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Abstract

The following pcf results are proved:
1. Assume that κ > ℵ0 is a weakly compact cardinal. Let µ > 2κ be a singular cardi-

nal of cofinality κ. Then for every regular λ < pp+Γ(κ)(µ) there is an increasing sequence

⟨λi | i < κ⟩ of regular cardinals converging to µ such that λ = tcf(
∏

i<κ λi, <Jbd
κ
).

2. Let µ be a strong limit cardinal and θ a cardinal above µ. Suppose that at least
one of them has an uncountable cofinality. Then there is σ∗ < µ such that for every
χ < θ the following holds:

θ > sup{sup pcfσ∗−complete(a) | a ⊆ Reg ∩ (µ+, χ) and |a| < µ}.

As an application we show that:
if κ is a measurable cardinal and j : V → M is the elementary embedding by a κ–
complete ultrafilter over a measurable cardinal κ, then for every τ the following holds:

1. if j(τ) is a cardinal then j(τ) = τ ;

2. |j(τ)| = |j(j(τ))|;
3. for any κ–complete ultrafilter W on κ, |j(τ)| = |jW (τ)|.
The first two items provide affirmative answers to questions from [2] and the third

to a question of D. Fremlin.

1 Introduction

We address here the following question:

Suppose κ is a measurable cardinal, U a κ–complete non-trivial ultrafilter over κ and

j : V → M the corresponding elementary embedding. Can one characterize cardinals moved

by j?

∗We are grateful to Menachem Magidor for his comments. Gitik was partially supported by ISF grant
234/08

†Shelah was partially supported by ISF grant 1053/11. This is paper 1013 on Shelah’s publication list.
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There are trivial answers. For example:

τ is moved by j iff cof(τ) = κ or there is some δ < τ with j(δ) ≥ τ .

Also, assuming GCH, it is not hard to find a characterization in terms not mentioning j.

However, it turns out that an answer is possible in terms not mentioning j already in

ZFC (Theorem 3.12):

Let τ be a cardinal. Then either

1. τ < κ and then j(τ) = τ ,

or

2. κ ≤ τ ≤ 2κ and then j(τ) > τ , 2κ < j(τ) < (2κ)+,

or

3. τ ≥ (2κ)+ and then j(τ) > τ iff there is a singular cardinal µ ≤ τ of cofinality κ above

2κ such that ppΓ(κ)(µ) ≥ τ , and if τ ∗ denotes the least such µ, then

τ ≤ ppΓ(κ)(τ
∗) < j(τ) < ppΓ(κ)(τ

∗)+.

Straightforward conclusions of this result provide affirmative answers to questions men-

tioned in the abstract.

A crucial tool here is PCF–theory and specially Revisited GCH Theorem [5] Sh460.

A new result involving weakly compact cardinal is obtained (Theorem 2.1):

Assume that κ > ℵ0 is a weakly compact cardinal. Let µ > 2κ be a singular cardinal of

cofinality κ. Then for every regular λ < pp+
Γ(κ)(µ) there is an increasing sequence ⟨λi | i < κ⟩

of regular cardinals converging to µ such that λ = tcf(
∏

i<κ λi, <Jbd
κ
).

Also a bit sharper version of [5] Sh460, 2.1 for uncountable cofinality is proved (Theorem

2.5):

Let µ be a strong limit cardinal and θ a cardinal above µ. Suppose that at least one of

them has an uncountable cofinality. Then there is σ∗ < µ such that for every χ < θ the

following holds:

θ > sup{sup pcfσ∗−complete(a) | a ⊆ Reg ∩ (µ+, χ) and |a| < µ}.

The first author proved a version of 3.12 assuming certain weak form of the Shelah Weak

Hypothesis (SWH)1 and using [3] Sh371. Then the second author was able to show that the

actual assumption used holds in ZFC. All PCF results of the paper are due solely to him.

1Consistency of negations of SWH is widely open except very few instances.
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Let us recall the definitions of few basic notions of PCF theory that will be used here.

Let a be a set of regular cardinals above |a|.

pcf(a) = {tcf((
∏

a, <J)) | J is an ideal on a

and (
∏

a, <J) has true cofinality }.

Let ρ a cardinal.

pcfρ−complete(a) = {tcf((
∏

a, <J)) | J is a ρ− complete ideal on a

and (
∏

a, <J) has true cofinality }.

Let η be a cardinal.

J<η[a] = {b ⊆ a | for every ultrafilter D on b, cf(
∏

b, <D) < λ}.

Let λ be a singular cardinal.

ppΓ(κ)(λ) = ppΓ(κ+,κ)(λ) = sup{tcf((
∏

a, <J)) | a is a set of κ regular cardinals unbounded in λ,

J is a κ− complete ideal on a which includes Jbd
a and (

∏
a, <J) has true cofinality }.

pp+
Γ(κ)(λ) denotes the first regular without such representation. 2

2 PCF results.

Theorem 2.1 Assume that κ > ℵ0 is a weakly compact cardinal. Let µ > 2κ be a singular

cardinal of cofinality κ. Then for every regular λ < pp+
Γ(κ)(µ) there is an increasing sequence

⟨λi | i < κ⟩ of regular cardinals converging to µ such that λ = tcf(
∏

i<κ λi, <Jbd
κ
).

Remark 2.2 It is possible to remove the assumption µ > 2κ. Just [4](Sh430) § 6, 6.7A

should be used to find the pcf-generators in the proof below. See also 6.3 of Abraham

-Magidor handbook article [1].

2Note that pp+Γ(κ)(λ) ≤ (ppΓ(κ)(λ))
+ and it is open if pp+Γ(κ)(λ) < (ppΓ(κ)(λ))

+ can ever occur (see

[3],Sh355, p.41.)

