraph,
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we define by induction a sequence 〈pt | t ∈ 2<ω〉 of conditions in P, a sequence of ordinals 〈ηt | t ∈
2<ω〉, and a sequence 〈zt | t ∈ 2<ω〉 such that the following hold.

1. If t extends s, then κ > ηt > ηs.

2. pt ¹ ηt = p∗∗.

3. If t extends s, then sup(supp(ps) ∩ κ) < ηt.

4. If t extends s, then pt ≥ ps − ηt.

5. pt ° “ẋ ∩ ηt = zt”.

6. If pt and ps are incompatible, then for some α ≤ max(sup(zt), sup(zs)), it is the case that

zt ∩ α 6= zs ∩ α.

We begin the induction by picking p〈〉 to be a condition such that for η < κ and some z ⊆ η,

p〈〉 ¹ η = p∗∗ and p〈〉 ° “ẋ ∩ η = z”. Set η〈〉 = η and z〈〉 = z.

Suppose now that pt, ηt, and zt are all defined. We define pt_0, ηt_0, zt_0, pt_1, ηt_1, and zt_1.

Note that there must be η > ηt, z, y ⊆ η with z 6= y, and p, q ∈ P such that p ¹ η = p∗∗ = q ¹ η,

p, q ≥ pt − η, p ° “ẋ ∩ η = z”, and q ° “ẋ ∩ η = y”. If not, then it is possible to decide ẋ

completely in V , contradicting our hypothesis that °P “ẋ is a fresh subset of κ”. We consequently

choose such η, p, q, z, and y and define pt_0 = p, ηt_0 = η, zt_0 = z, pt_1 = q, ηt_1 = η, and

zt_1 = y, going under the assumption that we have fixed at the beginning of the construction a

term Ṡ such that °Pκ “Ṡ is a strategy for Q̇κ which has been used to choose ṗκ and q̇κ”. This

completes our induction. Note that for every V [G1]-branch f : ω → 2 through 2<ω, there is an

upper bound pf ∈ P/G1 for the sequence 〈pf¹n | n < ω〉. This is since conditions (2) and (3) ensure

that if t extends s, then pt ¹ ηt = ps ¹ ηs = p∗∗ and supp(ps) ∩ κ < ηt. Thus, the only common

elements of the supports of pt and ps below κ are those of p∗∗. By condition (2), these agree on

supp(p∗∗). By condition (4), pt extends ps on κ, the only common coordinate where conditions

extend. Hence, because °Pκ “Q̇κ is <κ-strategically closed and 〈ṗf¹n
κ | n < ω〉 was constructed

using Ṡ”, it is possible to define an upper bound pf in V [G1] roughly speaking by putting together
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p∗∗, everything in the union of the supports of each pf¹n below κ, and an upper bound to those

conditions occurring at coordinate κ. Because (pf¹n)0 = p〈〉 ¹ 1 ∈ G1 for each n < ω, pf is a

well-defined condition in P/G1.

Working now in V [G1] (or V [H1] where H1 ⊆ P1 is V -generic over P1 with p〈〉 ¹ 1 ∈ H1), define

ηf =
⋃

n<ω ηf¹n and zf =
⋃

n<ω zf¹n. Since V [G1] ² “κ is a Mahlo cardinal”, ηf < κ. Consequently,

because pf °P/G1 “ẋ ∩ ηf = zf” and °P “For every η < κ, ẋ ∩ η ∈ V̌ ”, zf ∈ V . In addition, by

condition (6), if g : ω → 2, g ∈ V [G1], g 6= f is another branch through 2<ω such that g 6= f , then

zg 6= zf . Moreover, for every s ∈ 2<ω, zs is an initial segment of zf iff s is an initial segment of f .

Let H1 be V -generic over P1 such that p〈〉 ¹ 1 ∈ H1, and let r : ω → 2 be a new real added. Let

H be a V -generic subset of P extending H1 such that pr ∈ H. Consider zr. By our observations in

the preceding paragraph, zr ∈ V , and r can be reconstructed from zr as the set
⋃{s ∈ 2<ω | zs is

an initial segment of zr}. It thus immediately follows that r ∈ V . This contradiction to the fact

that (ẋ)H is a fresh subset of κ with respect to P completes the proof of Theorem 2.

¤

Suppose that for some α, δ < κ with δ 6= ω, °Pα “Q̇α adds a new subset of the cardinal δ”.

