On partially wellfounded generic ultrapowers

Moti Gitik and Menachem Magidor

Dedicated to Boaz Trakhtenbrot on the occasion of his 85-th Birthday.

Abstract

We construct a model without precipitous ideals but so that for each $\tau < \aleph_3$ there is a normal ideal over \aleph_1 with generic ultrapower wellfounded up to the image of τ .

1 Introduction.

Let κ be a regular uncountable cardinal. For $f, g \in {}^{\kappa}On$ set

 $f <^* g$ iff $\{\alpha < \kappa \mid f(\alpha) < g(\alpha)\}$ contains a closed unbounded subset .

The Galvin -Hajnal rank ||g|| of a function $g \in {}^{\kappa}On$ is defined as follows

$$||g|| = \sup\{||f|| + 1 \mid f <^{*} g\}.$$

By induction on α , the α th canonical function h_{α} is defined (if it exists) as the <*-least function greater than each $h_{\beta}, \beta < \alpha$. If h_{α} exists then it is unique modulo the nonstationary ideal over κ . First κ^+ canonical functions always exist. Hajnal (see [4], 27.11) showed that already in L the ω_2 nd canonical function for $\kappa = \omega_1$ does not exist. By Jech and Shelah [6], the existence of ω_2 nd canonical function is not a large cardinal property. Note that the existence of $f \in \kappa \kappa$ with $||f|| = \kappa^+$ does not necessary imply the existence of κ^+ canonical function over κ . Just, for example, in L there are many functions of the rank ω_2 without the least such function. On the other hand non existence of such f implies large cardinals. Thus, Donder and Koepke [1] showed that then $\kappa \geq \aleph_2$ implies 0^{\dagger} exists and $\kappa = \aleph_1$ implies \aleph_2 is almost $< \aleph_1$ -Erdös cardinal in the core model \mathcal{K} .

An ideal I over κ is called precipitous if every its generic ultrapower is well founded. It is not hard to see that if every generic ultrapower of I is well founded up to the image of $(2^{\kappa})^+$ then I is precipitous. Suppose now that for each $\tau < (2^{\kappa})^+$ there is an ideal over κ with generic ultrapowers well founded up to the image τ . Does this imply the existence of a precipitous ideal?

Our aim is to provide a negative answer. We will show the following:

Theorem 1.1 Suppose that

1. $2^{\aleph_1} = \aleph_2$

- 2. there is an \aleph_1 -Erdös cardinal
- 3. there is a function $f: \omega_1 \to \omega_1$ with $||f|| \ge \omega_2$.

Then for every $\tau < \omega_3$ there exists a normal ideal over \aleph_1 with a generic ultrapower well-founded up to the image of τ .

- **Remark 1.2** 1. Note that in general it is impossible to allow $\tau = \omega_3$. Thus, the cardinality of the forcing is only ω_2 . Hence, if a generic ultrapower is wellfounded up to the image of $\tau = (\omega_3)^V$, then it is fully wellfounded (just taking a big enough elementary submodel (in V) of cardinality ω_2 arbitrary functions to those with the ranges being subsets of ω_3). But this implies an inner model in which ω_1 is a measurable cardinal, see [4]. The original V does not need to have even an inner model with a Ramsey cardinal.
 - 2. The assumption 3 is not very restrictive. Thus by [1], if there is no such a function, then \aleph_2 is almost $< \aleph_1$ -Erdös cardinal in the core model \mathcal{K} . In the last case we can assume that $V = \mathcal{K}$ or just collapse first a non $< \aleph_1$ -Erdös cardinal in \mathcal{K} to be new \aleph_2 .
 - 3. Note that up to $(\aleph_2)^V$ (not its image!) a generic ultrapower by the nonstationary ideal is always wellfounded, just due to the existence of canonical functions. It is possible (consistently) to get to the image of \aleph_1 using the canonical functions, if the nonstationary ideal on \aleph_1 is \aleph_2 -saturated or consistently using a weaker assumptions as was shown in [7].
 - 4. It is an open question whether any large cardinal hypothesis implies (directly, not consistently) the existence of a precipitous ideal on \aleph_1 . In view of 1, a kind of "almost" precipitousness follows from \aleph_1 -Erdös cardinal.