3



Proof. By No Hole Theorem (2.3, p.57 [3]), there are a κ–complete ideal I1 on κ and a

sequence of regular cardinals λ⃗1 = ⟨λ1
i | i < κ⟩ with µ = limI1 λ⃗

1 such that

λ = tcf(
∏

i<κ λ
1
i , <I1).

Denote the set {λ1
i | i < κ} by a1. Let a2 = pcf(a1).

Without loss of generality assume that λ = maxpcf(a1). Note that by [3] the following

holds:

1. a1 ⊆ a2 ⊆ Reg \ κ++,

2. pcf(a2) = a2,

3. | pcf(a2)| ≤ 2κ.

By [3]([Sh345a, 3.6, 3.8(3)) there is a smooth and closed generating sequence for a1 (here

we use 2κ < µ) which means a sequence ⟨bθ | θ ∈ a2⟩ such that

1. θ ∈ bθ ⊆ a2,

2. θ ̸∈ pcf(a2 \ bθ),

3. bθ = pcf(bθ),

4. θ1 ∈ bθ2 implies bθ1 ⊆ bθ2 ,

5. θ = maxpcf(bθ).

Then by [3][Sh345a,3.2(5)]:

(*)1: if c ⊆ a2, then for some finite d ⊆ pcf(c) we have c ⊆ pcf(c) ⊆
∪
{bθ | θ ∈ d}.

The next claim is a consequence of [5](Sh460, 2.1):

Claim 1 There is σ∗ < κ such that for every a ⊂ Reg ∩ (κ+, µ) of cardinality less than κ

there is a sequence ⟨aα | α < σ∗⟩ such that

1. a =
∪

α<σ∗
aα,

2. max pcf(aα) < µ, for every α < σ∗.

Proof. The cardinal κ is a strong limit, so we can apply [5](Sh460, 2.1) to κ and µ. Hence

there is σ∗ < κ such that for every a ⊂ Reg ∩ (κ+, µ) of cardinality less than κ we have

pcfσ+
∗ −complete(a) ⊆ µ. This means that the σ+

∗ –complete ideal generated by J<µ(a) is every-

thing, i.e. P(a). See 8.5 of [1] for the detailed argument. So there are aα’s in J<µ(a), for
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α < σ∗ such that a =
∪

α<σ∗
aα. But then also max pcf(aα) < µ, for every α < σ∗.

� of the claim.

Let σ∗ < κ be given by the claim. Let i < κ. Apply the claim to the set a1i := {λ1
j | j < i}.

So there is a sequence ⟨aiα | α < σ∗⟩ such that

1. a1i =
∪

α<σ∗
aiα,

2. max pcf(aiα) < µ, for every α < σ∗.

Now, by (*)1, for every α < σ∗,

pcf(aiα) ⊆
∪

{bθ | θ ∈ diα},

for some finite diα ⊆ pcf(aiα).

Set di =
∪

α<σ∗
diα. Then di is a subset of µ of cardinality ≤ σ∗. In addition we have

di ⊆ pcf(a1i ) and a1i ⊆
∪
{bθ | θ ∈ di}.

Let ⟨θi,ϵ | ϵ < σ∗⟩ be a listing of di.

Claim 2 There are a function g and u⃗ = ⟨uϵ | ϵ < σ∗⟩ such that

1. g : κ → κ is increasing,

2. ξ ≤ g(ξ), for every ξ < κ,

3. κ =
∪

ϵ<σ∗
uϵ,

4. for any ϵ < σ∗ and ξ < η < κ the following holds:

λ1
ξ ∈ bθg(η),ϵ iff ξ ∈ uϵ.

Proof. Here is the place to use the weak compactness of κ.

We will define a κ–tree T and then will use its κ–branch.

Fix η < κ. Let P ⊆ σ∗ × η. Define a set

AP := {α ∈ (η, κ) | ∀ξ < η∀ϵ < σ∗(⟨ϵ, ξ⟩ ∈ P ⇔ λ1
ξ ∈ bθα,ϵ)}.

Note that always there is P ⊆ σ∗ × η with |AP | = κ. Just |P(σ∗ × η)| < κ, so the function

α 7−→ ⟨⟨ϵ, ξ⟩ | ϵ < σ∗, ξ < η and λ1
ξ ∈ bθα,ϵ⟩
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is constant on a set of cardinality κ.

Also for such P we will have rng(P ) = η, i.e. for every ξ < η there is ϵ < σ∗ (which may be not

unique) such that (ϵ, ξ) ∈ P . Thus pick α ∈ AP . Then α > η > ξ and a1α ⊆
∪
{bθ | θ ∈ dα}.

Clearly λ1
ξ appears in a1α = {λ1

ν | ν < α}. Hence there is ϵ < σ∗ such that λ1
ξ ∈ bθα,ϵ , and so

(ϵ, ξ) ∈ P .

Let

T := {P | ∃η < κ(P ⊆ σ∗ × η and |AP | = κ)}.

If P ⊆ σ∗ × η, P ′ ⊆ σ∗ × η′ are both in T then set P <T P ′ iff

• η < η′,

• P ′ ∩ (σ∗ × η) = P .

Then ⟨T,<T ⟩ is a κ–tree. Let X ⊆ σ∗ × κ be a κ–branch. Define now an increasing

function g : κ → κ. Set g(η) = min(AX∩(σ∗×η) \ sup{g(η′) | η′ < η}).
Let now ϵ < σ∗. Define uϵ as follows:

ξ ∈ uϵ iff for some η > ξ and some (every)α ∈ AX∩(σ∗×η), λ
1
ξ ∈ bθα,ϵ .

Then for any ϵ < σ∗ and ξ < η < κ the following holds:

λ1
ξ ∈ bθg(η),ϵ iff ξ ∈ uϵ.

Finally |X| = κ implies that for every ξ < κ there is ϵ < σ∗ with ξ ∈ uϵ. Thus let ξ < κ.