Assume without loss of generality that α = 0 and δ is the least cardinal to which a new subset is

added. We explicitly observe that since °Pκ “Q̇κ is <κ-strategically closed”, the same inductive

construction as given above remains valid, with every occurrence of ω replaced by an occurrence

of δ.

Having completed the proof of Theorem 2, we turn now to the proof of Theorem 1.

Proof: Let V ² “ZFC + κ is supercompact”. Without loss of generality, we assume that V ² GCH

as well. The partial ordering P to be used in the proof of Theorem 1 is now defined as follows.

For any ordinal δ, let δ′ be the least V -strong cardinal above δ. P = 〈〈Pα, Q̇α〉 | α < κ〉 is the

Gitik iteration of length κ which begins by forcing with Add(ω, 1), i.e., P0 = {∅} and °P0 “Q̇0 =

˙Add(ω, 1)”. P then (possibly) does nontrivial forcing only at those ordinals δ which are, in V ,

Mahlo limits of strong cardinals. At such a stage δ, Pδ+1 = Pδ ∗ L̇δ ∗ Ṙδ, where L̇δ is a term for the

lottery sum of all δ-directed closed partial orderings having rank below δ′. If either V Pδ∗L̇δ = V Pδ ,

7



i.e., the lottery selects trivial forcing at stage δ, or V Pδ∗L̇δ ² “δ is not measurable”, then Ṙδ is a

term for trivial forcing. If V Pδ∗L̇δ ² “δ is measurable” and V Pδ∗L̇δ 6= V Pδ , i.e., the lottery selects

nontrivial forcing at stage δ, then Ṙδ is a term for Prikry forcing defined with respect to some

normal measure over δ.

The intuition behind the above definition of P is as follows. The fact that nothing is done at

stage δ when the lottery selects trivial forcing, i.e., that no Prikry sequence is added, ensures that

V P ² “κ is supercompact”. Since a Prikry sequence is added when a nontrivial forcing at stage δ

preserves the measurability of δ, there will be a partial ordering R ∈ V P such that V P∗Ṙ ² “κ is not

supercompact”. The lottery sum at stage δ, in conjunction with the Prikry forcing, will allow us to

show that in V P, κ’s strong compactness is preserved by nontrivial forcing. Because unboundedly

many in κ Prikry sequences will have been added by P, V P ² “No cardinal below κ is strongly

compact”, i.e., V P ² “κ is the least strongly compact cardinal”.

The following lemmas show that P is as desired.

Lemma 2.1 V P ² “κ is supercompact”.

Proof: We follow the proof of [1, Lemma 2.1]. Let λ ≥ κ+ = 2κ be any regular cardinal. Take

j : V → M as an elementary embedding witnessing the λ supercompactness of κ such that M ² “κ

is not λ supercompact”. By [3, Lemma 2.1], in M , κ is a Mahlo limit of strong cardinals. This

means by the definition of P that it is possible to opt for trivial forcing in the stage κ lottery held

in M in the definition of j(P). Further, M ² “No cardinal δ ∈ (κ, λ] is strong”. This is since

otherwise, in M , κ is supercompact up to a strong cardinal, so by the proof of [3, Lemma 2.4],

κ is supercompact in M . Consequently, in M , above the appropriate condition, j(P) is forcing

equivalent to P ∗ Q̇, where the first nontrivial stage in Q̇ takes place well after λ.

We may now apply the argument of [6, Lemma 1.5]. Specifically, let G be V -generic over P.

Since GCH in V implies that V ² “2λ = λ+”, we may let 〈ẋα | α < λ+〉 be an enumeration in V

of all of the canonical P-names of subsets of Pκ(λ). By [6, Lemmas 1.4 and 1.2] and the fact that

Mλ ⊆ M , we may define an increasing sequence 〈pα | α < λ+〉 of elements of j(P)/G such that if

α < β < λ+, pβ is an Easton extension of pα, every initial segment of the sequence is in M , and
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for every α < λ+, pα+1 ‖ “〈j(β) | β < λ〉 ∈ j(ẋα)”. The remainder of the argument of [6, Lemma

1.5] remains valid and shows that a supercompact ultrafilter U over (Pκ(λ))V [G] may be defined

in V [G] by x ∈ U iff x ⊆ (Pκ(λ))V [G] and for some α < λ+ and some P-name ẋ of x, in M [G],

pα °j(P)/G “〈j(β) | β < λ〉 ∈ j(ẋ)”. (The fact that j′′G = G tells us U is well-defined.) Thus,

°P “κ is λ supercompact”. Since λ was arbitrary, this completes the proof of Lemma 2.1.