- 5. We do not know whether \aleph_1 -Erdös cardinal is needed for the conclusion of 1.1. Note only that it is easy to show that \aleph_1 must be a weakly compact limit of weakly compact cardinals in L (just the tree property and a generic elementary embedding). Also, if $\aleph_1 = \aleph_1^{\mathcal{K}}$ then at least 0^{\sharp} exists.
- 6. We do not know if the analog of the theorem holds once \aleph_1 is replaced by a bigger cardinal.

2 The game.

Let λ be an \aleph_1 -Erdös cardinal. Fix some $\tau < \lambda$.

Consider the following game \mathcal{G}_{τ} :

Player I starts by picking a stationary subset A_0 of \aleph_1 . Player II chooses a function $f_1: A_0 \to \tau$ and either a partition $\langle B_n | n < \omega \rangle$ of A_0 into at most countably many pieces or a sequence $\langle B_\alpha | \alpha < \aleph_1 \rangle$ of disjoint subsets of \aleph_1 so that

$$\nabla_{\alpha < \omega_1} B_\alpha \supseteq A_0.$$

The first player then supposed to respond by picking an ordinal $\alpha_2 < \lambda$ and a stationary set A_2 which is a subset of A_0 and of one of B_n 's or B_{α} 's.

At the next stage the second player supplies again a function $f_3 : A_2 \to \tau$ and either a partition $\langle B_n | n < \omega \rangle$ of A_2 into at most countably many pieces or a sequence $\langle B_\alpha | \alpha < \aleph_1 \rangle$ of disjoint subsets of \aleph_1 so that

$$\nabla_{\alpha < \omega_1} B_\alpha \supseteq A_2.$$

The first player then supposed to respond by picking a stationary set A_4 which is a subset of A_2 and of one of B_n 's or B_{α} 's on which everywhere f_1 is either above f_3 or equal f_3 or below f_3 . In addition he picks an ordinal $\alpha_4 < \lambda$ such that

$$\alpha_2 < \alpha_4$$
 iff $f_1 \upharpoonright A_4 < f_3 \upharpoonright A_4$.

Intuitively, α_{2n} pretends to represent f_{2n-1} in a generic ultrapower.

Continue further in the same fashion.

Player I wins if the game continues infinitely many moves. Otherwise Player II wins. Clearly it is a determined game.

Let us argue that the second player cannot have a winning strategy.

Lemma 2.1 For each $\tau < \lambda$ Player II does not have a winning strategy in the game \mathcal{G}_{τ} .

Proof. Suppose otherwise. Let σ be a strategy of two. Find a set $X \subset \lambda$ of cardinality \aleph_1 such that σ does not depend on ordinals picked from X. In order to get such X let us consider a structure

$$\mathfrak{A} = \langle H(\lambda), \in, \lambda, \tau, \mathcal{P}(\aleph_1), \mathcal{G}, \sigma \rangle$$

Let X be a set of \aleph_1 indiscernibles for \mathfrak{A} .

Pick now a countable elementary submodel M of $H(\chi)$ for $\chi > \lambda$ big enough with $\sigma, X \in M$. Let $\alpha = M \cap \omega_1$. Let us produce an infinite play in which the second player uses σ . This will give us the desired contradiction.

Consider the set $S = \{f(\alpha) | f \in M, f \text{ is a partial function from } \omega_1 \text{ to } \tau\}$. Obviously, S is countable. Hence we can fix an order preserving function $\pi : S \to X$.