Pick some η, ξ < η < κ. Consider X ∩ (σ∗ × η). Then, as was observed above, there are

α ∈ AX∩(σ∗×η) and ϵ < σ∗ such that λ1
ξ ∈ bθα,ϵ . Hence ξ ∈ uϵ.

� of the claim.

Claim 3 Suppose that uϵ ∈ I+1 , for some ϵ < σ∗. Then |uϵ| = κ and the quasi order∏
i∈uϵ

(θg(i),ϵ, <Jbd
uϵ
) has true cofinality λ.

Proof. κ–completeness of I1 implies that |uϵ| = κ, since clearly {ξ} ∈ I1, for every ξ < κ.

Suppose now that the quasi order
∏

i∈uϵ
(θg(i),ϵ, <Jbd

uϵ
) does not have a true cofinality or

it has true cofinality ̸= λ. Recall that λ = maxpcf(a1). So by [3](Sh345a) there is an

unbounded subset v of u such that
∏

i∈v(θg(i),ϵ, <Jbd
v
) has a true cofinality λ∗ < λ. We

can take λ∗ to be just the least δ such that an unbounded subset of uϵ appears in J≤δ[uϵ].

Without loss of generality we can assume that λ∗ = maxpcf({θg(i),ϵ | i ∈ v}). We have
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λ∗ ∈ pcf({θg(i),ϵ | i ∈ v}) ⊆ pcf(a1) = a2. Set v1 := {i ∈ v | θg(i),ϵ ∈ bλ∗}. Then v1 is

unbounded in v. By smoothness of the generators, i ∈ v1 implies bθg(i),ϵ ⊆ bλ∗ . Then

i ∈ v1 and ξ ∈ uϵ ∩ i imply λ1
ξ ∈ bλ∗ .

But v1 is unbounded in κ, hence for every ξ ∈ uϵ there is i ∈ v1, i > ξ. So, {λ1
ξ | ξ ∈ uϵ} ⊆ bλ∗ .

By the closure of the generators, pcf(bλ∗) = bλ∗ . Hence pcf({λ1
ξ | ξ ∈ uϵ}) ⊆ bλ∗ . This

impossible since uϵ ∈ I+1 and so λ ∈ pcf({λ1
ξ | ξ ∈ uϵ}), but λ∗ < λ. Contradiction.

� of the claim.

Claim 4 There is ϵ < σ∗ such that uϵ ∈ I+1 and µ = limJbd
κ +(κ\uϵ) ⟨θg(i),ϵ | i < κ⟩.

Proof. Suppose otherwise. Set s := {ϵ < σ∗ | uϵ ∈ I+1 }. Then for every ϵ ∈ s there is vϵ an

unbounded subset of κ such that θ∗ϵ := sup{θg(i),ϵ | i ∈ vϵ} is below µ. Set

θ∗ := sup{θ∗ϵ | ϵ ∈ s}. Then θ∗ < µ, since cof(µ) = κ > σ∗.

Set w1 :=
∪
{uϵ | ϵ ∈ σ∗ \ s}. Then w1 ∈ I1 as a union of less than κ of its members.

Also the set w2 := {i < κ | λ1
i ≤ θ∗} belongs to I1 because µ = limI1{λ1

i | i < κ}. Hence

w := w1 ∪ w2 ∈ I1.

Let ξ ∈ κ \ w. Then

λ1
ξ ∈ {λ1

ρ | ρ < ξ + 1} ⊆
∪

{bθg(ξ+1),ϵ
| ϵ < σ∗}.

Hence for some ϵ < σ∗, λ1
ξ ∈ bθg(ξ+1),ϵ

. Then ξ ∈ uϵ. Now, ξ ̸∈ w and so ξ ̸∈ w1. Hence

ϵ ∈ s. Pick some τ ∈ vϵ, τ > ξ. Then λ1
ξ ∈ bθg(τ),ϵ , since ξ ∈ uϵ. Then

λ1
ξ ≤ max(bθg(τ),ϵ) = θg(τ),ϵ ≤ θ∗ϵ ≤ θ∗.

But then ξ ∈ w2. Contradiction.

� of the claim.

�

Proposition 2.3 Let a be a set of regular cardinals with min(a) > 2|a|. Let σ < θ ≤ |a|.
Suppose that λ ∈ pcfσ−complete(a), µ < λ and pcfθ−complete(a) ⊆ µ. Then there is c ⊆
pcfθ−complete(a) such that |c| < θ, c ⊆ µ and λ ∈ pcfσ−complete(c).

Remark 2.4 It is possible to replace the assumption min(a) > 2|a| by min(a) > |a| using
[4](Sh430) § 6, 6.7A in order to find the pcf-generators used in the proof.
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Proof. Let ⟨bξ | ξ ∈ pcf(a)⟩ be a set of generators as in Theorem 2.1. We have λ ∈
pcfσ−complete(a) ⊆ pcf(a), hence bλ is defined and max pcf(bλ) = λ ∈ pcfσ−complete(a) ⊆
pcf(a).

By [4], 6.7F(1), there is c ⊆ pcfθ−complete(a ∩ bλ) ⊆ µ of cardinality < θ such that

bλ ∩ a ⊆
∪
{bξ | ξ ∈ c}. Then, by smoothness, ξ ∈ c ⇒ bξ ⊆ bλ. Also pcf(c) ⊆ pcf(bλ) = bλ.

Hence max pcf(c) ≤ λ.

Now, if λ ∈ pcfσ−complete(c), then we are done. Suppose otherwise. Then there are

j(∗) < σ and θj ∈ λ ∩ pcfσ−complete(c), for every j < j(∗), such that c ⊆
∪
{bθj | j < j(∗)}.

So if η ∈ bλ ∩ a, then for some χ ∈ c we have η ∈ bχ, as bλ ∩ a ⊆
∪
{bξ | ξ ∈ c}. Hence for

some j < j(∗), χ ∈ bθj , and so bχ ⊆ bθj and η ∈ bθj .