¤

Lemma 2.2 Suppose Q ∈ V P is a partial ordering which is κ-directed closed. Then V P∗Q̇ ² “κ is

strongly compact”.

Proof: We follow the proof of [2, Lemma 2.2]. Suppose Q ∈ V P is κ-directed closed. Let λ >

max(κ, |TC(Q̇)|) be an arbitrary regular cardinal large enough so that (2[λ]<κ
)V = ρ = (2[λ]<κ

)V P∗Q̇

and ρ is regular in both V and V P∗Q̇, and let σ = ρ+ = 2ρ. Take j : V → M as an elementary

embedding witnessing the σ supercompactness of κ such that M ² “κ is not σ supercompact”. By

the choice of σ, it is possible to opt for Q in the stage κ lottery held in M in the definition of j(P).

Further, as in Lemma 2.1, since M ² “No cardinal δ ∈ (κ, σ] is strong”, the next nontrivial forcing

in the definition of j(P) takes place well above σ. Thus, in M , above the appropriate condition,

j(P ∗ Q̇) is forcing equivalent to P ∗ Q̇ ∗ Ṡκ ∗ Ṙ ∗ j(Q̇), where °P∗Q̇ “Ṡκ is a term for either Prikry

forcing or trivial forcing”.

The remainder of the proof of Lemma 2.2 is as in the proof of [4, Lemma 2]. As in the proof

of Lemma 2.1, we outline the argument, and refer readers to the proof of [4, Lemma 2] for any

missing details. By the last two sentences of the preceding paragraph, as in [4, Lemma 2], there is

a term τ ∈ M in the language of forcing with respect to j(P) such that if G ∗H is either V -generic

or M -generic over P ∗ Q̇, °j(P) “τ extends every j(q̇) for q̇ ∈ Ḣ”. In other words, τ is a term for a

“master condition” for Q̇. Thus, if 〈Ȧα | α < ρ < σ〉 enumerates in V the canonical P∗ Q̇ names of

subsets of (Pκ(λ))V [G∗H], we can define in M a sequence of P∗ Q̇∗ Ṡκ names of elements of Ṙ∗ j(Q̇),

〈ṗα | α ≤ ρ〉, such that ṗ0 is a term for 〈0, τ〉 (where 0 represents the trivial condition with respect

to R), °P∗Q̇∗Ṡκ
“ṗα+1 is a term for an Easton extension of ṗα deciding ‘〈j(β) | β < λ〉 ∈ j(Ȧα)’ ”,
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and for η ≤ ρ a limit ordinal, °P∗Q̇∗Ṡκ
“ṗη is a term for an Easton extension of each member of the

sequence 〈ṗβ | β < η〉”. If we then in V [G ∗ H] define a set U ⊆ 2[λ]<κ
by X ∈ U iff X ⊆ Pκ(λ)

and for some 〈r, q〉 ∈ G ∗H and some q′ ∈ Sκ either the trivial condition (if Sκ is trivial forcing)

or of the form 〈∅, B〉 (if Sκ is Prikry forcing), in M , 〈r, q̇, q̇′, ṗρ〉 ° “〈j(β) | β < λ〉 ∈ Ẋ” for some

name Ẋ of X, then as in [4, Lemma 2], U is a κ-additive, fine ultrafilter over (Pκ(λ))V [G∗H], i.e.,

V [G ∗H] ² “κ is λ strongly compact”. Since λ was arbitrary, this completes the proof of Lemma

2.2.

¤

Lemma 2.3 V P ² “No cardinal δ < κ is strongly compact”.

Proof: Let λ = iω(κ). Take j : V → M as an elementary embedding witnessing the λ super-

compactness of κ. Suppose Q ∈ V P is Add(κ, 1). By Lemma 2.2, V P∗Q̇ ² “κ is measurable” (since