Let one start with $A_0 = \omega_1$. Consider $\sigma(A_0)$. Clearly, $\sigma(A_0) \in M$. It consists of a function $f_1 : A_0 \to \tau$ and, say a sequence $\langle B_{\xi} | \xi < \aleph_1 \rangle$ of disjoint subsets of \aleph_1 so that

$$\nabla_{\xi < \omega_1} B_{\xi} \supseteq A_0.$$

Now, $\alpha \in A_0$, hence there is $\xi^* < \alpha$ such that $\alpha \in B_{\xi^*}$. Then $B_{\alpha^*} \in M$, as $M \supseteq \alpha$. Hence, $A_0 \cap B_{\xi^*} \in M$ and $\alpha \in A_0 \cap B_{\xi^*}$. Let $A_2 = A_0 \cap B_{\xi^*}$. Pick $\alpha_2 = \pi(f_1(\alpha))$.

Consider now the answer of two which plays according to σ . It does not depend on α_2 , hence it is in M. Let it be a function $f_3 : A_2 \to \tau$ and, say a sequence $\langle B_{\xi} | \xi < \aleph_1 \rangle$ of disjoint subsets of \aleph_1 so that

$$\nabla_{\xi < \omega_1} B_{\xi} \supseteq A_2.$$

As above find $\xi^* < \alpha$ such that $\alpha \in B_{\xi^*}$. Then $B_{\alpha^*} \in M$, as $M \supseteq \alpha$. Hence, $A_2 \cap B_{\xi^*} \in M$ and $\alpha \in A_2 \cap B_{\xi^*}$. Let $A'_2 = A_2 \cap B_{\xi^*}$. Split it into three sets $C_{<}, C_{=}, C_{>}$ such that

$$C_{<} = \{\nu \in A'_{2} | f_{3}(\nu) < f_{1}(\nu) \},\$$
$$C_{=} = \{\nu \in A'_{2} | f_{3}(\nu) = f_{1}(\nu) \},\$$
$$C_{>} = \{\nu \in A'_{2} | f_{3}(\nu) > f_{1}(\nu) \}.$$

Clearly, α belongs to only one of them, say to C_{\leq} . Set then $A_4 = C_{\leq}$. Then, clearly, $A_4 \in M$, it is stationary and $f_3(\alpha) < f_1(\alpha)$. Set $\alpha_4 = \pi(f_3(\alpha))$.

Continue further in the same fashion.

It follows that the first player has a winning strategy.

3 The construction of an ideal

Let $\tau < \aleph_3$. We like to construct an ideal on \aleph_1 with a generic ultrapower wellfounded up to the image of τ .

Fix a winning strategy σ for Player I in the game \mathcal{G}_{τ} . Set $I = \{X \subseteq \omega_1 \mid \sigma \text{ never picks } X\}.$

Lemma 3.1 I is a normal proper ideal over ω_1 .

Proof. Let us show for example the ω_1 -completeness. Thus let that $\langle B_n | n < \omega \rangle$ be a partition of a set $A \in I^+$. Consider a game according to σ in which A appears as a move of the player one. Let two to answer by $\langle B_n | n < \omega \rangle$ (and arbitrary function). Then the answer of one according to σ will be a subset of one of B_n 's. But this means that this B_n is I-positive. \Box

Fix a sequence $\langle h_{\alpha} | \alpha < \aleph_2 \rangle$ of the first \aleph_2 canonical functions from ω_1 to ω_1 .