Then bλ ∩ a ⊆
∪

j<j(∗) bθj . Recall that j(∗) < σ and θj < λ, for every j < j(∗).
Note that λ ∈ pcfσ−complete(a) implies that λ ∈ pcfσ−complete(bλ ∩ a), see for example 4.14 of

[1]. So there is a σ–complete ideal J on bλ ∩ a such that

λ = tcf(
∏
(bλ ∩ a), <J). Then for some j < j(∗), bθj ∈ J+ which is impossible since

max pcf(bθj) = θj < λ. Contradiction.

�
The next result follows from 2.1 of [5] Sh460.

Theorem 2.5 Let µ be a strong limit cardinal and θ a cardinal above µ. Suppose that at

least one of them has an uncountable cofinality. Then there is σ∗ < µ such that for every

χ < θ the following holds:

θ > sup{sup pcfσ∗−complete(a) | a ⊆ Reg ∩ (µ+, χ) and |a| < µ}.

Proof. Assume first that cof(µ) ̸= cof(θ). Suppose on contrary that

∀µ∗ < µ∃χ < θ(θ ≤ sup{sup pcfµ∗−complete(a) | a ⊆ Reg ∩ (µ+, χ) and |a| < µ}).

If cof(θ) < cof(µ), then there will be χ < θ such that for every µ∗ < µ

θ ≤ sup{sup pcfµ∗−complete(a) | a ⊆ Reg ∩ (µ+, χ) and |a| < µ}.

But this is impossible by 2.1 of [5] applied to µ and χ.

If cof(θ) > cof(µ), then still there will be χ < θ such that for every µ∗ < µ

θ ≤ sup{sup pcfµ∗−complete(a) | a ⊆ Reg ∩ (µ+, χ) and |a| < µ}.

Just for every µ∗ < µ pick some χµ∗ such that

θ ≤ sup{sup pcfµ∗−complete(a) | a ⊆ Reg ∩ (µ+, χµ∗) and |a| < µ},
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and set χ =
∪

µ∗<µ χµ∗ .

So let us assume that cof(θ) = cof(µ). Denote this common cofinality by κ. By the

assumption of the theorem κ > ℵ0.

Let ⟨µi | i < κ⟩ be an increasing continuous sequence with limit µ such that each µi is

a strong limit cardinal. Let θ > µ be singular cardinal of cofinality κ. Fix an increasing

continuous sequence ⟨θi | i < κ⟩ with limit θ such that θ0 > µ.

Suppose that there are no σ∗ < µ which satisfies the conclusion of the theorem. In particular,

for every i < κ, µi cannot serve as σ∗. Hence there is χi < θ such that

θ = sup{sup pcfµi−complete(a) | a ⊆ Reg ∩ (µ+, χi) and |a| < µ}.

So, for each j < κ, there is ai,j ⊆ Reg ∩ (µ+, χi) of cardinality less than µ such that

pcfµi−complete(ai,j) ̸⊆ θj.

Set θκ := θ. For every i ≤ κ, we apply Theorem 2.1 of [5] to µ and θi. There is σ∗
i < µ

such that

if a ⊆ Reg ∩ (µ+, θi) and |a| < µ then pcfσ∗
i −complete(a) ⊆ θi.

Define now by induction a sequence ⟨i(n) | n < ω⟩ such that

1. i(n) < i(n+ 1) < κ,

2. σ∗
κ < µi(0),

3. σ∗
i(n) < µi(n+1),

4. χi(n) < θi(n+1).

Let i(ω) =
∪

n<ω i(n). Then i(ω) < κ, since κ is a regular above ℵ0. So θi(ω) < θ. Now,

for every j < κ and n < ω the following holds:

ai(n),j ⊆ Reg ∩ (µ+, χi(n)) ⊆ Reg ∩ (µ+, θi(n+1)) ⊆ Reg ∩ (µ+, θi(ω)) and

pcfσ∗
i(n+1)

−complete(ai(n),j) ⊆ θi(n+1) < θi(ω).

Let n < ω and j ∈ (i(ω), κ). Then by the choice of ai(n),j the following holds:

ai(n),j ⊆ Reg ∩ (µ+, χi(n)) ⊆ Reg ∩ (µ+, θi(n+1))and pcfµi(n)−complete(ai(n),j) ̸⊆ θj.

By the choice of σ∗
i(n+1), we have

pcfσ∗
i(n+1)

−complete(ai(n),j) ⊆ θi(n+1).
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By 2.3 there is bi(n),j ⊆ pcfσ∗
i(n+1)

−complete(ai(n),j) such that

|bi(n),j| < σ∗
i(n+1) < µi(n+2) < µi(ω) and pcfµi(n)−complete(bi(n),j) ̸⊆ θj.

Obviously, bi(n),j ⊆ Reg ∩ (µ+, θi(n+1)), since

pcfσ∗
i(n+1)

−complete(ai(n),j) ⊆ θi(n+1).

Apply Theorem 2.1 of [5] to µi(ω) (recall that it is a strong limit) and θi(ω). So, there is

σ∗ < µi(ω) such that

if b ⊆ Reg ∩ (µ+
i(ω), θi(ω)) and |b| < µi(ω) then pcfσ∗−complete(b) ⊆ θi(ω).

Now take n∗ < ω with µi(n∗) > σ∗. Then bi(n∗),j ⊆ Reg ∩ (µ+
i(ω), θi(ω)) and |bi(n∗),j| < µi(ω),

but pcfµi(n∗)−complete(bi(n∗),j) ̸⊆ θj > θi(ω). Which is impossible. Contradiction.

�

3 Applications.

Let κ be a measurable cardinal, U be a κ–complete non-principle ultrafilter over κ and let

jU : V → M ≃ κV/U be the corresponding elementary embedding. Denote jU further simply

by j.

Lemma 3.1 Let µ > 2κ be a singular cardinal of cofinality κ. Then j(µ) ≥ ppΓ(κ)(µ).