V P∗Q̇ ² “κ is strongly compact”). Because λ has been chosen large enough, it therefore follows

that MP∗Q̇ ² “κ is measurable”. In addition, as in Lemma 2.2, it is possible to opt for Q in the

stage κ lottery held in M in the definition of j(P). Therefore, by the definition of P, above the

appropriate condition, (j(P ∗ Q̇))κ+1 = Pκ ∗ Q̇κ = Pκ+1 is forcing equivalent in M to P ∗ Q̇ ∗ Ṡκ,

where °P∗Q̇ “Ṡκ is Prikry forcing defined over κ”. This means that in M , °Pκ “By forcing above

a condition ṗ∗κ ensuring that Add(κ, 1) is chosen in the stage κ lottery held in the definition of

j(P), Q̇κ is forcing equivalent to a partial ordering adding a Prikry sequence to κ”. Consequently,

by reflection, for unboundedly many δ < κ, °Pδ
“By forcing above a condition ṗ∗δ ensuring that

Add(δ, 1) is chosen in the stage δ lottery held in the definition of P, Q̇δ is forcing equivalent to a

partial ordering adding a Prikry sequence to δ”.

It now follows that °P “Unboundedly many δ < κ contain Prikry sequences”. To see this, let

γ < κ be fixed but arbitrary. Choose p = 〈ṗα | α < κ〉 ∈ P. Since P is an Easton support iteration,

let ρ > γ be such that for every α ≥ ρ, °Pα “ṗα is a term for the trivial condition”. We may now

find δ > ρ > γ such that °Pδ
“By forcing above a condition ṗ∗δ ensuring that Add(δ, 1) is chosen

in the stage δ lottery held in the definition of P, Q̇δ is forcing equivalent to a partial ordering
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adding a Prikry sequence to δ”. This means that we may find q ≥ p such that q ° “δ contains

a Prikry sequence”. Thus, °P “Unboundedly many δ < κ contain Prikry sequences”. Hence,

by [5, Theorem 11.1], V P ² “Unboundedly many δ < κ (i.e., the successors of those cardinals

having Prikry sequences) contain non-reflecting stationary sets of ordinals of cofinality ω”. By [15,

Theorem 4.8] and the succeeding remarks, it thus follows that V P ² “No cardinal δ < κ is strongly

compact”. This completes the proof of Lemma 2.3.

¤

Lemma 2.4 For R = (Add(κ, 1))V P, V P∗Ṙ ² “κ is not supercompact”. In fact, in V P∗Ṙ, κ has

trivial Mitchell rank.

Proof: Let G ∗H be V -generic over P ∗ Ṙ. If V [G ∗H] ² “κ does not have trivial Mitchell rank”,

then let j : V [G ∗H] → M [j(G ∗H)] be an elementary embedding generated by a normal measure

U ∈ V [G∗H] over κ such that M [j(G∗H)] ² “κ is measurable”. Note that since M =
⋃

α∈Ord j(Vα),

j ¹ V : V → M is elementary. Therefore, because j ¹ κ = id, we may infer that (Vκ)
V = (Vκ)

M .

However, by Theorem 2, we may further infer that (Vκ+1)
M ⊆ (Vκ+1)

V . To see this, let x ⊆ κ,

x ∈ M . Since M ⊆ M [j(G ∗H)] ⊆ V [G ∗H], x ∈ V [G ∗H]. In addition, because (Vκ)
V = (Vκ)

M ,

we know that x ∩ α ∈ V for every α < κ. This means that if x 6∈ V , then x is a fresh subset of κ

with respect to P ∗ Ṙ. Since by Lemma 2.2, κ is strongly compact and hence both measurable and

Mahlo in V [G ∗H], this contradicts Theorem 2. Thus, x ∈ V , so (℘(κ))M ⊆ (℘(κ))V . From this,

it of course immediately follows that (Vκ+1)
M ⊆ (Vκ+1)

V .

Let I = j(G ∗ H). Note that if V ² “δ < κ is a strong cardinal”, then M ² “j(δ) = δ is a

strong cardinal”. Also, M ² “κ is a Mahlo limit of strong cardinals”, since M [j(G ∗ H)] ² “κ

is a Mahlo cardinal”, and forcing can’t create a new Mahlo cardinal. Hence, by the results of

the preceding paragraph, it follows as well that j(P) ¹ κ = Pκ = P and Iκ = G. Further, as

V [G ∗ H] ² “M [I]κ ⊆ M [I]”, H ∈ M [I]. We know in addition that in M , °Pκ∗Q̇κ
“The forcing

beyond stage κ adds no new subsets of 2κ” and κ is a stage at which nontrivial forcing in j(P) can

take place. Consequently, H ∈ M [Iκ+1] = M [G][I(κ)], and M [Iκ+1] ² “κ is measurable”.
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Note that since P is defined by taking Easton supports, P is κ-c.c. in both V and M . Because