We would like to have a function that represents $(\aleph_2)^V$ in a generic ultrapower. If there exists the \aleph_2 nd canonical function then it will be as desired. Here we do not assume its existence, but rather a weaker property that there is $f : \omega_1 \to \omega_1$ with $||f|| = \omega_2$. Clearly, such f is above each $h_{\alpha}, \alpha < \omega_2$ (modulo the nonstationary ideal). The problem is that there may be many such f's without the least one. The way to overcome this will be to find an ideal $J \supseteq I$ which has have the J-least function above all canonical functions. Proceed as follows. Set

$$S = \{ f \in {}^{\omega_1}\omega_1 \mid ||f|| \ge \omega_2 \}.$$

Basically we let Player II to play functions in S and Player I to respond using the strategy σ . Find a function $h \in S$, a finite play $\vec{t} = \langle t_1, ..., t_n \rangle$ and an ordinal η such that

- 1. \vec{t} was played according σ
- 2. h was picked by Player II at his last move t_{n-1}
- 3. Player I responded with η
- 4. there is no continuation of \vec{t} , with Player I using σ , in which a response to a function from S less than η .

Note that such $\eta \geq \omega_2$, since otherwise Player II can easily win by playing h_η at the very next move. Then Player I should respond respond by some $\eta_1 < \eta$ on which II respond by

 h_{η_1} etc.

Also note that such h is not necessary unique, but any other function attached to η which appears further in the game will be equal to h on the corresponding set. Set now

 $J = \{X \subseteq \omega_1 \mid X \text{ is never picked by } \sigma \text{ in the continuation of } \vec{t}\}.$

The proof of the next lemma repeats those of Lemma 3.1.

Lemma 3.2 J is a normal proper ideal over ω_1 extending I.

Lemma 3.3 Generic ultrapowers by J are wellfounded at least up to $(\omega_2)^V + 1$. Moreover $(\omega_2)^V$ is represented by h.

Proof. Just note, that by the choice of h and the definition of J, the only functions that are below h on a J-positive set are the canonical functions $h_{\alpha}, \alpha < \omega_2$.

Assume without loss of generality that for each $\alpha < \aleph_2$ we have $h_{\alpha}(\nu) < h(\nu)$, for each $\nu < \omega_1$. Also fix for each $\nu < \omega_1$ a function $H_{\nu} : \omega \to_{onto} h(\nu)$. Let

$$A_{n\alpha} = \{\nu < \omega_1 \mid H_{\nu}(n) = h_{\alpha}(\nu)\}.$$

Lemma 3.4 Let $X \in J^+$. Then for each $n < \omega$ there is $\alpha < \omega_2$ such that $X \cap A_{n\alpha} \in J^+$.

Proof. By 3.3 a generic ultrapower with J is wellfounded up to $\omega_2^V + 1$ and ω_2^V is represented by h.

Let $G \subseteq J^+$ be a generic ultrafilter with $X \in G$ and $j : V \to M_G = V \cap {}^{\omega_1 >} V/G$ be the corresponding elementary embedding. We may assume that the ordinals of M up to $[h]_G$ are just ω_2^V . Consider $H = [\langle H_\nu | \nu < \omega_1^V]_G$. Then, $H : \omega \to_{onto} \omega_2^V$ in M_G . So, for some $\alpha < \omega_2^V$ we have $H(n) = \alpha$. But then $X \cap A_{n\alpha} \in G$ and be are done.

The following lemma is similar.

Lemma 3.5 Let $X \in J^+$. Then for each $m < \omega$ there is n > m so that $|\{\alpha < \omega_2 \mid X \cap A_{n\alpha} \in J^+\}| = \aleph_2$.

Proof. Just otherwise X or its extension will force that the range of H (as in 3.4) will be bounded in ω_2^V .

Now we will use an argument similar to those of [3] in order to extend J to an ideal with the desired property.

Let $\langle f_{\alpha} \mid \alpha < \aleph_2 \rangle$ be an enumeration of the set of all functions from ω_1 to τ (recall that τ is a fixed ordinal less than \aleph_3 and $2^{\aleph_1} = \aleph_2$). Fix an enumeration $\langle X_{\alpha} \mid \alpha < \aleph_2 \rangle$ of *J*-positive sets.

By 3.5 there is $n < \omega$ such that

$$|\{\alpha < \omega_2 \mid A_{n\alpha} \in J^+\}| = \aleph_2$$

Suppose for simplicity that n = 0. Let

$$\langle A_{0\tau(\xi)} \mid \xi < \omega_2 \rangle$$

be a one to one enumeration of this set.