Proof. Let λ < pp+
Γ(κ)(µ) be a regular cardinal. Then, by Theorem 2.1, there is an increasing

sequence of regular cardinals ⟨λi | i < κ⟩ converging to µ such that λ = tcf(
∏

i<κ λi, <Jbd
κ
).

The ultrafilter U clearly extends the dual to Jbd
κ . Hence [⟨λi | i < κ⟩]U represents an ordinal

below j(µ) of cofinality λ. Hence j(µ) > λ and we are done.

�
Let us denote for a singular cardinal µ of cofinality κ by µ∗ the least singular ξ ≤ µ of

cofinality κ above 2κ such that ppΓ(κ)(ξ) ≥ µ.

Then, by [3](Sh 355, 2.3(3), p.57), ppΓ(κ)(µ) ≤+ ppΓ(κ)(µ
∗).

Lemma 3.2 Let µ > 2κ be a singular cardinal of cofinality κ. Then j(µ) ≥ ppΓ(κ)(µ
∗).

Proof. By 3.1, j(µ∗) ≥ ppΓ(κ)(µ
∗). But µ∗ ≤ µ, hence j(µ∗) ≤ j(µ).

�

Lemma 3.3 Let µ > 2κ be a singular cardinal of cofinality κ. Let η, µ < η < j(µ) be a

regular cardinal. Then η ≤ ppΓ(κ)(µ
∗).
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Proof.

Let η, µ < η < j(µ) be a regular cardinal. Let fη : κ → µ be a function which represents η

in M , i.e. [fη]U = η. We can assume that rng(fη) ⊆ Reg ∩ ((2κ)+, µ), since |j(2κ)| = 2κ and

so j(2κ) < µ < η. Set τ := U–limit of rng(fη).
3 Then τ > 2κ.

Note that cof(τ) = κ. Otherwise, fη is just a constant function mod U . Let δ be the constant

value. Then δ < j(δ) = η. By elementarity δ must be a regular cardinal. But then j′′δ is

unbounded in η, which means that η is a singular cardinal. Contradiction.

Denote f(α) by τα, for every α < κ. Then each τα is a regular cardinal in the interval

((2κ)+, τ) and τ = limU ⟨τα | α < κ⟩. We have η = tcf(
∏

α<κ τα, <U).

Note that once U is not normal we cannot claim that the function α 7→ τα is one to one. So

there is a slight tension between the true cofinalities of the sequence ⟨τα | α < κ⟩ and of the

set {τα | α < κ}.
We will show in the next lemma (3.4) that this does not effect ppΓ(κ)(τ).

Namely, η = tcf(
∏

α<κ τα, <U) implies ppΓ(κ)(τ) ≥ η > µ.4

Then, by the choice of µ∗, we have µ∗ ≤ τ By [3](Sh 355, 2.3(3), p.57), ppΓ(κ)(µ
∗) ≥

ppΓ(κ)(τ).

�

Lemma 3.4 5 Let κ be a regular cardinal and τ be a singular cardinal of cofinality κ. Then

ppΓ(κ)(τ) = sup{tcf(
∏
α<κ

τα, <I) | ⟨τα | α < κ⟩ is a sequence of regular cardinals with

lim
I

⟨τα | α < κ⟩ = τ, I is a κ complete ideal over κ which extends Jbd
κ }.

Proof. Clearly,

ppΓ(κ)(τ) ≤ sup{tcf(
∏
α<κ

τα, <I) | ⟨τα | α < κ⟩ is a sequence of regular cardinals with

lim
I

⟨τα | α < κ⟩ = τ, I is a κ complete ideal over κ which extends Jbd
κ }.

Just if η = tcf((
∏

a, <J)), where a is a set of κ regular cardinals unbounded in τ, J is a κ−
complete ideal on a which includes Jbd

a . Then we can view a as a κ–sequence.

3It is possible to force a situation where such τ < µ. Start with a η++–strong τ, κ < τ < µ. Use the
extender based Magidor to blow up the power of τ to η+ simultaneously changing the cofinality of τ to κ.
The forcing satisfies κ++-c.c., so it will not effect pp structure of cardinals different from τ .

4Actually, the original definition of pp ([3]II,Definition 1.1, p.41) involves sequences rather than sets.
5A version of this lemma was suggested by Menachem Magidor.
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Let us deal with the opposite direction. Suppose that η = tcf(
∏

α<κ τα, <I), where

⟨τα | α < κ⟩ is a sequence of regular cardinals with limI ⟨τα | α < κ⟩ = τ,

I is a κ complete ideal over κ which extends Jbd
κ . Without loss of generality we can assume

that κ < τα < τ , for every α < κ. Set a = {τα | α < κ}. Define a projection π : κ → a by

setting π(α) = τα. Let

J := {X ⊆ a | π−1”X ∈ I}.

Then J will be a κ–complete ideal on a which extends Jbd
a .

Let us argue that η = tcf(
∏

a, <J).

Fix a scale ⟨fi | i < η⟩ which witnesses η = tcf(
∏

α<κ τα, <I). Define for a function f ∈∏
α<κ τα a function f̄ ∈

∏
α<κ τα as follows:

f̄(α) = sup{f(β) | τβ = τα}.

Note that for every α < κ, f̄(α) < τα, since τα is a regular cardinal above κ.

Consider the sequence ⟨f̄i | i < κ⟩. It need not be a scale, since the sequence need not be

I–increasing. But this is easy to fix. Just note that for every i < η there will be i′, i ≤ i′ < η,

such that

fi ≤ f̄i ≤I f̄i′ .

Just given i < η, find some i′, i ≤ i′ < η, such that f̄i ≤I fi′ . Then f̄i ≤I fi′ ≤ f̄i′ . Now

by induction it is easy to shrink the sequence ⟨f̄i | i < κ⟩ and to obtain an I–increasing

subsequence ⟨gξ | ξ < η⟩ which is a scale in (
∏

α<κ τα, <I).