P is a Gitik iteration of suitably directed closed partial orderings together with Prikry forcing and

(Vκ)
V = (Vκ)

M , Vκ[G] is the same when calculated in either V [G] or M [G]. It must therefore be

the case that (Add(κ, 1))V [G] = (Add(κ, 1))M [G]. In addition, since (Vκ+1)
M ⊆ (Vκ+1)

V , the fact

P is κ-c.c. in M yields that (Vκ+1)
M [G] ⊆ (Vκ+1)

V [G]. This means that H is M [G]-generic over

(Add(κ, 1))M [G], since H is V [G]-generic over (Add(κ, 1))V [G] = (Add(κ, 1))M [G], and a dense open

subset of (Add(κ, 1))M [G] in M [G] is a member of (Vκ+1)
M [G]. Hence, H must be added by the

stage κ forcing done in M [G] = M [Iκ], i.e., the stage κ lottery held in M [Iκ] must opt for some

nontrivial forcing. By the definition of P and j(P), we must then have that M [Iκ+1] ² “κ contains

a Prikry sequence”. This contradiction to the fact that M [Iκ+1] ² “κ is measurable” completes the

proof of Lemma 2.4.

¤

We note that in general, if j : V → M is an elementary embedding having critical point κ, then

(Vκ+1)
V ⊆ (Vκ+1)

M . To see this, we begin by observing that as in the proof of Lemma 2.4, since

j ¹ κ = id, (Vκ)
V = (Vκ)

M . Without fear of ambiguity, we therefore write Vκ. However, since for

every x ⊆ κ, x ∈ V , j(x) ∈ M , x is definable in M as j(x) ∩ Vκ. In particular, this means that in

Lemma 2.4, it is actually true that (Vκ+1)
V = (Vκ+1)

M .

It could be the case, though, that j : V → M is an elementary embedding with critical point

κ, yet (Vκ+1)
V is a proper subset of (Vκ+1)

M . We briefly outline two examples of this phenomenon,

which are as follows:

1. Let κ < λ be such that κ is a measurable cardinal and λ is a Woodin cardinal. Suppose P is

the stationary tower forcing having critical point κ+ which changes the cofinality of κ+ to ω

(see [12] for a discussion of this partial ordering). Since V P ² “κ is a measurable cardinal”,

let j : V P → M j(P) be an elementary embedding witnessing κ’s measurability. Consider

j ¹ V : V → M . It will then be the case that (Vκ+1)
M contains a subset of κ × κ coding a

well-ordering of (κ+)V of order type κ.

2. Let κ be a measurable cardinal. Take L[µ] as our ground model. Force over L[µ] with the

12



reverse Easton iteration of length κ which adds a Cohen subset of κ to each inaccessible

cardinal δ < κ. Let V be the resulting generic extension. Suppose C is now V -generic over

(Add(κ, 1))V . Standard arguments show that V [C] ² “κ is a measurable cardinal”. We can

therefore once again let j : V [C] → M [j(C)] be an elementary embedding witnessing κ’s

measurability and consider j ¹ V : V → M . It will then be the case that C ∈ (Vκ+1)
M .

On the other hand, if there is no inner model with a strong cardinal, V is the core model, and

j ¹ V : V → M is the restriction of j : V P → M j(P) for P ∈ V (i.e., P is set forcing over V ), then

j ¹ V must be an iterated ultrapower of V starting with an extender over κ. This implies that

(Vκ+1)
V = (Vκ+1)

M . We note that M here need not be a class in V or even be contained in V ,

unless κ is not a limit of measurable cardinals.

Theorem 1 now follows from Lemmas 2.1 – 2.4. By Lemma 2.1, κ is supercompact in V P, and

by Lemma 2.2, in V P, κ’s strong compactness is indestructible under arbitrary κ-directed closed

forcing. By Lemma 2.3, V P ² “κ is the least strongly compact cardinal”. By Lemma 2.4, there is

a nontrivial κ-directed closed forcing R ∈ V P such that V P∗Ṙ ² “κ has trivial Mitchell rank and

hence is not supercompact”. This completes the proof of Theorem 1.

¤

In conclusion to this paper, we ask if it is possible to get a model witnessing the conclusions

of Theorem 1 in which κ is not the least strongly compact cardinal. Since Prikry forcing above a

strongly compact cardinal destroys strong compactness, an answer to this question would require

a different sort of iteration from the one used in the proof of Theorem 1.
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