We construct by induction a sequence of ordinals $\langle \xi_{0\alpha} | \alpha < \omega_2 \rangle$ and a sequence of J positive sets $\langle C_{0\alpha} | \alpha < \omega_2 \rangle$. Let $\alpha < \omega_2$. If there is $\xi < \omega_2$ such that $\xi \neq \xi_{0\beta}$ for each $\beta < \alpha$ and $X_{\alpha} \cap A_{0\tau(\xi)} \in J^+$, then let $\xi_{0\alpha}$ be the least such ξ . We would like now to attach an ordinal to the function f_{α} . So let us play the game \mathcal{G} (which continues \vec{t}) where the player one uses the strategy σ until the stage at which the player one plays $X_{\alpha} \cap A_{0\tau(\xi)}$. All the previous move do not matter much here, but we fix some such play. Let the player two respond by $X_{\alpha} \cap A_{0\tau(\xi)}$ and f_{α} . The strategy σ provides then the answer of the player one. It consists of a subset $C_{0\alpha}$ of $X_{\alpha} \cap A_{0\tau(\xi)}$ and an ordinal $\eta_{0\alpha}$.

 $I_{0\alpha} = \{X \subseteq \omega_1 \mid \sigma \text{ never picks } X \text{ in all possible continuations of the play started above.}\}$ If there is no such ξ then

$$X_{\alpha} \subseteq \bigtriangledown_{\varepsilon < \omega_1} A_{0\tau(\xi_{\beta_{\varepsilon}})},$$

where $\langle \beta_{\varepsilon} | \varepsilon < \omega_1 \rangle$ is an enumeration of α . Let then $\xi_{0\alpha}$ be the least ordinal above all $\xi_{0\beta}$ with $\beta < \alpha$. Replace X_{α} be \aleph_1 and then proceed with it as above.

Set $I_0 = \bigcap \{I_{0\alpha} | \alpha < \aleph_2\}$. Then I_0 is a normal ideal over \aleph_1 , since each of $I_{0\alpha}$ is such. The next lemma follows from the construction above.

Lemma 3.6 For each $X \in J^+$ we have $X \in I_{0\alpha}$, for some $\alpha < \aleph_2$ or $X \subseteq \{\nu < \omega_1 | \exists \beta < \nu \in A_{0\zeta_\beta}\}$ mod J, for some sequence $\langle \zeta_\beta | \beta < \omega_1 \rangle$ of ordinals below ω_2 .

As in [3] we can now deduce the following:

Lemma 3.7 Let $X \subseteq \omega_1$. Then $X \in I_0$ iff $X \subseteq \{\nu < \omega_1 | \exists \beta < \nu\}$ $\nu \in Y_{\beta}\}$ mod J, for some sequence $\langle Y_{\beta} | \beta < \omega_1 \rangle$ such that for some sequence $\langle \alpha_{\beta} | \beta < \omega_1 \rangle$ of ordinals below ω_2 we have $Y_{\beta} \subseteq A_{0\tau(\xi_{\alpha_{\beta}})}$ and $Y_{\beta} \in I_{0\alpha_{\beta}}$.

Let now n = 1. Fix some $\gamma < \omega_2$. We apply 3.5 to find the least $n_{\gamma} \ge 1$ such that the set

$$|\{\alpha < \omega_2 | A_{n_\gamma \alpha} \in I_{0\gamma}^+\}| = \aleph_2.$$

Let

$$\langle A_{n_{\gamma}\tau(\xi)}|\xi<\omega_2\rangle$$

be a one to one enumeration of this set. For each $\xi < \omega_2$ we would like to attach an ordinal to a restriction of f_{ξ} to an $I_{0\gamma}$ positive subset of $A_{n_{\gamma}\tau(\xi)}$.