For every ξ < η define hξ ∈
∏

a as follows:

hξ(ρ) = gξ(α), if ρ = τα, for some (every) α < κ.

It is well defined since gξ(α) = gξ(β) once τα = τβ.

Let us argue that ⟨hξ | ξ < η⟩ is a scale in (
∏

a, <J).

Clearly, ξ < ξ′ implies hξ <J hξ′ , since gξ <I gξ′ .

Let h ∈
∏

a. Consider g ∈
∏

α<κ τα defined by setting g(α) = h(τα). There is ξ < η such

that g <I gξ. Then h <J hξ, since

π−1”{ρ ∈ a | h(ρ) < hξ(ρ)} ⊇ {α < κ | g(α) < gξ(α)}.

�

Theorem 3.5 Let µ > 2κ be a singular cardinal of cofinality κ.

Then ppΓ(κ)(µ
∗) ≤ j(µ) < ppΓ(κ)(µ

∗)+.
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Proof. Note that j(µ) is always singular. Just µ is a singular cardinal, hence j(µ) is a

singular in M and so in V . Now the conclusion follows by 3.2,3.3.

�
We can deduce now an affirmative answer to a question of D. Fremlin for cardinals of

cofinality κ:6

Corollary 3.6 Let W be a non-principal κ–complete ultrafilter on κ and jW : V → MW the

corresponding elementary embedding. Then for every µ of cofinality κ, |j(µ)| = |jW (µ)|.

Proof. Let µ be a cardinal of cofinality κ. If µ < 2κ, then 2κ < jW (µ) < jW (2κ) < (2κ)+, for

any non-principal κ–complete ultrafilter W on κ.

If µ > 2κ, then, by 3.5, ppΓ(κ)(µ
∗) ≤ j(µ) < ppΓ(κ)(µ

∗)+. But recall that j was the elementary

embedding of an arbitrary non-principal κ–complete ultrafilter U on κ and the bounds do

not depend on it. Hence if W is an other non-principal κ–complete ultrafilter on κ, then

ppΓ(κ)(µ
∗) ≤ jW (µ) < ppΓ(κ)(µ

∗)+.

�

Corollary 3.7 For every µ of cofinality κ, |j(µ)| = |j(j(µ))|.

Proof. It follows from 3.6. Just take W = U2 and note that j(j(µ)) = jU2(µ).

�
Our next tusk will be to show that the fist inequality is really a strict inequality.

Lemma 3.8 Let µ > 2κ be a singular cardinal of cofinality κ. Then ppΓ(κ)(µ) ≤ (ppΓ(κ)(µ))
M .7

Proof. Let η, µ < η < pp+Γ(κ)(µ) be a regular cardinal.

By Theorem 2.1, there is an increasing converging to µ sequence ⟨ηi | i < κ⟩ of regular

cardinals such that

η = tcf(
∏
i<κ

ηi, <Jbd
κ
).

Note that both ⟨ηi | i < κ⟩ and Jbd
κ are in M . Also κM ⊆ M , hence each function of the

witnessing scale is in M , however the scale itself may be not in M . Still we can work inside

M and define a scale recursively using functions from the V -scale.

6Readers interested only in a full answer to Fremlin’s question can jump after the corollary directly to
3.12. The non-strict inequality in its conclusion suffices.

7(ppΓ(κ)(µ))
M stands for ppΓ(κ)(µ) as computed in M . Note that it is possible to have (ppΓ(κ)(µ))

M >
ppΓ(κ)(µ), just as (2

κ)M > 2κ.
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Thus let ⟨fτ | τ < η⟩ be a scale mod Jbd
κ which witnesses η = tcf(

∏
i<κ ηi, <Jbd

κ
). Work in M

and define recursively an increasing mod Jbd
κ sequence of functions ⟨gξ | ξ < η′⟩ in

∏
i<κ ηi

as far as possible.

We claim first that cof(η′) = η, as computed in V . Thus if η < cof(η′), then there will be

τ ∗ < η such that fτ∗ ≥Jbd
κ

gξ, for every ξ < η′, since for every ξ < η′ there is τ < η such that

fτ ≥Jbd
κ

gξ. But having fτ∗ ≥Jbd
κ

gξ, for all ξ < η′, we can continue and define gη′ to be fτ∗ .

If η > cof(η′), then again there will be τ ∗ < η such that fτ∗ ≥Jbd
κ

gξ, for every ξ < η′, and

again we can continue and define gη′ to be fτ∗ .

So cof(η′) = η. Let ⟨η′τ | τ < η⟩ be a cofinal in η′ sequence (in V ). Now, for every τ < η

there is τ ′, τ ≤ τ ′ < η such that fτ ̸≥Jbd
κ

gτ ′ , since the sequence ⟨gξ | ξ < η′⟩ is maximal.

Hence there is Aτ ⊆ κ, |Aτ | = κ such that fτ � Aτ <Jbd
κ

gη′
τ ′

� Aτ . But η > µ > 2κ, hence

there is A∗ ⊆ κ such that for η many τ ’s we have A∗ = Aτ . Then for every τ < η there is

τ ′′, τ ≤ τ ′′ < η such that fτ � A∗ <Jbd
κ

gη′
τ ′′

� A∗.

It follows that the sequence ⟨gξ � A∗ | ξ < η′⟩ is a scale in tcf(
∏

i∈A∗ ηi, <Jbd
A∗
). Hence, in M ,

η′ < pp+Γ(κ)(µ). But cof(η
′) = η, hence, in M , η ≤ η′ < pp+Γ(κ)(µ).

�

Lemma 3.9 Let µ > 2κ be a singular cardinal of cofinality κ such that µ∗ = µ.

Then j(ξ) < µ for every ξ < µ.

Proof. Suppose otherwise. Then there is ξ < µ such that j(ξ) ≥ µ. Necessarily ξ > 2κ.