Proceed as above. Define recursively sequences $\langle \xi_{\langle 0\gamma,1\alpha\rangle} | \alpha < \omega_2 \rangle$ and $\langle C_{\langle 0\gamma,1\alpha\rangle} | \alpha < \omega_2 \rangle$.

At stage α consider the α -th set X_{α} in $I_{0\gamma}$. If there is $\xi < \omega_2$ such that $\xi \neq \xi_{\langle 0\gamma,1\beta\rangle}$, for each $\beta < \alpha$ and $X_{\alpha} \cap A_{n_{\gamma}\tau(\xi)} \in I_{0\gamma}^+$, then let $\xi_{\langle 0\gamma,1\alpha\rangle}$ be the least such ξ . We would like to shrink $I_{0\gamma}$ below $X_{\alpha} \cap A_{n_{\gamma}\tau(\xi_{\langle 0\gamma,1\alpha\rangle})}$ in order to decide an ordinal which will correspond to f_{α} . As above we fix a play according to σ which is a continuation of the previous play (the one from the definition of $I_{0\gamma}$ reaching $X_{\alpha} \cap A_{n_{\gamma}\tau(\xi_{\langle 0\gamma,1\alpha\rangle})}$. Let the second player plays at his next move $X_{\alpha} \cap A_{n_{\gamma}\tau(\xi_{\langle 0\gamma,1\alpha\rangle})}$ and f_{α} . Apply the strategy σ . It supplies an $I_{0\gamma}$ positive subset $C_{\langle 0\gamma,1\alpha\rangle}$ of $X_{\alpha} \cap A_{n_{\gamma}\tau(\xi_{\langle 0\gamma,1\alpha\rangle})}$ and an ordinal $\eta_{0\gamma,1\alpha}$. This will be the ordinal corresponding to $f_{\alpha} \upharpoonright C_{\langle 0\gamma,1\alpha\rangle}$.

Let

 $I_{\langle 0\gamma,1\alpha\rangle} = \{X \subseteq \omega_1 \mid \sigma \text{ never picks } X \text{ in all possible continuations of the play started above.}\}$ If there is no such ξ then let $\xi_{\langle 0\gamma,1\alpha\rangle}$ be the least ordinal above all $\xi_{\langle 0\gamma,1\beta\rangle}$ for $\beta < \alpha$. Take ω_1 instead of X_{α} and run the construction above.

Set $I_1 = \bigcap \{ I_{0\gamma,1\alpha} \mid \gamma, \alpha < \aleph_2 \}$. Then I_1 is a normal ideal over \aleph_1 , since each of $I_{\langle 0\gamma,1\alpha \rangle}$ is such.

Continue similar and define I_s and I_n for each $n < \omega$ and $s \in [\omega \times \omega_2]^{<\omega}$. Let F_s and F_n be the corresponding dual filters. Finally set

$$I_{\omega} =$$
 the closure under ω unions of $\bigcup_{n < \omega} I_n$

Let F_{ω} be the corresponding dual filter.

The following lemmas of [3] transfer directly to the preset context.

Lemma 3.8 $F \subseteq F_0 \subseteq ... \subseteq F_n \subseteq ... \subseteq F_\omega$ and $I \subseteq J \subseteq I_0 \subseteq ... \subseteq I_n \subseteq ... \subseteq I_\omega$.

Lemma 3.9

$$F_{\omega} = \{ X \subseteq \omega_1 | \exists \langle X_n | n < \omega \rangle \forall n < \omega X_n \in F_n \quad X = \bigcap_{n < \omega} X_n \}$$

and

$$I_{\omega} = \{ X \subseteq \omega_1 | \exists \langle X_n | n < \omega \rangle \forall n < \omega X_n \in I_n \quad X = \bigcup_{n < \omega} X_n \}$$

Lemma 3.10 I_{ω} is a proper ω_1 -complete filter over ω_1 .