Let η be a regular cardinal ξ ≤ η < µ. Pick a function fη : κ → ξ which represents η in

M . Without loss of generality we can assume that min(rng(fη)) > 2κ. Let δη ≤ ξ be the

U–limit of rng(fη). Then cof(δη) = κ and j(δη) > η. Also η ≤ ppΓ(κ)(δη), by the definition

of ppΓ(κ)(δη). By Lemma 3.2, we have j(δη) ≥ ppΓ(κ)((δη)
∗), and by [3](Sh 355, 2.3(3), p.57),

ppΓ(κ)(δη) ≤ ppΓ(κ)((δη)
∗). Set

δ := min{δη | ξ ≤ η < µ and η is a regular cardinal }.

Then ppΓ(κ)(δ) ≥ ppΓ(κ)(δη), for every regular η, ξ ≤ η < µ. But ppΓ(κ)(δη) ≥ η. Hence

ppΓ(κ)(δ) ≥ µ which is impossible since µ∗ = µ. Contradiction.

�

Lemma 3.10 Let µ > 2κ be a singular cardinal of cofinality κ.

Then ppΓ(κ)(µ
∗) < j(µ).
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Proof. By 3.2 we have j(µ) ≥ ppΓ(κ)(µ
∗).

Suppose that j(µ) = ppΓ(κ)(µ
∗). Then µ = µ∗, since by 3.2 we have j(µ∗) ≥ ppΓ(κ)(µ

∗). By

Theorem 2.5, there is σ∗ < κ such that

∀χ < µ(µ > sup{sup pcfσ∗−complete(a) | a ⊆ Reg ∩ (κ+, χ) ∧ |a| < κ}).

Then, by elementarity,

M |= ∀χ < j(µ)(j(µ) > sup{sup pcfj(σ∗)−complete(a) | a ⊆ Reg ∩ (j(κ+), χ) ∧ |a| < j(κ)}).

Clearly, j(σ∗) = σ∗. Take χ = µ. Let η be a regular cardinal (i.e. of V ) such that

(∗) M |= j(µ) > η > sup{sup pcfσ∗−complete(a) | a ⊆ Reg ∩ (j(κ+), µ) ∧ |a| < j(κ)}.

Note that there are such η’s since j(µ) is a singular cardinal of cofinality cof(j(κ)). By

Lemma 3.3, then η ≤ ppΓ(κ)(µ). Now, by Lemma 3.8, ppΓ(κ)(µ) ≤ (ppΓ(κ)(µ))
M . Hence

M |= η ≤ ppΓ(κ)(µ). But then there is a ∈ M such that

M |= a ⊆ Reg ∩ (j(κ+), µ) ∧ |a| = κ ∧ η ≤ maxpcfκ−complete(a).

Which clearly contradicts (∗).
�

So we proved the following:

Theorem 3.11 Let µ > 2κ be a singular cardinal of cofinality κ.

Then ppΓ(κ)(µ
∗) < j(µ) < ppΓ(κ)(µ

∗)+.

Deal now with cardinals of arbitrary cofinality.

Theorem 3.12 Let τ be a cardinal. Then either

1. τ < κ and then j(τ) = τ ,

or

2. κ ≤ τ ≤ 2κ and then j(τ) > τ , 2κ < j(τ) < (2κ)+,

or

3. τ ≥ (2κ)+ and then j(τ) > τ iff there is a singular cardinal µ ≤ τ of cofinality κ above

2κ such that ppΓ(κ)(µ) ≥ τ , and if τ ∗ denotes the least such µ, then

τ ≤ ppΓ(κ)(τ
∗) < j(τ) < ppΓ(κ)(τ

∗)+.
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Proof. Suppose otherwise. Let τ be the least cardinal witnessing this. Clearly then τ > (2κ)+.

If cof(τ) = κ, then we apply 3.11 to derive the contradiction. Suppose that cof(τ) ̸= κ.

Claim 5 There is a singular cardinal ξ of cofinality κ such that j(ξ) > τ .

Proof. Thus let fτ : κ → τ be a function which represents τ in M . Without loss of generality

we can assume that

ν ∈ rng(fτ ) ⇒ (ν > 2κ and ν is a cardinal ).

Then either fτ is a constant function mod U or ξ := U–limit rng(fτ ) has cofinality κ.

Suppose first that fτ is a constant function mod U with value ξ. If ξ = τ , then j(τ) = τ .

Suppose that ξ < τ . Then j(ξ) = τ > ξ and also ξ is a cardinal above 2κ. By minimality of

τ then ξ∗ exists and

ppΓ(κ)(ξ
∗) < τ = j(ξ) < ppΓ(κ)(ξ

∗)+.

But this is impossible since τ is a cardinal. Contradiction. So cof(ξ) = κ and j(ξ) > τ .

� of the claim.

Let µ ≤ τ be the least singular cardinal above 2κ of cofinality κ such that j(µ) > τ . We

claim that µ = µ∗. Note that by 3.11, we have ppΓ(κ)(µ
∗) < j(µ∗) ≤ j(µ) < ppΓ(κ)(µ

∗)+.

τ is a cardinal below j(µ), hence τ ≤ ppΓ(κ)(µ
∗) < j(µ∗). The minimality of µ implies then

that µ = µ∗. Note that also τ ∗ = µ. Thus ppΓ(κ)(τ
∗) ≥ τ ≥ µ = µ∗, and so τ ∗ ≥ µ. Also

τ ≤ ppΓ(κ)(µ) implies τ ∗ ≤ µ.

Apply finally 3.7. It follows that |j(j(µ))| = |j(µ)|, but j(µ) > τ , hence j(j(µ)) > j(τ) >

j(µ). So

ppΓ(κ)(µ) < j(µ) < j(τ) < ppΓ(κ)(µ)
+,

and we are done.

�
Now affirmative answers to a question of D. Fremlin and to questions 4,5 of [2] follow

easily.8

Corollary 3.13 Let W be a non-principal κ–complete ultrafilter on κ and jW : V → MW

the corresponding elementary embedding. Then for every τ , |j(τ)| = |jW (τ)|.

Proof. Let W be a non-principal κ–complete ultrafilter on κ and jW : V → MW the

corresponding elementary embedding. Let τ be an ordinal. Without loss of generality we

8Non strict inequality ppΓ(κ)(τ
∗) ≤ j(τ) < ppΓ(κ)(τ

∗)+ suffices for a question of D. Fremlin and 4 of [2].
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can assume that τ is a cardinal, otherwise just replace it by |τ |. Now by 3.12, j(τ) > τ iff

jW (τ) > τ and if j(τ) > τ then either j(τ), jW (τ) ∈ (2κ, (2κ)+),

or j(τ), jW (τ) ∈ (ppΓ(κ)(τ
∗), ppΓ(κ)(τ

∗)+).

�

Corollary 3.14 For every τ , |j(τ)| = |j(j(τ))|.

Proof. Apply 3.13 with W = U2.

�
It is straightforward to extend this to arbitrary iterated ultrapowers of U :

Corollary 3.15 Let τ be a cardinal with j(τ) > τ . Let α ≤ 2κ, if τ ≤ 2κ, and α ≤
ppΓ(κ)(τ

∗), if τ > 2κ. Then |j(τ)| = |jα(τ))|, where jα : V → Mα denotes the α-th iterated

ultrapower of U .

Corollary 3.16 For every τ , if j(τ) ̸= τ , then j(τ) is not a cardinal.

Proof. Follows immediately from 3.12.

�
The following question looks natural:

Let α be any ordinal. Suppose j(α) > α. Let W be a non-principal κ–complete ultrafilter

on κ and jW : V → MW the corresponding elementary embedding. Does then jW (α) > α?

Next statement answers it negatively assuming that o(κ)– the Mitchell order of κ is at

least 2.

Proposition 3.17 Let W be a non-principal κ–complete ultrafilter on κ and jW : V → MW

the corresponding elementary embedding. Suppose that U ▹W , i.e. U ∈ MW . Then jW (α) >

α = j(α), for some α < (2κ)+.

Proof. Let α = jω(κ), i.e. the ω-th iterate of κ by U . Then j(α) = α, since jω(κ) =

∪n<ωjn(κ). Let us argue that jW (α) > α. Thus we have U in MW . So jω(κ) as computed in

MW is the real jω(κ). In addition

MW |= |jω(κ)| = 2κ < (2κ)+ < jW (κ),

and so κ < α = jω(κ) < jW (κ). Hence

jW (α) = jW (jω(κ)) > jW (κ) > α.
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�
Let us note that the previous proposition is sharp.

Proposition 3.18 Suppose that there is no inner model with a measurable of the Mitchell

order ≥ 2. Let W be a non-principal κ–complete ultrafilter on κ and jW : V → MW the

corresponding elementary embedding. Then j(α) > α iff jW (α) > α, for every ordinal α.

Proof. Assume that U is normal or just replace it by such. Let W be a non-principal κ–

complete ultrafilter on κ and jW : V → MW the corresponding elementary embedding.

The assumption that there is no inner model with a measurable of the Mitchell order ≥ 2

guarantees that there exists the core model. Denote denote it by K. Let U∗ = U ∩ K.

Then it is a normal ultrafilter over κ in K. Denote by j∗ its elementary embedding. Then

jW � K = j∗n, for some n < ω, since ωMW ⊂ MW there are no measurable cardinals in K of

the Mitchell order 2.

Hence we need to argue that

j∗(α) > α ⇔ j∗n(α) > α,

for every ordinal α and every n < ω. But this is trivial, since j∗(α) > α implies j∗2(α) =

j∗(j∗(α)) > j∗(α) > α and in general j∗k+1(α) = j∗(j∗k(α)) > j∗k(α) > α, for every k, 0 < k <

ω. On the other hand, if j∗(α) = α, then j∗ξ (α) = α, for every ξ.

�

4 Concluding remarks and open problems.

Question 1. Is weak compactness really needed for Theorem 2.1? Or explicitly:

Let κ a regular cardinal. Let µ > 2κ be a singular cardinal of cofinality κ. Suppose that

λ < pp+
Γ(κ)(µ). Is there an increasing sequence ⟨λi | i < κ⟩ of regular cardinals converging to

µ such that λ = tcf(
∏

i<κ λi, <Jbd
κ
)?

See [3] pp.443-444, 5.7 about the related results.

Question 2. Does Theorem 2.5 remain true assuming cof(µ) = cof(θ) = ω?

Suppose now that we have an ω1-saturated κ–complete ideal on κ instead of a κ–complete

ultrafilter. The following generic analogs of questions 4,5 of [2] and of a question of Fremlin

are natural:

Question 3. Let W be an ω1–saturated filter on κ. Does each the following hold:

1. 
W+ ∀τ( j
∼W (τ) > τ −→ τ is not a cardinal).
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2. 
W+ ∀τ(| j
∼W (τ)| = | j

∼W ( j
∼W (τ))|).

3. Let W1 be an other ω1–saturated filter on κ. Suppose that for some τ we have δ, δ1

such that

• 
W+ j
∼W (τ) = δ̌,

• 
W+
1

j
∼W1(τ) = δ̌1.

Then |δ| = |δ1|.

Note that in such situation 2ℵ0 ≥ κ and so 2.1 does not apply. Assuming variations of

SWH and basing on [3], Sh371, it is possible to answer positively this questions for τ > 2κ.

Recall a question of similar flavor from [2] (Problem 6):

Question 4. Let W be an ω1–saturated filter on κ. Can the following happen:


W+ j
∼W (κ) is a cardinal? Or even 
W+ j

∼W (κ) = κ++?
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