Lemma 3.11 If $\langle Y_{\beta}|\beta < \omega_1 \rangle$ is a sequence of sets in I_{ω} then the set

$$Y = \{\nu < \kappa | \quad \exists \beta < \nu \quad \nu \in Y_{\beta}\}$$

is in I_{ω} as well and hence I_{ω} is normal.

Lemma 3.12 A set X is in I_{ω}^+ iff $X \in F_s$, for some $s \in [\omega \times \omega_2]^{<\omega}$.

Now we are ready to show the desired result.

Theorem 3.13 Let G be a generic subset of I^+_{ω} and $j_G : V \to M_G = V \cap {}^{\omega_1}V/G$ be the corresponding elementary embedding. Then M_G is wellfounded at least up to $j_G(\tau)$.

Proof. Suppose that $\langle \dot{g}_n | n < \omega \rangle$ is a sequence of I_{ω}^+ -names of old (in V) functions from $\omega_1 \to \tau$.

Let $G \subseteq I_{\omega}^+$ be a generic ultrafilter. Pick a set $X_0 \in G$ and a function

$$g_0:\omega_1\to\tau$$

in V such that

$$X_0 \| -_{I^+_\omega} \dot{g_0} = \check{g_0}.$$

Let $\alpha_0 < (\omega_2)^V$ be so that $f_{\alpha_0} = g_0$.

Apply Lemma 3.12 to X_0 . There is a sequence s_0 with F_{s_0} defined and so that $X_0 \in F_{s_0}$. Recall now the definition of the filters $F_{s_0} \cap_{\langle |s_0|\alpha \rangle}$ which extend F_{s_0} at the very next stage of the construction. There will be $\beta_0 < \kappa^+$ and $n_0 > |s_0|$ such that $A_{n_0\tau(\alpha_0)} \in F_{s_0} \cap_{\langle |s_0|\beta_0\rangle}$. Denote by η_0 the the ordinal attached to f_{α_0} at the level of s_0 in the construction of $F_{s_0}^+ \cap_{\langle |s_0|\beta_0\rangle}$. By shrinking if necessary we can assume that $A_{n_0\tau(\alpha_0)} \cap X_0 \in F_t$ implies that the sequence $s_0 \cap \langle |s_0|\beta_0\rangle$ is an extension of the sequence t or vice verse. Without loss of generality we can assume that $A_{n_0\tau(\alpha_0)} \cap X_0 \in G$, just otherwise replace X_0 by arbitrary positive subset and use density.

Continue now below $A_{n_0\tau(\alpha_0)} \cap X_0$ and pick $X_1 \in G$ such that for some function

$$g_1: \kappa \to \tau$$

in V we have

$$X_1 \models_{F^+_\omega} \dot{g_1} = \check{g_1}.$$

Let $g_1 = f_{\alpha_1}$. Again, by 3.12, there is a sequence s_1 extending s_0 with F_{s_1} defined and so that $X_1 \in F_{s_1}$. Recall now the definition of the filters $F_{s_1 \cap \langle |s_1| \alpha \rangle}$ which extend F_{s_1} at the very next stage of the construction. There will be $\beta_1 < \kappa^+$ and $n_1 > |s_1|$ such that $A_{n_1\tau(\alpha_1)} \in F_{s_1 \cap \langle |s_1|\beta_1 \rangle}$. Denote by η_1 the the ordinal attached to f_{α_1} at the level of s_1 in the construction of $F_{s_1 \cap \langle |s_1|\beta_1 \rangle}^+$. By shrinking if necessary we can assume that $A_{n_1\tau(\alpha_1)} \cap X_1 \in F_t$ implies that the sequence $s_1 \cap \langle |s_1|\beta_1 \rangle$ is an extension of the sequence t or vice verse. Without loss of generality we can assume that $A_{n_1\tau(\alpha_1)} \cap X_1 \in G$, just otherwise replace X_1 by arbitrary positive subset and use density.

Continue the process for each $n < \omega$. There will be $k < m < \omega$ with $\rho_k \leq \rho_m$. Then the set

$$\{\nu \in X_m \cap A_{n_m \alpha_m} | f_{\alpha_k}(\nu) \le f_{\alpha_m}(\nu)\} \in F_{s_m \frown \langle |s_m|\beta_m \rangle}.$$

But $X_m \cap A_{n_m \alpha_m} \in G$ as well. Then,

$$\{\nu \in X_m \cap A_{n_m \alpha_m} | f_{\alpha_k}(\nu) \le f_{\alpha_m}(\nu) \} \in G,$$

just no elements of G can be outside of $X_m \cap A_{n_m\alpha_m} \pmod{F \subseteq F_\omega}$ since all of them are in F_t 's for sequences t which are subsequences of s_n , for some $n < \omega$.

Actually the argument provides a bit more information. Thus the following holds:

Theorem 3.14 Assume that $2^{\aleph_1} = \aleph_2$ and $||f|| = \omega_2$, for some $f : \omega_1 \to \omega_1$. Suppose that Player I has a winning strategy in the game \mathcal{G}_{τ} , for some $\tau < \aleph_3$, then there is a normal ideal on \aleph_1 with a generic ultrapower wellfounded up to the image of τ .

Proof. Note that the construction of I_{ω} above relays only on the strategy for the player one in the game \mathcal{G}_{τ} .

The opposite direction is true as well:

Theorem 3.15 Suppose that J is a normal ideal on \aleph_1 with a generic ultrapower well founded up to the image of τ (for some ordinal τ), then Player I has a winning strategy in the game \mathcal{G}_{τ} .

Proof. Just start with ω_1 or any *J*-positive set. At a stage 2n - 1(n > 0) the second player responds with a function $f: A_{2n-2} \to \tau$ and, say, a sequence $\langle B_{\alpha} | \alpha < \aleph_1 \rangle$ such that

$$\nabla_{\alpha < \omega_1} B_\alpha \supseteq A_{2n-2}.$$

Then one of B_{α} 's should have the intersection with A_{2n-2} in J^+ (J is normal and we assume that $A_{2n-2} \in J^+$). Pick the least α such that $A_{2n-2} \cap B_{\alpha} \in J^+$. Shrink then $A_{2n-2} \cap B_{\alpha}$ to a set deciding the value of $[f]_{\dot{G}}$ in the generic ultrapower. Let A_{2n} be such a set.

The above defines a winning strategy for the player one in the game \mathcal{G}_{τ} .

Acknowledgement. We would like to thank A. Ferber and A. Rinot for their comments and remarks.

References

- H-D. Donder and P. Koepke, On the consistency strength of 'Accessible' Jonsson Cardinals and of the Chang Conjecture, APAL 25 (1983), 233-261
- [2] M. Foreman, Ideals and Generic Elementary Embeddings, in Handbook of Set Theory, to appear.
- [3] M. Gitik, On normal precipitous ideals, www.math.tau.ac.il/~gitik
- [4] T. Jech, Set Theory, 3rd addittoin.
- [5] T. Jech and K. Prikry, On ideals of sets and the power set operation, Bull.Amer. Math. Soc. 82(4), 593-595, 1976.
- [6] T. Jech and S. Shelah, A note on canonical functions, Israel J. Math. 68(1989),376-380.
- [7] P. Larson and S. Shelah, Bounding by canonical functions, with CH, J. Math. Logic 3(2), 193-215, 2003.
- [8] W. Mitchell, The covering lemma, in Handbook of Set Theory, to appear.

School of Mathematical Sciences Tel Aviv University Tel Aviv 69978 Israel gitik@post.tau.ac.il

Institute of Mathematics The Hebrew University of Jerusalem Jerusalem 91904 Israel menachem@math.huji.ac.il